Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

π -Extended push-pull azo-pyrrole photoswitches: Synthesis, solvatochromism and optical band gaps

J. A. Balam-Villarreal,^a B. J. López-Mayorga,^a D. Gallarado-Rosas,^a A. R. Toscano,^b M. P. Carreón-Castro,^a V. A. Basiuk,^a F. Cortés-Guzmán,^b J. G. López-Cortés,^{*b} and M. C. Ortega-Alfaro^{*a}

Table of contents

1. General Information	S2
2. Materials	S2
3. Methods	S2
4. The ¹ H NMR and ¹³ C NMR spectra of compounds 1a-d	S4
5. The ¹ H NMR and ¹³ C NMR spectra of compounds 2a-c	S8
6. The ¹ H NMR and ¹³ C NMR spectra of compounds 3b-g	S11
7. The ¹ H NMR and ¹³ C NMR spectra of compounds 4b-d	S17
8. Structure determination by X-Ray crystallography	S20
Table S1. X-Ray Data Collection and Structure Refinement Details for 1c, 2b, 2c and 4d	S20
Figure S33. ORTEP representation of 2b	S20
Figure S34. ORTEP representation of 2c	S20
Figure S35. ORTEP representation of 4d	S20
9. UV-visible spectroscopic studies for compounds 1b-d, 2b-d, 3b-g and 4b-d	S21
10. Photoisomerization studies of compounds 3b, 3c, 4b and 4c	S40
11. Graphical determination of Band-gap for compounds 1b-d, 2b-c, 3b-d and 4b-d	S43
12. Computational studies	S45

1. General Information

Unless otherwise stated, all the reactions for the synthesis of the compounds **1** and **2** were carried out in open vessel conditions. The synthesis of the palladium complex was conducted under argon atmosphere with standard Schlenk techniques as reported elsewhere.¹ All temperature given for reaction conditions are externally measured. All reactions were monitored by TLC.

2. Materials

Commercial materials were used as received: THF and CH_2Cl_2 purchased from Sigma-Aldrich in anhydrous form. Benzene, THF, Dioxane, CHCl₃, Methanol and Ethanol were purchased from Sigma-Aldrich in HPLC and/or spectrophotometric quality. ASTM type 1 ultra-pure water (Millipore-Q system, 18.2 M Ω cm) was used as solvent for the aggregation studies. HCl, NaNO₂, *N*-methylpyrrole, 1,2,5-Trimethyl pyrrole, pyridine, aniline, 4-Iodoaniline, 4nitroaniline, 4-trifluoromethylaniline, ferrocene, t-BuLi (1.7 M), Cr(CO)₆, Et₃OBF₄, S₈, NaBH₄, PdCl₂, PPh₃, phenylboronic acid, 4-nitrophenylboronic acid, 4-trifluoromethylphenyl boronic acid, 4-methansulfonylphenyl boronic acid, 4-(Dimethylamino)phenylboronic acid and K₂CO₃ were purchased from Sigma-Aldrich. Analytical thin layer chromatography was performed on DC-Fertigfolien ALUGRAM[®] Xtra SIL G/UV254 MACHEREY-NAGEL. Column chromatography was performed on Silica 60, 0.063-0.2 mm MACHEREY-NAGEL.

3. Methods

Microwave irradiation experiments were performed using a Monowave 300 single-mode microwave reactor. The reaction temperature is monitored by an internal fiber-optic (FO) temperature probe (ruby thermometer) protected by a borosilicate immersion well inserted directly into the reaction mixture. Reaction times refer to the hold time at the desired set temperature and not to total irradiation time. A hydraulic sensor integrated in the swiveling cover of the instrument performs pressure sensing. The reusable 10 mL Pyrex vial is sealed with PEEK snap caps and standard PTFE coated silicone septa. Reaction cooling is performed by compressed air automatically after the heating period has elapsed.

The equipment used for irradiation with IR energy was created by employing an empty cylindrical metal vessel in which an Osram lamp (bulb model Thera-Therm, 250 W, 125 V) was inserted.¹ This lamp is special short-wave IR lamp (IR-A) for use in body care and wellness applications, with a maximum radiation at a wavelength of about 1100 nm. The lamp instantly emits a full thermal output as soon as it is switched on. For controlling the temperature, a Digi-Sense variable-time power controller was used. This time controller turned the output load on and off and then repeated the cycle. All the reactions were performed in open atmosphere.

Melting points were obtained on a Stuart Melting Point Apparatus SMP10 and they are uncorrected. All compounds were characterized by IR spectra, recorded on a Perkin-Elmer Spectrum 100 FT-IR spectrophotometer provide with an ATR polarization attachment and all data are expressed in wave numbers (cm⁻¹). NMR spectra were measured on a Bruker Avance 300 Spectrometer, at an operating frequency of 300 MHz for ¹H and 75 MHz for ¹³C, using tetramethylsilane (TMS) as internal reference and CDCl₃ as solvent; chemical shifts values are given in parts per million (ppm), relative to TMS. Mass spectrometry analyses were obtained on a JEOL SX102A (EI⁺ and FAB⁺) and on AccuTOF JMS-T100LC (DART), the values of the signals are expressed in mass/charge units (m/z), followed by the relative intensity with reference to a 100% base peak. UV-Vis absorption spectra were recorded at 298 K on a Varian Cary 100 UV-Vis spectrophotometers, using spectrophotometric grade solvents purchased from Sigma-Aldrich Co. and 1 cm quartz cell. The solvatochromic study was performed using 10⁻⁵ M to 10⁻⁴ M solutions of azopyrrole dyes in several solvents at room temperature. The aggregation study was carried out using $5x10^{-5}$ M solutions of azopyrrole dyes at different MeOH: H₂O ratios, from 100:0 to 20:80 at room temperature.

¹H and ¹³C NMR Spectra.

Figure S1. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 1a

Figure S2. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound 1a

Figure S4. ¹³C NMR spectrum of compound 1b

Figure S5. ¹H NMR spectrum (300 MHz, CDCl₃) of compound **1c**

Figure S6. 13 C NMR spectrum (75 MHz, CDCl₃) of compound **1c**

Figure S7. ¹H NMR spectrum (300 MHz, $CDCl_3$) of compound **1d**

Figure S8. 13 C NMR spectrum (75 MHz, CDCl₃) of compound **1d**

Figure S9. ¹H NMR spectrum (300 MHz, CDCl₃) of compound **2a**

Figure S10. $^{\rm 13}C$ NMR spectrum (75 MHz, CDCl₃) of compound 2a

Figure S11. ¹H NMR spectrum (300 MHz, CDCl₃) of compound **2b**

Figure S12. $^{\rm 13}C$ NMR spectrum (75 MHz, CDCl₃) of compound ${\bf 2b}$

Figure S13. ¹H NMR spectrum (300 MHz, CDCl₃) of compound **2c**

Figure S14. $^{\rm 13}C$ NMR spectrum (75 MHz, CDCl₃) of compound 2c

Figure S15. ¹H NMR spectrum (300 MHz, CDCl₃) of compound **3b**

Figure S16. $^{\rm 13}C$ NMR spectrum (75 MHz, CDCl₃) of compound ${\bf 3b}$

Figure S17. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 3c

Figure S18. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound **3c**

Figure S19. ¹H NMR spectrum (300 MHz, CDCl₃) of compound $\mathbf{3d}$

Figure S20. $^{\rm 13}C$ NMR spectrum (75 MHz, CDCl₃) of compound ${\bf 3d}$

4.0 f1 (ppm) 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 1.5 0.5 0.0 1.0 Figure S23. ¹H NMR spectrum (300 MHz, CDCl₃) of compound **3e**

Figure S21. ¹H NMR spectrum (300 MHz, CDCl₃) of compound **3f**

S16

Figure S25. ¹H NMR spectrum (300 MHz, CDCl₃) of compound **3g**

Figure S26. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound **3g**

Figure S27. ¹H NMR spectrum (300 MHz, CDCl₃) of compound **4b**

Figure S28. 13 C NMR spectrum (75 MHz, CDCl₃) of compound **4b**.

Figure S29. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 4c

Figure S30. 13 C NMR spectrum (75 MHz, CDCl₃) of compound **4c**.

Figure S31. ¹H NMR spectrum (300 MHz, $CDCl_3$) of compound **4d.**

Figure S32. ¹³C NMR spectrum (75 MHz, CDCl₃) of compound **4d.**

8. Structure determination by X-ray crystallography

Suitable X-ray quality crystals of **1c**, **2a**, **2b** and **4d** were grown by slow evaporation of chloroform at room temperature. Crystals of each compound were mounted on a glass fiber at room temperature, and then placed on a Bruker Smart Apex CCD (for **1c**), Bruker D8 Venture $\underline{\kappa}$ geometry diffractometer 208039-1 (for **2a**, **2b**, **4b**), both equipped with Mo-K α radiation; decay was negligible in both cases. Details of crystallographic data collected for these compounds are provided in SI. Systematic absences and intensity statistics were used in space group determination. The structure was solved using direct methods.ⁱⁱ Anisotropic structure refinements were achieved using full matrix, least-squares technique on all nonhydrogen atoms. All hydrogen atoms were placed in idealized positions, based on hybridization, with isotropic thermal parameters fixed at 1.2 times the value of the attached atom. Structure solutions and refinements were performed using SHELXTL V6.10.ⁱⁱⁱ The experimental and refinement details of the X-ray crystallographic structure of compounds **1c**, **2a**, **2b** and **4d** can be obtained free of charge from the Cambridge Crystallographic Data Centre (http://www.ccdc.cam.ac.uk).

