Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

BF3·OEt2-Promoted Tandem Meinwald Rearrangement and Nucleophilic Substitution of Oxiranecarbonitriles

Chuangchuang Xu and Jiaxi Xu*

State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.

Fax/Tel: +86 10 64435565; E-mail: jxxu@mail.buct.edu.cn

Contents

1.	Synthesis of 3-Aryloxirane-2-carbonitriles 1	S2
2.	Optimization on the Tandem Reaction Conditions	S7
3.	Characterization Data for Products 3, 5, and 6a.	S9
4.	Copies of NMR Spectra of All Products 3, 5, 1 and HRMS and GC-MS of 6	S20

1. Synthesis of 3-aryloxirane-2-carbonitriles 1.

Scope of 3-aryloxirane-2-carbonitriles^a

^aReaction conditions: Aldehyde (10 mmol), chloroacetonitrile (905 mg, 12 mmol), and KOH (675 mg, 12 mmol) in 50 mL of THF reacted for 10 h at room temperature. ^bHaving almost the same R_f values and could not be separated. ^cSensitive to acidic conditions, so only *cis*-isomer of **1h** was isolated the without treatment with NaHSO₃ because *trans*-isomer of **1h** and 4-methoxybenzaldehyde have the same R_f values.

3-(4-Bromophenyl)oxirane-2-carbonitrile (1a).^[1]

trans-isomer (*trans*-1a): colorless crystals, 1.074 g, 48%. M.p. 97–98 °C. $R_f = 0.76$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 7.53 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 4.26 (d, J = 1.6 Hz, 1H), 3.38 (d, J = 1.6Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): *δ* 132.2, 131.8, 127.3, 124.0, 115.6, 57.9, 44.5.

cis-isomer (*cis*-1a): colorless crystals, 525 mg, 23%. M.p. 105–106 °C. $R_f = 0.45$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 4.22 (d, J = 3.6 Hz, 1H), 3.79 (d, J = 3.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 131.9, 130.4, 127.9, 124.0, 114.7, 57.2, 45.0.

3-Phenyloxirane-2-carbonitrile (1b).^[1]

trans-isomer (*trans*-1b): colorless oil, 974 mg, 67%. $R_f = 0.76$, 33% ethyl acetate in petroleum ether. ¹H NMR (400 MHz, CDCl₃): δ 7.41 – 7.38 (m, 3H), 7.29 – 7.24 (m, 2H), 4.28 (d, J = 1.8 Hz, 1H), 3.40 (d, J = 1.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): *δ* 132.7, 129.8, 128.9, 125.6, 116.0, 58.4, 44.6.

cis-isomer (*cis*-1b): colorless crystals, 381 mg, 26%. M.p. 60–61 °C. $R_f = 0.55$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 7.43 (s, 5H), 4.25 (d, J = 3.6 Hz, 1H), 3.78 (d, J = 3.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 131.3, 129.7, 128.6, 126.3, 115.0, 57.7, 45.1.

3-(4-Methylphenyl)oxirane-2-carbonitrile (1c).^[1]

trans-isomer (*trans*-1c): colorless oil, 871 mg, 55%. $R_f = 0.76$, 33% ethyl acetate in petroleum ether. ¹H NMR (400 MHz, CDCl₃): δ 7.20 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 4.25 (s, 1H), 3.40 (s, 1H), 2.36 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ* 130.0, 129.7, 129.6, 125.6, 116.1, 58.5, 44.6, 21.3.

cis-isomer (*cis*-1c): colorless crystals, 296 mg, 19%. M.p. 56–58 °C. $R_f = 0.59$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 7.30 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 4.22 (d, J = 3.6 Hz, 1H), 3.76 (d, J = 3.6 Hz, 1H), 2.38 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ* 139.7, 129.4, 128.3, 126.2, 115.1, 57.7, 45.1, 21.3.

3-(4-Fluorophenyl)oxirane-2-carbonitrile (1d).^[1]

trans-isomer (*trans*-1d): colorless crystals, 893 mg, 55%. M.p. 62–63 °C. $R_f = 0.76$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 7.29 – 7.24 (m, 2H), 7.12 – 7.06 (m, 2H), 4.28 (d, J = 1.6 Hz, 1H), 3.39 (d, J = 1.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): *δ* 164.8, 162.3, 128.5, 128.5, 127.6, 127.5, 116.2, 116.0, 115.8, 57.9, 44.6.

¹⁹F NMR (377 MHz, CDCl₃): *δ* -110.73.

cis-isomer (*cis*-1d): colorless crystals, 506 mg, 31%. M.p. 54–55 °C. $R_f = 0.53$, 33% ethyl acetate

in petroleum ether. ¹H NMR (400 MHz, CDCl₃): δ 7.42 – 7.38 (m, 2H), 7.16 – 7.10 (m, 2H), 4.24 (d, J = 3.6 Hz, 1H), 3.77 (d, J = 3.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 163.5 (d, J = 249.5 Hz), 128.2 (d, J = 9.1 Hz), 127.2 (d, J = 3.0 Hz), 115.8 (d, J = 22.2 Hz), 114.9, 57.1, 45.0. ¹⁹F NMR (376 MHz, CDCl₃): δ -111.12.