	1c	2a	2b	4d
Formula	$C_{11}H_{10}N_4O_2$	$C_{13}H_{14}IN_3$	$C_{13}H_{15}N_{3}$	$C_{20}H_{18}F_{3}N_{3}$
MW g ⁻¹ mol ⁻¹	230.23	339.17	213.28	357.37
Crystal size (mm ³)	0.35x0.21x0.06	0.35x0.16x0.14	0.37 × 0.14 ×	0.40x0.26x0.07
			0.11	
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P-1	<i>P</i> 2 ₁ /n	<i>P</i> 2 ₁ /n	P21/c
a/Å	7.345(5)	11.538(10)	8.564 (4)	14.409(2)
b/Å	7.435(6)	9.5869(9)	22.313 (11)	7.2189(10)
c/Å	11.625(9)	12.6216(11)	25.094 (12)	17.976(3)
$\alpha/(^{\circ})$	74.87(3)	90	90	90
β/(°)	89.96(3)	106.002(2)	93.048 (7)	107.935(7)
γ/(°)	65:91(3)	90	90	90
Volume/ Å ³	555.4	1340.4	47788(4)	1778.9(5)
Z	2	4	16	4
$d_{\rm c}/{\rm Mg}~{\rm m}^{-3}$	1.377	1.681	1.186	1.334
$\Theta/^{\circ}$	3.06 to 27.41	2.71 to 27.41	2.44 to 27.31	2.38 to 27.48
Index Ranges	-9≤h≤9	-14≤h≤14	-10≤h≤10	-18≤ <i>h≤18</i>
-	-9≤k≤9	-12≤k≤12	-28≤k≤28	-9≤k≤9
	-14≤ <i>l≤14</i>	-16≤ <i>l≤16</i>	-32≤l≤32	-23≤l≤23
Reflections collected	11624	16497	112168	26053
Independent reflections	s 2445	3070	10535	3932
	[<i>R</i> (int)=0.0812]	[<i>R</i> (int)=0.0239]	[<i>R</i> (int)= 0.135]	[<i>R</i> (int)= 0.034]
Data/parameters	2445/229	3070/157	10535/589	3932/295
Final R indices	<i>R</i> 1=0.0951	<i>R</i> 1=0.0307	R1=0.069	R1=0.047
[/>2 0 (/)]	wR2=0.2496	wR2=0.0768	wR2=0.173	wR2=0.154
R indices (all data)	<i>R</i> 1=0.1516	<i>R</i> 1=0.0452	R1=0.2051	R1=0.0651
· ·	wR2=0.2184	wR2=0.0700	wR2=0.1283	wR2=0.1398
GoF(F ²)	1.152	1.049	0.999	1.080
Absorptions corrections	s Multi-scan	Multi-scan	Multi-scan	Multi-scan
CCDC	1950956	1950957	1950959	1950958

Table S1. X-ra	y Data Collection	and Structure	Refinement	Details for 1c	, 2a, 2b and 4	١d
----------------	-------------------	---------------	------------	----------------	------------------------------	----

Figure S33. ORTEP view of **2a** with thermal ellipsoids at 30% probability level. Selected bond lengths (Å) and angles (°):I(1)-C(11) 2.099(2); N(1)-C(1) 1.457(3); N(2)-N(3) 1.262(3); N(2)-C(3) 1.386(3); N(3)-C(8) 1.427(3); N(3)-N(2)-C(3) 114.3(2); N(2)-N(3)-C(8) 113.1(2), C(10)-C(11)-I(1) 120.1(2), C(11)-C(12)-I(1) 119.2(2).

Figure S34. ORTEP view of **2b** with thermal ellipsoids at 30% probability level. Selected bond lengths (Å) and angles (°): N(1)-C(1) 1.461(4); N(2)-N(3) 1.270(3); N(2)-C(3) 1.378(3); N(3)-C(8) 1.424(3); C(5)-N(1)-C(2) 109.4(2), C(5)-N(1)-C(1) 124.7(2); C(2)-N(1)-C(1) 125.8(2), N(3)-N(2)-C(3) 115.3(2); N(2)-N(3)-C(8) 112.7(2). Torsion angle C(8)-N(3)-(N2)-C(3) 178.5(2).

Figure S35. ORTEP view of **4d** with thermal ellipsoids at 30% probability level. Selected bond lengths (Å) and angles (°): N(2)-N(3) 1.263(3); N(2)-C(3) 1.385(1); N(3)-C(8) 1.428(1); C(11)-C(14) 1.485(1); C(2)-N(1)-C(1) 125.1(3), N(3)-N(2)-C(3) 114.7(3); N(2)-N(3)-C(8) 113.1(1); C(12)-C(11)-C(14) 120.4(5); C(11)-C(14)-C(19) 121.3(7). Torsion angle C(10)-C(11)-C(14)-C(15) 33.4(2).

9. UV-Visible studies

9.1 UV-Visible studies of compound 1b

Figure S36 . UV-visible spectra of compound **1b** in different solvents.

Compound	Chloroform	Methanol	Benzene	Dioxane	THF	DMSO	Aggregation
16	λ_{max} = 386	λ_{max} = 385	λ_{max} = 389	λ_{max} = 386	λ_{max} = 387	λ_{max} = 391	λ _{max MeOH} = 385
1b	ε= 21915	ε= 27022	ε= 28545	ε= 23067	ε= 36121	ε= 21135	λ _{max (MeOH/H2O,} _{80:20)} = 424

Table S2. UV-visible spectroscopic data for **1b** acquired in different solvents.

Figure S37 . UV-visible spectra of compound **1b** (5×10^{-5} M) in different ratios MeOH/H₂O.

9.2 UV-Visible studies of compound 1c

ε= 25845

ε= 30157

ε= 26052

ε= 26476

Figure S38 . UV-visible spectra of compound 1c in different solvents.

labi	Table S3. UV-Visible spectroscopic data for 1c acquired in different solvents.										
Compound	Chloroform	Methanol	Benzene	Dioxane	THF	DMSO	Aggregation				
1c	λ_{max} = 242	λ_{max} = 420	λ_{max} = 422	λ_{max} = 419	λ_{max} = 422	λ_{max} = 433	λ _{max MeOH} = 420				

ε= 34488

Figure S39 . UV-visible spectra of compound 1c (5×10^{-5} M) in different ratios MeOH/H₂O.

 λ_{max} (MeOH/H2O,

80:20)= 425

ε= 25171

9.3 UV-Visible studies of compound 1d

Figure S40 . UV-visible spectra of compound **1d** in different solvents.

Compound	Chloroform	Methanol	Benzene	Dioxane	THF	DMSO	Aggregation
1 d	λ_{max} = 394	λ_{max} = 393	λ_{max} = 396	λ_{max} = 394	λ_{max} = 395	λ_{max} = 400	λ _{max MeOH} = 393
1d	ε= 20248	ε= 25812	ε= 22731	ε= 21965	ε= 27714	ε= 22232	λ _{max (MeOH/H2O,} _{80:20)} = 422

Figure S41 . UV-visible spectra of compound 1d (5×10^{-5} M) in different ratios MeOH/H₂O.

Figure S42. UV-visible spectra of compound **2b** in different solvents.

Table S5. UV-visible s	nectrosconic	data for 2b a	acquired in	different solvents.
	peecioscopie		icquircu in	

Compound	Chloroform	Methanol	Benzene	Dioxane	THF	DMSO	Aggregation
2h	λ_{max} = 364	λ_{max} = 364	λ_{max} = 363	λ_{max} = 362	λ_{max} = 363	λ_{max} = 370	λ _{max MeOH} = 364
2b	ε= 18660	ε= 21662	ε= 21521	ε= 19484	ε= 19124	ε= 19014	λ _{max (MeOH/H2O,} _{80:20)} = 409

Figure S43 . UV-visible spectra of compound **2b** (5×10^{-5} M) in different ratios MeOH/H₂O.

9.5 UV-Visible studies of compound 2c

Figure S44 . UV-visible spectra of compound **2c** in different solvents.

Table S6.	UV-visible	spectroscopic	data for	2c acquired in	different solvents.

Compound	Chloroform	Methanol	Benzene	Dioxane	THF	DMSO	Aggregation
2c	λ_{max} = 420	λ_{max} = 419	λ_{max} = 414	λ_{max} = 411	λ_{max} = 418	λ_{max} = 434	λ _{max MeOH} = 419
	ε = 2238 0	ε= 21551	ε= 20099	ε= 22337	ε= 23285	ε= 17509	λ _{max (MeOH/H2O,} _{80:20)} = 428

Figure S45 . UV-visible spectra of compound 2c (5 x 10⁻⁵ M) in different ratios MeOH/H₂O.

9.6 UV-Visible studies of compound 3b

Figure S46 . UV-visible spectra of compound **3b** in different solvents.

Compound	Chloroform	Methanol	Benzene	Dioxane	THF	DMSO	Aggregation
3b	λ_{max} = 400	λ_{max} = 398	λ_{max} = 401	λ_{max} = 400	λ_{max} = 400	λ_{max} = 406	λ _{max MeOH} = 398
	ε= 24216	ε= 26304	ε= 25193	ε= 24165	ε= 33341	ε= 24766	λ _{max (MeOH/H2O,} _{80:20)} = 435

Table S7. UV-visible spectroscopic data for **3b** acquired in different solvents.

Figure S47 . UV-visible spectra of compound **3b** (5×10^{-5} M) in different ratios MeOH/H₂O.

Figure S48 . UV-visible spectra of compound **3b** at different concentrations using MeOH/H₂O (80:20).

9.7 UV-Visible studies of compound 3c

Figure S49 . UV-visible spectra of compound **3c** in different solvents.

Compound	Chloroform	Methanol	Benzene	Dioxane	THF	DMSO	Aggregation
30	λ_{max} = 411	λ_{max} = 409	λ_{max} = 413	λ_{max} = 410	λ_{max} = 411	λ_{max} = 420	λ _{max MeOH} = 409
3c	ε = 29848	ε= 34780	ε = 21888	ε= 23410	ε = 38857	ε= 29892	λ _{max (MeOH/H2O,} _{80:20)} = 437

Table S8. UV-visible spectroscopic data for **3c** acquired in different solvents.

Figure S50 . UV-visible spectra of compound **3c** (5×10^{-5} M) in different ratios MeOH/H₂O.

Figure S51 . UV-visible spectra of compound 3c at different concentrations using MeOH/H₂O (80:20).

9.8 UV-Visible studies of compound 3d

Figure S52 . UV-visible spectra of compound **3d** in different solvents.

Table S9. UV-visible spectroscopic data for **3d** acquired in different solvents.

Compound	Chloroform	Methanol	Benzene	Dioxane	THF	DMSO	Aggregation
24	λ_{max} = 401	λ_{max} = 400	λ_{max} = 404	λ_{max} = 402	λ _{max} = 402	λ_{max} = 406	λ _{max MeOH} = 400
30	ε = 28761	ε = 21982	ε= 21511	ε = 30689	ε= 38857	ε= 25632	λ _{max (MeOH/H2O,} _{80:20)} = 434

Figure S53 . UV-visible spectra of compound **3d** (5×10^{-5} M) in different ratios MeOH/H₂O.

Figure S54 . UV-visible spectra of compound **3d** at different concentrations using MeOH/H₂O (80:20).

9.8 UV-Visible studies of compound 3e

Figure S55 . UV-visible spectra of compound **3e** in different solvents.

Compound	Chloroform	Methanol	Benzene	Dioxane	THF	DMSO	Aggregation
30	λ_{max} = 404	λ_{max} = 402	λ_{max} = 405	λ _{max} = 403	λ_{max} = 403	λ_{max} = 409	λ _{max MeOH} = 402
Je	ε= 16768	ε= 18991	ε= 32757	ε= 26758	ε= 31005	ε= 32153	λ _{max (MeOH/H2O,} _{80:20)} = 438

Table S10. UV-visible spectroscopic data for **3e** acquired in different solvents.

Figure S56 . UV-visible spectra of compound **3e** (5×10^{-5} M) in different ratios MeOH/H₂O.

9.9 UV-Visible studies of compound 3f

Figure S57 . UV-visible spectra of compound **3f** in different solvents.

Compound	Chloroform	Methanol	Benzene	Dioxane	THF	DMSO	Aggregation
2f	λ_{max} = 405	λ_{max} = 403	λ_{max} = 406	λ_{max} = 405	λ_{max} = 405	λ_{max} = 412	Highly
51	ε= 13881	ε= 24714	ε= 23999	ε= 31005	ε = 28597	ε= 31595	photosensitive

Table S11. UV-visible spectroscopic data for **3f** acquired in different solvents.

9.10 UV-Visible studies of compound 3g

Figure S58 . UV-visible spectra of compound **3g** in different solvents.

Compound	Chloroform	Methanol	Benzene	Dioxane	THF	DMSO	Aggregation
29	λ_{max} = 423	λ_{max} = 425	λ_{max} = 423	λ_{max} = 421	λ_{max} = 421	λ_{max} = 452	λ _{max MeOH} = 425
58	ε= 12267	ε = 28005	ε= 34150	ε= 28748	ε= 27145	ε= 14893	λ _{max (MeOH/H2O,} _{80:20)} = 446

Table S12. UV-visible spectroscopic data for **3g** acquired in different solvents.

Figure S59 . UV-visible spectra of compound 3g (5 x 10⁻⁵ M) in different ratios MeOH/H₂O.

9.11 UV-Visible studies of compound 4b

Figure S60 . UV-visible spectra of compound **4b** in different solvents.

Compound	Chloroform	Methanol	Benzene	Dioxane	THF	DMSO	Aggregation
46	λ_{max} = 378	λ_{max} = 380	λ_{max} = 378	λ_{max} = 377	λ_{max} = 378	λ_{max} = 387	λ _{max MeOH} = 380
40	ε= 24971	ε = 28595	ε= 29739	ε= 29604	ε= 30619	ε= 24153	λ _{max (MeOH/H2O,} _{80:20)} = 415

Table S13. UV-visible spectroscopic data for **4b** acquired in different solvents.

Figure S61 . UV-visible spectra of compound **4b** (5×10^{-5} M) in different ratios MeOH/H₂O.

9.11 UV-Visible studies of compound 4c

Figure S62 . UV-visible spectra of compound **4c** in different solvents.

Table S14	. UV-visible spea	troscopic data	for 4c acquired	in different solvents.
-----------	-------------------	----------------	-----------------	------------------------

Compound	Chloroform	Methanol	Benzene	Dioxane	THF	Aggregation
Ac	λ _{max} = 398	λ_{max} = 395	λ_{max} = 399	λ _{max} = 396	λ_{max} = 400	Not
40	ε= 29736	ε= 27560	ε= 27135	ε= 29350	ε= 28463	soluble

9.12 UV-Visible studies of compound 4d

Figure S63. UV-visible spectra of compound **4d** in different solvents.

Compound	Chloroform	Methanol	Benzene	Dioxane	THF	DMSO	Aggregation
	λ_{max} = 381	λ_{max} = 382	λ_{max} = 381	λ_{max} = 380	λ _{max} = 383	λ _{max} = 390	$\lambda_{max MeOH}$ = 382
4d	ε= 25964	ε= 29088	ε= 28032	ε= 27353	ε= 27683	ε= 19461	λ _{max (MeOH/H20} _{80:20)} ≈ 417

Table S14. UV-visible spectroscopic data for **4d** acquired in different solvents.

Figure S64 . UV-visible spectra of compound **4d** (5×10^{-5} M) in different ratios MeOH/H₂O.

Figure S65 . UV-visible spectra of Disperse Orange 3 in \mbox{CHCl}_3 and $\mbox{MeOH}.$

Chloroform	Methanol
λ_{max} = 413	λ_{max} = 435
ε= 23203	ε= 24190

10. Photoisomerization of compounds 3b, 4b and 4c

Figure S66. (Left) UV-vis spectra for **3b** (2x 10^{-5} M, MeOH) after 485 irradiation (PSS) and cis \rightarrow trans return. (Right) **3b** was irradiated ten times for 1 minute (5.0 mW).

Figure S67. (Left) UV-vis spectra for **4b** (2x 10^{-5} M, MeOH) after 485 irradiation (PSS) and cis \rightarrow trans return. (Right) **4b** was irradiated ten times for 1 minute (5.0 mW).

Figure S68. (Left) UV-vis spectra for **4c** (2x 10^{-5} M, MeOH) after 485 irradiation (PSS) and cis \rightarrow trans return. (Right) **4c** was irradiated ten times for 1 minute (5.0 mW).

Figure S69. (Left) UV-vis spectra for **3b** (2x 10⁻⁵M, MeOH:H₂O /80:20 after 485 irradiation (PSS) and cis \rightarrow trans return. (Right) UV-vis spectra for **3c** (2x 10⁻⁵M, MeOH:H₂O /80:20 after 485 irradiation (PSS) and cis \rightarrow trans return.

11. Graphical determination of Optical band-gap for compounds 1b-d, 2b-c, 3b-d and 4b-d

Figure S70. Absorption spectrum in $CHCl_3$ and optical onset band gap for compound ${f 1b}$

Figure S71. Absorption spectrum in $CHCI_3$ and optical onset band gap for compound $\mathbf{1c}$

Figure S72. Absorption spectrum in $CHCl_3$ and optical onset band gap for compound $\mathbf{1d}$

Figure S73. Absorption spectrum in $CHCl_3$ and optical onset band gap for compound ${f 2b}$

Figure S74. Absorption spectrum in $CHCI_3$ and optical onset band gap for compound 2c

Figure S75. Absorption spectrum in $CHCl_3$ and optical onset band gap for compound **3b**

Figure S76. Absorption spectrum in CHCl₃ and optical onset band gap for compound **3c**

Figure S77. Absorption spectrum in $CHCl_3$ and optical onset band gap for compound $\mathbf{3d}$

Figure S78. Absorption spectrum in $CHCI_3$ and optical onset band gap for compound ${f 4b}$

Figure S79. Absorption spectrum in $CHCI_3$ and optical onset band gap for compound 4c

Figure S80. Absorption spectrum in $CHCl_3$ and optical onset band gap for **compound 4d**

12. Theoretical calculations.

The data results were obtained from DMol3 numerical-based density-functional module implemented in the Materials Studio 6.0 software package from Accelrys Inc., employing DFT, PBE (Perdew-Burke-Ernzerhof correlation),^{iv} Gradient General Approximation (GGA). All the calculations were running in conjunction with the double numerical basis set DNP, which has a polarization d-function added on all non-hydrogen atoms. The calculations involve: the geometric optimization of *trans* isomer in vacuum and chloroform mediums, the energies of orbital frontiers (HOMO and LUMO), the energy of band gap from the difference between the HOMO and LUMO energies, and finally the dipole moment. PBE is a DFT hybrid approach and is acceptable to be used in geometry of molecules and calculations of electronic properties with a small positive bias,^v moreover, using the double numerical basis set (DNP)^{vi} the accuracy usually is increased.

Table S6. Frontier molecular orbitals of *E* and *Z*-azopyrrole dyes calculated at the PBE-D/DNP level of theory, using $CHCl_3$ as implicit solvent (COSMO model). Frontier orbital gaps, optical energies gaps and molecular dipole moments.

Entry	Compound	E(<i>E</i>)-E(<i>Z</i>), (eV)	E _{gap} (eV)	λ _{onset} (nm)ª	Optical E _{gap} (eV) ^a	Dipole Moment (D)
1	<i>E-</i> 1b	0.07	2.12	444	2.79	3.49
2	<i>Z</i> - 1b	-0.37	2.37			4.76
3	E- 1c	0.27	1.75	509	2.44	11.28
4	<i>Z</i> -1c	-0.57	1.93			9.53
5	<i>E-</i> 1d	0.26	2.09	456	2.72	7.35
6	<i>Z</i> -1d	-0.30	2.48			6.59
7	E- 2b	0.20	2.27	429	2.89	6.31
8	<i>Z</i> - 2b	-0.56	2.57			8.18
9	E- 2c	0.27	1.70	508	2.44	15.41
10	<i>Z-</i> 2c	-0.37	1.78			12.24
11	E- 2d	0.27	2.62	-	_b	9.39
12	<i>Z</i> - 2d	-0.37	2.61			9.39
13	E- 3b	0.20	1.99	483	2.56	3.39
14	<i>Z</i> -3b	-0.39	2.29			4.82
15	<i>E-</i> 3c	0.20	1.60	498	2.49	10.70
16	<i>Z</i> - 3 c	-0.56	1.71			9.76
17	<i>E-</i> 3d	0.20	1.98	484	2.56	6.98
18	<i>Z</i> - 3d	-0.38	2.22			6.76
19	<i>E-</i> 4b	0.29	2.15	459	2.70	6.26
20	<i>Z</i> - 4b	-0.38	2.40			8.26
21	<i>E-</i> 4c	0.20	1.52	489	2.53	15.12
22	<i>Z</i> - 4 c	-0.39	1.53			11.49
23	<i>E-</i> 4d	0.41	2.09	464	2.67	11.04
24	<i>Z</i> - 4d	-0.41	2.56			8.44

Z-1b	<i>E</i> -1b
C 5.17995 -4.17097 2.62532	C 0.12776 -0.56954 0.33612
C 6.44437 -3.60571 2.54950	C 0.02059 -0.05630 1.62146
C 6.27788 -2.22788 2.36739	C 1.31414 0.26322 2.05306
C 4.89962 -1.97489 2.33913	C 2.18513 -0.06464 1.01542
N 4.25575 -3.19496 2.50831	N 1.43232 -0.57001 -0.02852
H 4.88157 -5.20228 2.75236	H -0.63446 -0.93109 -0.33969
H 7.38030 -4.14113 2.62305	H -0.90150 0.07310 2.17040
H 7.06008 -1.49142 2.27952	H 1.62281 0.69097 2.99499
C 2.82209 -3.39569 2.49463	C 1.95839 -1.07429 -1.27718
H 2.34116 -2.43903 2.69308	H 2.97927 -0.71223 -1.39078
H 2.48878 -3.76463 1.51960	H 1.96700 -2.16881 -1.28636
H 2.54811 -4.11895 3.26584	H 1.34826 -0.71341 -2.10860
N 4.05426 -0.88905 2.26185	N 3.53976 0.02659 0.84880
N 4.40308 0.29881 2.06272	N 4.16791 0.48495 1.84465
C 5.76312 0.64493 1.82391	C 5.56048 0.57858 1.66249
C 6.29860 0.53503 0.53797	C 6.25172 0.18663 0.50695
C 6.51582 1.22386 2.84715	C 6.27124 1.10608 2.74531
C 7.59487 0.97284 0.29120	C 7.62962 0.32678 0.44783
H 5.69420 0.10477 -0.25485	H 5.69032 -0.22359 -0.32522
C 7.81572 1.64934 2.59190	C 7.65245 1.24500 2.67944
H 6.07649 1.32823 3.83458	H 5.71078 1.39977 3.62756
C 8.36145 1.52310 1.31662	C 8.33568 0.85581 1.53059
H 8.00867 0.88340 -0.70934	H 8.16386 0.02198 -0.44794
H 8.40245 2.08819 3.39402	H 8.19625 1.65644 3.52475
H 9.37362 1.86309 1.11954	H 9.41522 0.96203 1.47547

12.1 Optimized Molecular Geometries for an	rylazopyroles 1b-d, 2b-d, 3b-d and 4b-d.
--	--

Z -	Z-1c			E -1	<i>E</i> -1c				
C	5.07752	-4.20637	2.68232	C	0.17330	-0.58086	0.31465		
C	6.36533	-3.68687	2.67068	C	0.03473	-0.09027	1.60963		
C	6.25669	-2.30416	2.49715	C	1.31193	0.24342	2.06636		
C	4.88974	-2.00180	2.40917	C	2.20691	-0.05269	1.03405		
N	4.19505	-3.19810	2.53715	N	1.47970	-0.55519	-0.02894		
н	4.73860	-5.22806	2.78222	H	-0.57334	-0.94333	-0.37789		
н	7.27666	-4.25672	2.78218	H	-0.89853	0.00937	2.14526		
н	7.06895	-1.59645	2.45998	H	1.59753	0.65564	3.02255		
C	2.75671	-3.34473	2.45012	C	2.04108	-1.00043	-1.28558		
н	2.29547	-2.39342	2.71103	H	2.64860	-0.21036	-1.73048		
н	2.45282	-3.61816	1.43510	H	2.66855	-1.88304	-1.13914		
н	2.43130	-4.12090	3.14546	H	1.22281	-1.24995	-1.96227		
N	4.09849	-0.88309	2.31367	N	3.55468	0.05247	0.88308		
N	4.51130	0.28654	2.12955	N	4.17536	0.51366	1.88694		
C	5.87299	0.59236	1.90240	C	5.56356	0.61073	1.70031		
C	6.41921	0.44394	0.62014	C	6.24697	0.23353	0.53196		

ſ	С	6.61996	1.19998	2.91856	С	6.28091	1.12640	2.78777
	С	7.71225	0.86913	0.36456	C	7.62013	0.37189	0.45722
	Н	5.82005	-0.00473	-0.16542	н	5.67866	-0.16475	-0.30050
	С	7.91847	1.61675	2.66996	C	7.65745	1.26891	2.72154
	Н	6.17216	1.33533	3.89754	Н	5.72797	1.40895	3.67746
	С	8.44917	1.44308	1.39617	C	8.30882	0.88850	1.55382
	Н	8.16465	0.76512	-0.61462	н	8.17694	0.09032	-0.42876
	Н	8.52719	2.07812	3.43863	н	8.23559	1.66506	3.54759
	Ν	9.81377	1.88275	1.13199	N	9.75797	1.03375	1.47293
	0	10.25209	1.72249	0.00269	0	10.30493	0.69136	0.43493
	0	10.43740	2.38197	2.05659	0	10.33777	1.48890	2.44750

Z -1	1d			E	-1	Ld		
С	-2.42554	-3.13004	-0.19313	C		-0.11956	-0.30371	0.12433
C	-3.48738	-3.76673	-0.85156	C	,	-0.02555	-0.14642	1.50812
C	-3.26219	-5.14459	-0.76769	C	;	1.33243	-0.01032	1.81462
C	-2.07654	-5.33008	-0.07054	C	;	2.03631	-0.08639	0.61857
N	-1.58152	-4.12641	0.28221	N	I	1.15959	-0.25765	-0.39744
н	-4.32945	-3.28144	-1.31766	H	I	-0.87127	-0.12907	2.17905
н	-3.89071	-5.92919	-1.16414	H		1.77048	0.13666	2.79163
Н	-1.55605	-6.24045	0.19222	H	I	3.09861	-0.02810	0.42737
C	-0.33242	-3.90393	0.98014	C	,	1.50156	-0.44087	-1.79048
Н	-0.21413	-4.65927	1.75973	H		2.47869	0.00810	-1.97640
Н	0.51570	-3.96070	0.29083	H		1.53807	-1.50283	-2.05192
Н	-0.35880	-2.91016	1.42461	H		0.75357	0.04658	-2.41557
Ν	-2.05745	-1.85152	0.15717	N	I	-1.15690	-0.47102	-0.74579
Ν	-2.63211	-0.79849	-0.20870	N		-2.30204	-0.51864	-0.21059
C	-3.71842	-0.81262	-1.12210	C	,	-3.35635	-0.69074	-1.12583
C	-5.01676	-0.59830	-0.65292	C	,	-4.63885	-0.70834	-0.56861
C	-3.47595	-0.88175	-2.49771	C	,	-3.20364	-0.84193	-2.51217
C	-6.07039	-0.50194	-1.55207	C	,	-5.75553	-0.87286	-1.37587
Н	-5.18764	-0.51094	0.41528	H		-4.73144	-0.58647	0.50576
C	-4.53106	-0.77439	-3.39184	C	,	-4.31794	-1.00687	-3.31580
Н	-2.45961	-1.01682	-2.85379	H		-2.20497	-0.82508	-2.93356
C	-5.83145	-0.59276	-2.92221	C	,	-5.59643	-1.02263	-2.75131
Н	-7.08098	-0.34044	-1.19105	H		-6.75059	-0.87840	-0.94386
H	-4.34691	-0.82328	-4.46013	H		-4.20616	-1.11698	-4.38985
C	-6.97585	-0.54304	-3.88807	C	,	-6.79032	-1.26075	-3.62624
F	-7.98490	0.21635	-3.43050	F		-7.90924	-0.73486	-3.10228
F	-7.48592	-1.76788	-4.11865	F		-7.02159	-2.57459	-3.80389
F	-6.60257	-0.04820	-5.07973	F		-6.62593	-0.72781	-4.84898

Z -2	Z-2b			<i>E</i> -2b				
C	-1.72687	-3.74736	2.63266	C	-0.01488	-0.29309	0.13049	
C	-2.01480	-2.53929	3.27348	C	0.00965	-0.21067	1.52009	
C	-3.19880	-2.74798	4.06003	C	1.37567	-0.18946	1.93445	
C	-3.58046	-4.04748	3.87394	C	2.13904	-0.25794	0.80286	
N	-2.67731	-4.64612	3.00470	N	1.28261	-0.31766	-0.29189	
Н	-3.71345	-2.03902	4.68801	Н	1.72880	-0.12820	2.95268	
C	-2.76449	-6.01826	2.56640	C	1.72241	-0.42809	-1.66098	
Н	-2.75425	-6.70084	3.42161	Н	2.44325	0.35918	-1.90032	
Н	-3.68181	-6.19063	1.99408	Н	2.19179	-1.39943	-1.85269	
Н	-1.91135	-6.25082	1.92963	н	0.86637	-0.32182	-2.32728	
C	-4.73133	-4.79913	4.44288	C	3.61712	-0.27168	0.63477	
Н	-5.40819	-5.17787	3.66691	н	3.97216	-1.17865	0.12983	
Н	-4.41267	-5.65880	5.04560	н	3.98072	0.58699	0.05639	
Н	-5.30926	-4.13789	5.09127	Н	4.09276	-0.23229	1.61652	
C	-0.60592	-4.05117	1.70766	C	-1.19171	-0.34605	-0.77259	
Н	0.04520	-4.84565	2.09165	Н	-1.22323	0.50140	-1.46836	
Н	-0.95795	-4.35675	0.71516	Н	-1.22208	-1.26722	-1.36697	
Н	-0.01212	-3.14231	1.59830	Н	-2.09091	-0.31011	-0.15518	
N	-1.14785	-1.48267	3.01956	N	-1.15754	-0.16323	2.25114	
N	-1.24064	-0.33014	3.49983	N	-0.99364	-0.08654	3.49939	
C	-2.28474	0.03844	4.39514	C	-2.19477	-0.04025	4.24017	
C	-2.08266	-0.05065	5.77452	C	-2.04311	0.05139	5.62649	
C	-3.45061	0.62742	3.89988	C	-3.48236	-0.08000	3.68774	
C	-3.06203	0.40867	6.64872	C	-3.15841	0.10353	6.45479	
Н	-1.16057	-0.48625	6.14753	Н	-1.03445	0.08016	6.02745	
C	-4.42427	1.08368	4.78204	C	-4.59134	-0.02790	4.51869	
H	-3.58440	0.71528	2.82587	Н	-3.58349	-0.15155	2.61032	
C	-4.23849	0.97169	6.15841	C	-4.43607	0.06401	5.90345	
H	-2.90332	0.32814	7.72065	H	-3.03078	0.17491	7.53116	
H	-5.33337	1.53223	4.39080	Н	-5.58863	-0.05904	4.08804	
H	-4.99925	1.33254	6.84407	Н	-5.30996	0.10428	6.54737	

Z -2	2c			E-2c				
С	-0.75874	3.69225	3.59276	C	-0.02590	-0.29944	0.14631	
С	-1.39975	2.50162	3.95099	C	0.00535	-0.22119	1.54009	
С	-2.53988	2.85512	4.75055	C	1.37431	-0.19599	1.94877	
С	-2.55234	4.21803	4.84857	C	2.13026	-0.25841	0.81399	
Ν	-1.46427	4.71512	4.14034	N	1.26608	-0.32115	-0.27884	
Н	-3.26731	2.20111	5.20289	H	1.73277	-0.13836	2.96521	
C	-1.15268	6.12019	4.02057	C	1.70468	-0.39761	-1.65178	
Н	-1.97256	6.66090	3.53803	H	2.30398	0.47805	-1.92015	
Н	-0.97222	6.56412	5.00434	H	2.30556	-1.29670	-1.82086	
Н	-0.25467	6.24233	3.41596	Н	0.83638	-0.43517	-2.30898	
C	-3.50152	5.12004	5.55420	C	3.60658	-0.26596	0.63387	

Н	-3.00821	5.72019	6.32846	н	3.96095	-1.17793	0.13799
Н	-4.00135	5.81625	4.86975	Н	3.95801	0.58674	0.04010
Н	-4.27472	4.52321	6.04130	Н	4.09076	-0.21097	1.61050
С	0.46522	3.86376	2.77060	C	-1.20738	-0.35173	-0.75000
н	0.27567	4.45106	1.86444	н	-1.24058	0.49641	-1.44414
н	1.27153	4.35583	3.32709	н	-1.23771	-1.27247	-1.34466
н	0.80834	2.87198	2.47235	н	-2.10461	-0.31834	-0.13007
Ν	-0.83298	1.32645	3.48785	Ν	-1.15373	-0.18210	2.27057
Ν	-1.27043	0.17488	3.71004	N	-0.98946	-0.11165	3.52295
С	-2.42474	-0.09555	4.47840	C	-2.19174	-0.07263	4.25345
С	-2.29935	-0.38334	5.84425	C	-2.04659	0.00543	5.64432
С	-3.66325	-0.25215	3.84151	C	-3.47813	-0.10611	3.69040
С	-3.40635	-0.78225	6.57519	C	-3.15828.	0.04993	6.46990
н	-1.32869	-0.28582	6.31933	н	-1.04140	0.02979	6.05211
С	-4.77321	-0.65075	4.56813	C	-4.59364	-0.06220	4.50576
н	-3.74073	-0.05382	2.77753	н	-3.57336	-0.16656	2.61249
С	-4.63294	-0.90575	5.92916	C	-4.42005	0.01536	5.88689
н	-3.34251	-0.99985	7.63487	н	-3.07303	0.11042	7.54816
н	-5.74608	-0.76858	4.10554	н	-5.59917	-0.08633	4.10233
Ν	-5.79950	-1.31769	6.69663	Ν	-5.59732	0.06160	6.74543
0	-5.64697	-1.53521	7.88996	0	-5.41809	0.12951	7.95270
0	-6.86380	-1.41770	6.10343	0	-6.69450	0.02973	6.20717

Z -2	2d			E-2	2d		
С	-0.95751	3.71472	3.32296	С	-0.02301	-0.29990	0.14272
C	-1.53872	2.52041	3.76049	C	0.00767	-0.22743	1.53466
C	-2.64279	2.87169	4.61045	C	1.37576	-0.19750	1.94353
C	-2.69282	4.23666	4.65902	C	2.13325	-0.25160	0.80829
N	-1.66275	4.73794	3.87237	N	1.27091	-0.31389	-0.28383
Н	-3.32291	2.21428	5.12702	H	1.73345	-0.14231	2.96044
C	-1.40255	6.14532	3.68306	C	1.70875	-0.38232	-1.65685
Н	-2.26352	6.64315	3.22632	H	2.30325	0.49743	-1.92328
H	-1.18344	6.63317	4.63787	H	2.31416	-1.27752	-1.83138
H	-0.54255	6.27046	3.02593	H	0.83992	-0.42164	-2.31342
C	-3.62891	5.13658	5.38462	C	3.60998	-0.25109	0.62963
Н	-3.11284	5.77908	6.10868	Н	3.97014	-1.15963	0.13134
Н	-4.18742	5.79265	4.70566	Н	3.95821	0.60512	0.03878
Н	-4.35513	4.53569	5.93507	Н	4.09293	-0.19656	1.60697
C	0.21202	3.89126	2.42576	C	-1.20411	-0.35397	-0.75442
Н	-0.04614	4.43943	1.51197	Н	-1.24237	0.49683	-1.44527
H	1.03381	4.42573	2.91686	H	-1.23154	-1.27243	-1.35298
H	0.56671	2.89881	2.14353	H	-2.10084	-0.32712	-0.13324
N	-0.95877	1.34582	3.30424	N	-1.15410	-0.19652	2.26845
N	-1.33792	0.18691	3.58946	N	-0.98822	-0.13180	3.51862
С	-2.44008	-0.07359	4.44463	C	-2.19037	-0.09874	4.25568

6	2 2 2 0 4 7	0.00000	5 04400	6	2 0 4 2 0 0	0.00705	5 64442
C	-2.22817	-0.28090	5.81108	C	-2.04368	-0.03785	5.64442
C	-3.70942	-0.28800	3.89907	C	-3.47709	-0.12507	3.69897
C	-3.28582	-0.65327	6.62868	C	-3.15800	-0.00126	6.47091
Н	-1.23203	-0.14490	6.22001	н	-1.03777	-0.02334	6.05169
C	-4.76416	-0.65987	4.72073	C	-4.58809	-0.08870	4.52363
Н	-3.85685	-0.15764	2.83169	н	-3.57717	-0.17727	2.62076
C	-4.55793	-0.83786	6.08825	C	-4.43312	-0.02665	5.91108
Н	-3.12407	-0.81144	7.69017	н	-3.04240	0.03907	7.54892
Н	-5.75110	-0.82308	4.29975	н	-5.58624	-0.11691	4.09795
C	-5.71000	-1.17730	6.98231	C	-5.64359	0.07159	6.78876
F	-6.65041	-1.89091	6.34075	F	-6.68842	-0.60085	6.27563
F	-6.31935	-0.07119	7.45378	F	-6.04430	1.34749	6.94482
F	-5.32148	-1.88883	8.05378	F	-5.41396	-0.41665	8.01902

Z -3	3b	<i>E</i> -3b
С	3.45882 5.02085 -0.05825	C 0.23034 -0.68238 0.32750
C	4.83362 4.91128 -0.20806	C 0.07029 -0.07202 1.56414
C	5.20225 3.63287 0.22681	C 1.33819 0.33738 1.99555
C	4.03218 2.97764 0.63306	C 2.24768 -0.03504 1.00669
Ν	2.97780 3.85986 0.43363	N 1.54229 -0.65599 -0.00797
Н	2.79644 5.84941 -0.26664	H -0.49940 -1.13006 -0.33238
Н	5.48957 5.67885 -0.59353	H -0.86952 0.06011 2.08149
Н	6.19678 3.21678 0.23400	H 1.60566 0.85141 2.90645
C	1.59356 3.59813 0.76613	C 2.11884 -1.22926 -1.20344
Н	1.44550 2.51942 0.79426	H 3.14340 -0.87110 -1.29337
Н	1.33996 4.01554 1.74566	Н 2.12769 -2.32235 -1.14874
Н	0.94818 4.04493 0.00690	H 1.54525 -0.91828 -2.08005
Ν	3.65591 1.72176 1.05845	N 3.60075 0.09903 0.86377
Ν	4.43591 0.78869 1.36407	N 4.18354 0.66494 1.83302
C	5.84481 0.97126 1.40441	C 5.57280 0.79986 1.67841
C	6.64634 0.36385 0.43662	C 6.31549 0.35119 0.57627
C	6.44583 1.62052 2.48666	C 6.23900 1.43491 2.73148
C	8.02969 0.44934 0.52685	C 7.68518 0.54051 0.54071
Н	6.17540 -0.17454 -0.38014	Н 5.79941 -0.15279 -0.23344
C	7.82866 1.68602 2.57503	C 7.61225 1.62194 2.68901
Н	5.82133 2.07906 3.24745	H 5.64773 1.78328 3.57274
C	8.64965 1.11113 1.59467	C 8.36416 1.17894 1.59302
Н	8.64272 -0.03765 -0.22645	H 8.25481 0.16328 -0.30425
Н	8.28368 2.21647 3.40695	H 8.10883 2.14314 3.50232
C	10.12285 1.18929 1.69215	C 9.82752 1.37451 1.54239
C	10.91110 1.36933 0.54793	C 10.47096 1.68126 0.33573
C	10.76860 1.08592 2.93126	C 10.60986 1.25782 2.69927
C	12.29637 1.44247 0.63911	C 11.84796 1.86454 0.28742
H	10.42851 1.47878 -0.41940	H 9.87928 1.80411 -0.56710
C	12.15366 1.16192 3.02333	C 11.98685 1.44131 2.65123

H 10.17768 0.91688 3.82722	H 10.13421 0.99250 3.63926
C 12.92427 1.34000 1.87757	C 12.61242 1.74532 1.44503
H 12.88734 1.58988 -0.26048	B H 12.32485 2.11066 -0.65710
H 12.63364 1.07112 3.99367	H 12.57511 1.33699 3.55852
H 14.00639 1.39795 1.94911	H 13.68834 1.88834 1.40742
7.30	E 3c
$\begin{bmatrix} 2 - 3 \\ 0 \end{bmatrix}$	C = 0.25267 = 0.62811 = 0.25082
C = 4.74204 = 4.23720 = 2.40849	C = 0.23207 = 0.02011 = 0.23002
C = 6.07230 - 2.42826 - 2.47495	C = 0.09110 = 0.16427 = 1.55775
C = 4.75064 - 2.01098 - 2.6449	C = 2.05752 = 0.10724 = 2.05764
N 3 95913 -3 15244 2 23987	N 1 56274 -0 55430 -0 07973
H $431889 - 523178 - 240254$	H -0.47684 -0.98758 -0.46120
H 6 90678 -1 17167 2 73457	H = 0.84927 = 0.12005 = 2.08642
H = 6.93317 - 1.78620 - 2.56804	H 1 62334 0 56131 3 00716
C 253149 -317580 199939	C = 2.14549 - 0.98502 - 1.33097
H 2 12170 -2 20232 2 26484	H 2 99780 -0 34922 -1 56918
H 2 31522 -3 37494 0 94522	H 2 48828 -2 02266 -1 27110
H 2.07459 -3.95410 2.61393	H 1 39625 -0 89985 -2 12003
N 4 05436 -0 82696 2 17687	N 3.61746 0.07966 0.87701
N 4 56376 0 31718 2 11153	N 4 20844 0 50878 1 91075
C = 5,96500, 0,51633, 2,01265	C = 5.9581 + 0.66207 + 1.51075
C = 662239 = 0.33464 = 0.79150	C = 6.32266 = 0.35940 = 0.59739
C = 6.6341 = 1.05182 = 3.09694	C = 6.27633 = 1.15394 = 2.87746
C = 7.96540 = 0.65736 = 0.67245	C = 7.69165 = 0.55199 = 0.56759
H 6.07395 -0.06806 -0.05444	H 5,79347 -0.03508 -0.26289
C = 8.01254 = 1.35357 = 2.97308	C = 7.64918 = 1.34155 = 2.84298
H 6.13818 1.22989 4.03005	H 5.69682 1.39077 3.76422
C 8.69020 1.16293 1.76142	C 8.38393 1.04540 1.68712
H 8.47045 0.48509 -0.27388	H 8.24781 0.28650 -0.32730
H 8.54043 1.78110 3.82087	H 8.15607 1.75170 3.71158
C 10.12211 1.49596 1.63320	C 9.84477 1.24389 1.64516
C 10.63143 2.04282 0.44499	C 10.47793 1.68408 0.47192
C 11.00920 1.27235 2.69795	C 10.63664 0.99710 2.77794
C 11.97589 2.35506 0.31743	C 11.85025 1.87206 0.42460
H 9.95680 2.25158 -0.37942	2 H 9.88023 1.90891 -0.40578
C 12.35545 1.58266 2.58790	C 12.00976 1.18217 2.74750
H 10.64073 0.82361 3.61518	H 10.16992 0.62761 3.68558
C 12.82194 2.12039 1.39451	C 12.59952 1.61805 1.56706
H 12.37998 2.78585 -0.59096	H 12.35031 2.22040 -0.47127
H 13.05219 1.40739 3.39895	H 12.63356 0.98634 3.61149
N 14.23923 2.44714 1.26927	N 14.04555 1.81442 1.52628
O 14.62011 2.91708 0.20810	O 14.53548 2.19631 0.47447
0 14.95731 2.22998 2.23333	O 14.67674 1.58460 2.54650

Z -3	3d	E -3	3d
C	3.51102 -5.19003 2.37128	C	0.22384 -0.11364 0.04212
C	4.88926 -5.14855 2.52655	C	0.16721 0.20134 1.39368
C	5.28337 -3.81061 2.41419	C	1.46961 0.11024 1.89834
C	4.12538 -3.05210 2.19488	C	2.29563 -0.26036 0.83704
N	3.05272 -3.93513 2.18447	N	1.50724 -0.38578 -0.29192
Н	2.83200 -6.03120 2.37912	Н	-0.56120 -0.15962 -0.69949
Н	5.53007 -6.00040 2.70447	Н	-0.72634 0.47411 1.93714
Н	6.28687 -3.42603 2.49812	Н	1.81565 0.29387 2.90437
C	1.67196 -3.57221 1.94377	C	1.96758 -0.81837 -1.59245
Н	1.55156 -2.51355 2.16920	Н	3.02530 -0.57639 -1.68825
Н	1.39847 -3.74491 0.89821	Н	1.84080 -1.89847 -1.71736
Н	1.02282 -4.16817 2.58870	Н	1.40207 -0.29866 -2.36867
N	3.77627 -1.72424 2.08819	N	3.63641 -0.48959 0.71326
N	4.57560 -0.76088 2.01367	N	4.29638 -0.37987 1.78699
C	5.98029 -0.95156 1.92808	C	5.67446 -0.61081 1.64545
C	6.78806 -0.61557 3.01601	C	6.43053 -0.49193 2.81611
C	6.57432 -1.31926 0.71692	C	6.32268 -0.94502 0.44717
C	8.16998 -0.69341 2.90545	C	7.80114 -0.69997 2.79637
Н	6.32262 -0.29160 3.94169	н	5.91374 -0.22393 3.73238
C	7.95608 -1.37732 0.61215	C	7.69052 -1.14921 0.43360
Н	5.94487 -1.56636 -0.13252	н	5.73214 -1.04921 -0.45628
C	8.78150 -1.07530 1.70431	C	8.45852 -1.03192 1.60475
Н	8.78721 -0.41676 3.75564	н	8.37620 -0.57517 3.70931
Н	8.40488 -1.69033 -0.32650	н	8.17851 -1.43530 -0.49419
C	10.25285 -1.14398 1.58827	C	9.91796 -1.25397 1.57663
C	10.90235 -0.74663 0.41180	C	10.68852 -0.83643 0.48246
C	11.03814 -1.60422 2.65399	C	10.57169 -1.88461 2.64399
C	12.28432 -0.81024 0.30082	C	12.06012 -1.04388 0.45266
Н	10.31748 -0.35413 -0.41464	Н	10.20866 -0.31570 -0.34076
C	12.42050 -1.66629 2.54998	C	11.94335 -2.09380 2.61967
Н	10.55566 -1.93826 3.56775	Н	9.99223 -2.23732 3.49184
C	13.04795 -1.27007 1.37104	C	12.69180 -1.67418 1.52247
Н	12.77507 -0.48431 -0.61042	Н	12.64670 -0.70064 -0.39333
Н	13.01585 -2.02410 3.38375	Н	12.43627 -2.58528 3.45206
C	14.53606 -1.39167 1.23613	C	14.16410 -1.95143 1.46606
F	14.89610 -2.60432 0.77714	F	14.42439 -3.13167 0.87461
F	15.15921 -1.22160 2.41404	F	14.71050 -2.00095 2.69206
F	15.03528 -0.48672 0.37830	F	14.82209 -1.01248 0.76611

Z -	4b			E-4	łb		
C	0.34649	-1.30232	0.57648	С	-0.02787	-0.41667	0.15835
C	0.13227	-0.32116	1.54819	С	-0.01188	-0.22298	1.53740
C	1.03190	0.76180	1.26333	С	1.34505	-0.03232	1.93833
C	1.75039	0.40633	0.15597	C	2.11152	-0.11359	0.80988
N	1.32947 -	-0.85380 -	0.24959	N	1.26597	-0.34973	-0.26980
Н	1.14024	1.69345	1.79468	н	1.68988	0.14157	2.94635
C	1.87236	-1.56090	-1.38447	С	1.71357	-0.48138	-1.63454
Н	1.71184	-0.99834	-2.30968	Н	2.17001	0.44764	-1.99232
Н	2.94679	-1.72988	-1.26159	н	2.44771	-1.28766	-1.72862
Н	1.37995	-2.52828	-1.47906	н	0.86320	-0.71572	-2.27469
C	2.81515	1.14560	-0.57405	С	3.58311	0.00907	0.63065
Н	3.76891	0.60349	-0.58327	н	4.03221	-0.90352	0.21902
H	2.54395	1.34598	-1.61807	Н	3.85535	0.83589	-0.03719
H	2.98693	2.10700	-0.08645	Н	4.05065	0.19878	1.59863
C	-0.34256	-2.60855	0.42477	C	-1.19434	-0.65503	-0.72813
H	-0.82377	-2.71136	-0.55498	H	-1.30709	0.12568	-1.49013
C	0.34017	-3.45710	0.55373	H	-1.13627	-1.62063	-1.24516
H	-1.11207	-2.66757	1.19623	H	-2.09233	-0.65652	-0.10797
N	-0.87334	-0.57186	2.47437	N	-1.17665	-0.23691	2.27237
N	-1.16950	0.16204	3.44490	N	-1.01821	-0.05105	3.51092
C	-0.42820	1.32839	3.77634	C	-2.21359	-0.06560	4.25636
C	0.77910	1.22718	4.47389	C	-2.07315	0.13248	5.63272
C	-0.98349	2.58959	3.55119	C	-3.49635	-0.25984	3.72526
C	1.43452	2.37340	4.90032	C	-3.18361	0.13838	6.46394
H	1.20229	0.24534	4.66371	Н	-1.07342	0.29077	6.02574
C	-0.31324	3.73098	3.97074	C	-4.60025	-0.25258	4.55954
Н	-1.94204	2.66319	3.04650	Н	-3.59850	-0.42383	2.65808
C	0.90914	3.64895	4.65114	C	-4.47029	-0.05348	5.94460
H	2.38793	2.28071	5.41347	H	-3.05828	0.32280	7.52709
H	-0.76265	4.70515	3.79830	H	-5.58721	-0.43195	4.14146
C	1.61579	4.86682	5.10207	C	-5.65731	-0.04583	6.82444
C	2.29891	4.89245	6.32530	C	-5.60616	-0.60366	8.10907
C	1.62165	6.02803	4.31771	C	-6.86600	0.52049	6.39710
C	2.96591	6.03668	6.74788	C	-6.72293	-0.59498	8.93675
H	2.28151	4.01274	6.96258	Н	-4.68721	-1.07302	8.44893
C	2.28510	7.17387	4.74148	C	-7.98333	0.52834	7.22400
Н	1.11991	6.02105	3.35396	Н	-6.91892	0.98305	5.41549
C	2.96163	7.18344	5.95835	C	-7.91715	-0.02916	8.49812
H	3.48207	6.03582	7.70385	H	-6.66269	-1.04105	9.92552
Н	2.28170	8.06051	4.11360	н	-8.90737	0.98064	6.87491
H	3.48089	8.07812	6.28919	Н	-8.78989	-0.02287	9.14454

Z-4	<i>Z</i> -4c				E-4c				
C	-0.91259	3.68252	2.88794	C	-0.04121	-0.36832	0.17318		
C	-1.63501	2.60835	3.41594	C	-0.01553	-0.17886	1.55421		
C	-2.82466	3.14860	4.01301	C	1.34824	-0.03332	1.95242		
C	-2.78249	4.50336	3.83608	C	2.10800	-0.13579	0.82191		
Ν	-1.61176	4.81671	3.15619	N	1.25126	-0.33793	-0.25745		
Н	-3.62250	2.61693	4.50574	Н	1.70155	0.12749	2.95962		
C	-1.22130	6.15884	2.79481	C	1.69318	-0.50873	-1.62027		
Н	-1.94862	6.60766	2.11095	н	2.31229	0.33629	-1.93599		
Н	-1.14002	6.79251	3.68315	н	2.27528	-1.42924	-1.73545		
Н	-0.25113	6.13372	2.29956	н	0.82686	-0.56420	-2.27914		
C	-3.74901	5.55582	4.24935	C	3.58231	-0.06269	0.63923		
Н	-3.30239	6.28653	4.93487	н	3.99538	-0.98140	0.20473		
Н	-4.14975	6.11346	3.39389	н	3.88229	0.76910	-0.01027		
Н	-4.59143	5.09174	4.76558	н	4.05967	0.08785	1.60923		
C	0.38043	3.64867	2.15951	C	-1.21660	-0.56905	-0.71057		
Н	0.30129	4.08521	1.15705	н	-1.30792	0.21841	-1.46847		
Н	1.17409	4.18222	2.69617	Н	-1.18657	-1.53318	-1.23210		
Н	0.67763	2.60362	2.05903	Н	-2.11324	-0.54672	-0.08905		
Ν	-1.10377	1.34237	3.21490	N	-1.17675	-0.15788	2.28922		
N	-1.58404	0.27314	3.65546	N	-1.01372	0.02509	3.52873		
C	-2.71248	0.22655	4.51294	C	-2.21120	0.04009	4.26947		
C	-2.57018	0.46576	5.88402	C	-2.07167	0.25137	5.64447		
C	-3.93838	-0.23033	4.02180	C	-3.49523	-0.14030	3.73545		
C	-3.64757	0.28340	6.73737	C	-3.18369	0.28163	6.47182		
Н	-1.61297	0.80559	6.26732	Н	-1.07115	0.39877	6.03908		
C	-5.01551	-0.39405	4.88068	C	-4.60194	-0.10511	4.56444		
H	-4.03332	-0.45590	2.96419	H	-3.59594	-0.31568	2.67015		
C	-4.89399	-0.14080	6.25423	C	-4.47122	0.10487	5.94799		
H	-3.53000	0.50422	7.79474	H	-3.05719	0.47593	7.53300		
H	-5.95819	-0.76179	0 4.48489	H	-5.58897	-0.27540	4.14297		
C	-6.03894	-0.32665	7.16544	C	-5.65741	0.13712	6.82361		
C	-5.85070	-0.81211	8.46948	C	-5.60463	-0.38425	8.12635		
C	-7.34552	-0.02136	6.75169	C	-6.86830	0.68987	6.37645		
C	-6.92072	-0.98458	9.33314	C	-6.71381	-0.35612	8.95657		
Н	-4.85288	-1.08451	8.79878	Н	-4.68698	-0.84322	8.48048		
C	-8.42677	-0.19201	7.60150	C	-7.98741	0.72309	7.19320		
Н	-7.50987	0.38072	5.75684	Н	-6.92208	1.12464	5.38335		
C	-8.19878	-0.67140	8.88601	C	-7.89442	0.19857	8.47686		
H	-6.78958	-1.36671	10.33851	H	-6.68844	-0.76337	9.96031		
H	-9.43846	0.04806	7.29668	H	-8.92475	1.15499	6.86328		
N	-9.33097	-0.85032	9.78875	N	-9.06747	0.23087	9.34415		
0	-9.09934	-1.27412	10.91097	0	-8.95418	-0.23526	10.46781		
0	-10.44187	-0.5646	3 9.36784	0	-10.09168	0.72197	8.89405		

Z-4	Z-4d			E-4d				
C	-0.79978	-3.82056	3.00302	С	-0.04405	-0.41087	0.17063	
C	-1.41953	-2.72738	3.61507	С	-0.01544	-0.20377	1.54823	
C	-2.29605	-3.24791	4.62708	С	1.34269	0.01489	1.93122	
C	-2.18551	-4.60996	4.59207	С	2.09669	-0.06244	0.79444	
N	-1.27700	-4.94691	3.59644	N	1.24168	-0.31883	-0.27394	
Н	-2.92641	-2.69893	5.30767	н	1.69637	0.20674	2.93287	
С	-0.91508	-6.30261	3.25760	С	1.67811	-0.50204	-1.63660	
н	-0.47791	-6.81665	4.11919	н	2.32921	0.32044	-1.94568	
Н	-1.78972	-6.86794	2.92088	н	2.22498	-1.44372	-1.75826	
Н	-0.18064	-6.29190	2.45282	Н	0.81136	-0.51847	-2.29736	
С	-2.86095	-5.64828	5.41571	С	3.56399	0.08316	0.59785	
Н	-3.46785	-6.33268	4.81003	н	4.01820	-0.81475	0.16100	
Н	-2.14860	-6.25950	5.98361	н	3.81693	0.92780	-0.05527	
Н	-3.52677	-5.16456	6.13282	н	4.04193	0.25927	1.56329	
С	0.20115	-3.81226	1.90664	С	-1.21522	-0.68306	-0.69954	
Н	1.13632	-4.30536	2.19698	н	-1.35281	0.08793	-1.46749	
Н	-0.17055	-4.30494	1.00020	н	-1.14150	-1.65167	-1.20835	
Н	0.42019	-2.77080	1.66574	н	-2.10636	-0.69658	-0.06983	
N	-1.03556	-1.46735	3.17517	N	-1.17063	-0.23126	2.29503	
N	-1.51827	-0.38045	3.56743	N	-1.00473	-0.02736	3.53023	
С	-2.61164	-0.30505	4.46983	С	-2.19406	-0.06113	4.28457	
С	-2.39735	0.11549	5.78450	С	-2.04995	0.16680	5.65610	
С	-3.92136	-0.48304	4.01297	С	-3.47404	-0.30265	3.76601	
С	-3.47372	0.30265	6.64059	С	-3.15424	0.15557	6.49506	
Н	-1.38152	0.29372	6.12360	Н	-1.05282	0.36131	6.03899	
C	-4.99123	-0.27951	4.87195	С	-4.57245	-0.31084	4.60722	
Н	-4.08833	-0.79449	2.98635	н	-3.57815	-0.49030	2.70304	
C	-4.79121	0.10774	6.20436	С	-4.43767	-0.08266	5.98710	
Н	-3.29133	0.64102	7.65690	н	-3.02651	0.36366	7.55355	
Н	-6.00180	-0.45302	4.51213	Н	-5.55593	-0.52743	4.19869	
C	-5.93474	0.31366	7.11644	C	-5.61718	-0.09305	6.87532	
C	-5.85033	-0.04122	8.46992	C	-5.53843	-0.61741	8.17298	
C	-7.13531	0.87022	6.65414	C	-6.84894	0.41825	6.44337	
C	-6.92332	0.14876	9.32898	С	-6.64534	-0.62733	9.00979	
Н	-4.93757	-0.49287	8.84701	Н	-4.60405	-1.05007	8.51756	
C	-8.21345	1.05807	7.50752	C	-7.95967	0.40866	7.27498	
Н	-7.21254	1.18647	5.61822	Н	-6.92861	0.85021	5.45032	
C	-8.11054	0.69745	8.84899	C	-7.86069	-0.11402	8.56246	
Н	-6.84258	-0.13094	10.37444	Н	-6.57343	-1.05135	10.00609	
Н	-9.13165	1.50333	7.13855	Н	-8.90644	0.80873	6.92684	
C	-9.29140	0.84305	9.76026	C	-9.04323	-0.07209	9.48242	
F	-10.04987	-0.26889	9.77183	F	-9.01816	-1.07613	10.37474	
F	-8.91744	1.07025	11.03061	F	-9.08535	1.07380	10.18688	
F	-10.09126	1.85512	9.38572	F	-10.20304	-0.15695	8.80947	

12.2 TD-DFT Studies. The calculation of the excited states of the push-pull azo-pyrrole compounds was performed with the Cam-B3LYP functional^{vii} and the 6-311++G(d,p) basis within the time-dependent DFT formalism as implemented in Gaussian 09.^{viii} The Cam-B3LYP functional has demonstrated to properly reproduce excited state properties such as absorption energies.^{ix} 50 states were obtained with chloroform as implicit solvent modeled with PCM method. Atomic population and energies were calculated within the atoms-in-molecules approach at basal and excited states, to determine the electron charge transfer and atomic energy changes after the electronic excitation.^x The calculations involve the geometry optimization of *trans* and *cis* isomers.

Compound	Isomer	Excited State <i>f</i> os 6 (0.5757)	Excited State Energy	Donor-Acceptor Electron Transfer and group energies changes	Orbital transitions	
1b	Ζ		4.07 eV; 304.43 nm	0.189 e A: 1.726 eV D: 2.345 eV	45 -> 50 48 -> 50 49H -> 50L	0.1270 -0.4018 0.5478
	Ε	4 (0.9682)	3.17 eV; 391.03 nm	0.1803 e A: 1.112 eV D: 2.067 eV	49H -> 50L	0.6994
1c	Ζ	8 (0.5468)	3.80 eV 326.55 nm	0.250 e A: 0.283 eV D: 3.512 eV	56 -> 61 59 -> 61 59 -> 62 60H -> 61L 60 -> 62	0.1407 0.1452 -0.3688 0.477 9
	E	5 (1.1816)	2.91 eV 426.08 nm	0.203 e A: 1.124 eV D: 1.782 eV	60H -> 61L 0.67122 60 -> 62 0.18726	
1d	Ζ	6 (0.5845)	4.02 eV 308.09 nm	0.191 e A: 2.805 eV D: 1.224 eV	61 -> 66 64 -> 66 64 -> 67 65H -> 66L	0.1043 -0.3463 0.1254 0.581
	E	4 (1.0175)	3.13 eV 396.78 nm	0.175 e A: 1.893 eV D: 1.230 eV	65H -> 66L	0.698
2b	Ζ	6 (0.5700)	4.30 eV 288.44 nm	0.324 e A: 0.528 eV D: 3.770 eV	57H -> 58L	0.687
	E	5 (1.0060)	3.46 eV 358.78 nm	0.229 e A: 0.884 eV D: 2.572 eV	56 -> 58 57H -> 58L	0.10 0.69
2c	Ζ	7 (0.6576)	3.83 eV 323.42 nm	0.318 e A: -2.093 eV D: 5.927 eV	65 -> 69L 67 -> 69L 67 -> 76 68H -> 70	0.161 0.600 0.101 -0.285
	Ε	6 (1.1836)	3.07 eV 403.48 nm	0.288 e A: 0.163 eV D: 2.911 eV	67 -> 69 68H -> 69L 68 -> 70	0.140 0.648 -0.212
2d	Ζ	6 (0.5968)	4.23 eV 292.85 nm	0.316 e A: 1.581 eV D: 2.656 eV	72 -> 75 73H -> 74L	-0.146 0.67 9
	E	5 (1.0394)	3.38 eV 366.82 nm	0.246 e A: 1.379 eV D: 2.000 eV	72 -> 74 73H -> 74L	0.110 0.689

Compound	lsomer	Excited State $f_{ m os}$	Excited State Energy	Donor-Acceptor Electron Transfer and group energies changes	Orbital transitions	
3b	Ζ	7 (0.6140)	3.99 eV 310.96 nm	0.159 e A: 2.044 eV D: 1.948 eV	63 -> 70 67 -> 70 68 -> 70 68 -> 71 69H -> 70L	-0.12654 -0.28426 0.44482 -0.12258 -0.39741
	E	4 (1.3026)	3.04 eV 408.21 nm	0.172 e A: -0.185 eV D: 3.225 eV	69 -> 71 69 H-> 70L	-0.10907 0.6931
Зс	Ζ	8 (0.8975)	3.79 eV 327.40 nm	0.263 e A: -0.473 eV D: 4.258 eV	77 -> 81 77 -> 82 79 -> 81 79 -> 82 80H -> 81L 80 -> 82 80 -> 83	-0.21983 -0.15693 0.20574 -0.28798 0.47010 0.16568 -0.11906
	E	6 (1.4954)	2.96 eV 418.31 nm	0.186 e A: 1.247 eV D: 1.716 eV	80H -> 81L 80 -> 82	0.55342 0.41624
3d	Ζ	7 (0.6518)	3.97 eV 311.96 nm	0.171 e A: 3.006 eV D: 0.965 eV	82 -> 86 84 -> 86 84 -> 87 85H -> 86L	-0.22465 -0.41795 0.19502 0.44403
	E	4 (1.3187)	3.03 eV 409.14 nm	0.164 e A: 1.816 eV D: 1.213	85 H-> 86L	0.69038
4b	Ζ	8 (0.7861)	4.20 eV 295.50 nm	0.287 e A: 1.328 eV D: 2.869 eV	74 -> 78 76 -> 78 76 -> 79 77H -> 78L	-0.15387 -0.33901 0.26299 0.50925
	E	5 (1.3809)	3.31 eV 374.86 nm	0.196 e A: 0.724 eV D: 2.584 eV	77H -> 78L	0.68696
4c	Ζ	8 (0.9536)	3.75 eV 330.38 nm	0.369 e A: -2.423 eV D: 6.178 eV	82 -> 89 85 -> 89 87 -> 89 87 -> 90 87 -> 92 88H -> 89L 88 -> 90	0.11509 0.26655 0.41754 -0.12432 -0.12235 -0.39078 -0.11600
	E	6 (1.6044)	3.17 eV 391.53 nm	0.251 e A: 0.629 eV D: 2.536 eV	87 -> 89 88H -> 89L 88 -> 90	0.13335 0.50721 0.44546
4d	Z 7 4.16 eV Z (0.8544) 298.15 n		4.16 eV 298.15 nm	0.281 e A: 1.828 eV D: 2.333 eV	90 -> 94 92 -> 95 93H -> 94L 93 -> 95	0.14165 -0.36180 0.51424
	E	5 (1.4086)	3.29 eV 377.33 nm	0.209 e A: 1.833 eV D: 1.452 eV	93 -> 94 93 -> 95	0.67880 0.12146

Table S7. (Continuation) Energetic and electronic features of the excited state associated with the λ_{max} of each molecule.

Figure S81. Relationship between Electron transfer and excitation energy for E-isomers

Figure S82. Relationship between Electron transfer and excitation energy for Z- isomers.

- vii T. Yanai, D. Tew, and N. Handy, Chem. Phys. Lett. 2004, **393** 51-57.
- V^{III} Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

^{ix} U. Salzner J. Chem. Theory Comput. 2013, **9**, 4064–4073.

* E. I. Sánchez-Flores, R. Chávez-Calvillo, T. A. Keith, G. Cuevas, T. Rocha-Rinza and F. Cortés-Guzmán, J. Comput. Chem. 2014, **35**, 820–828.

ⁱ J. A. Balam-Villarreal, C.I. Sandoval-Chávez, F. Ortega-Jiménez, R. A. Toscano, M. P. Carreón-Castro, J. G. López-Cortés and M.C. Ortega-Alfaro, *J. Organomet. Chem.* 2016, **818**, 7–14

ⁱⁱ A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Canalli, *J. Appl. Crystallogr.* 1994, **27**, 435-436

iii G.M. Sheldrick, Acta Crystallogr. 2008, A64, 112-122.

^{iv} J. P. Perdew, K. Burke and M. Ernzerhof, *Phys Rev Lett.*, 1996, **77**, 3865.

^v a) Y. Zhao and D. G. Truhlar, *Theor. Chem. Account*, 2008, **120**, 215; b) X. Xu and W. A. Goddard III, *J. Chem. Phys.*, 2004, **121**.

^{vi} Y. Inada and H. Orita, *J Comput Chem.*, 2008, **29**, 225.