3-(4-Chlorophenyl)oxirane-2-carbonitrile (1e).^[1]

trans-isomer (*trans*-1e): colorless crystals, 683 mg, 38%. M.p. 74–75 °C. $R_f = 0.75$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, J = 8.6 Hz, 2H), 7.21 (d, J = 8.6 Hz, 2H), 4.27 (d, J = 1.6 Hz, 1H), 3.39 (d, J = 1.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 135.8, 131.2, 129.2, 127.0, 115.7, 57.8, 44.6.

cis-isomer (*cis*-1e): colorless crystals, 422 mg, 23%. Mp: 105–106 °C. $R_f = 0.59$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 7.43 – 7.39 (m, 2H), 7.36 – 7.33 (m, 2H), 4.22 (d, *J* = 3.7 Hz, 1H), 3.77 (d, *J* = 3.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): *δ* 135.7, 129.9, 128.9, 127.6, 114.7, 57.1, 45.0.

cis/trans-3-(2-Bromophenyl)oxirane-2-carbonitrile (1f).^[1]

Colorless oil, 1.79 g, 80%. $R_f = 0.73$, 33% ethyl acetate in petroleum ether. *cis:trans* = 44:56; ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.58 (m, 1H), 7.42–7.24 (m, 2H), 7.17 (d, J = 7.6 Hz, 1H), 4.56 (d, J = 1.4 Hz, 1H) (*trans*-isomer), 4.46 (d, J = 3.6 Hz, 1H) (*cis*-isomer), 3.86 (d, J = 3.6 Hz, 1H) (*cis*-isomer), 3.31 (d, J = 1.4 Hz, 1H) (*trans*-isomer).

¹³C NMR (101 MHz, CDCl₃): *δ* 132.8, 132.7, 132.6, 131.5, 130.9, 130.8, 127.9, 127.7, 127.4, 126.1, 122.7, 122.5, 115.7, 114.6, 58.3, 57.7, 44.5, 44.0.

3-(3-Bromophenyl)oxirane-2-carbonitrile (1g).^[1]

trans-isomer (*trans*-1d): colorless crystals, 1.19 g, 53%. M.p. 84–86 °C. $R_f = 0.76$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃) δ 7.53 (dt, J = 7.6, 1.2 Hz, 1H), 7.41 (s, 1H), 7.29 – 7.22 (m, 2H), 4.26

(d, J = 1.6 Hz, 1H), 3.40 (d, J = 2.0 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 135.0, 132.9, 130.5, 128.5, 124.4, 123.1, 115.6, 57.5, 44.5. *cis*-isomer (*cis*-1d): colorless crystals, 445 mg, 20%. M.p. 61–62 °C. R_f = 0.57, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.6 Hz, 2H), 7.35 – 7.29 (m, 2H), 4.21 (d, *J* = 3.2 Hz, 1H), 3.78 (d, *J* = 3.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 133.7, 132.8, 130.3, 129.5, 124.7, 122.7, 114.6, 56.8, 44.9.

cis-3-(4-Methoxyphenyl)oxirane-2-carbonitrile (cis-1h)^[2]

It is sensitive to acidic condition, so just the *cis*-isomer of **1h** was isolated without treatment with NaHSO₃ because *trans*-isomer of **1h** and 4-methoxybenzaldehyde have the same R_f values.

Colorless oil, 263 mg, 15%. $R_f = 0.65$, 33% ethyl acetate in petroleum ether. ¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 4.19 (d, J = 3.6

Hz, 1H), 3.82 (s, 3H), 3.74 (d, *J* = 3.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): *δ* 160.6, 127.6, 123.2, 115.2, 114.1, 57.6, 55.3, 45.1.

3-(Naphthalen-2-yl)oxirane-2-carbonitrile (1i).^[1]

trans-isomer (*trans*-1g): colorless crystals, 877 mg, 55%. M.p. 109–111 °C. $R_f = 0.78$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 7.88 – 7.81 (m, 4H), 7.56 – 7.52 (m, 2H), 7.27 (dd, J = 8.4, 1.2 Hz, 1H), 4.45 (d, J = 1.4 Hz, 1H), 3.55 (d, J = 1.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): *δ* 133.9, 132.9, 130.0, 129.1, 128.0, 127.9, 127.0, 126.9, 126.1, 121.8, 116.0, 58.8, 44.7.

cis-isomer (*cis*-1g): colorless crystals, 294 mg, 19%. M.p. 137–139 °C. $R_f = 0.53$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 7.93 – 7.86 (m, 4H), 7.56 – 7.52 (m, 2H), 7.49 (dd, J = 8.4, 1.6 Hz, 1H), 4.42 (d, J = 3.8 Hz, 1H), 3.86 (d, J = 3.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): *δ* 133.9, 132.9, 128.8, 128.7, 128.1, 127.9, 126.9, 126.7, 126.3, 123.0, 115.0, 57.9, 45.2.

3-(Naphthalen-1-yl)oxirane-2-carbonitrile (1j).^[1]

CN

trans-isomer (*trans*-1h): colorless crystals, 775 mg, 40%. M.p. 64–66 °C. $R_f = 0.76$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.64 (dd, J = 8.0, 6.8 Hz, 1H), 7.59 (t, J = 7.4 Hz, 1H), 7.47 (dd, J = 8.0, 7.2 Hz, 1H), 7.42 (d, J = 6.8 Hz, 1H), 4.90 (s, 1H), 3.43 (s, 1H).

¹³C NMR (101 MHz, CDCl₃): *δ* 133.2, 130.9, 129.8, 128.9, 127.2, 126.5, 125.2, 122.6, 122.2, 116.2, 57.1, 43.7.

cis-isomer (*cis*-1h): colorless crystals, 269 mg, 14%. M.p. 76–77 °C. $R_f = 0.61$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 8.00 – 7.98 (m, 1H), 7.96 – 7.91 (m, 2H), 7.63 – 7.52 (m, 4H), 4.84 (d, *J* = 3.6 Hz, 1H), 3.99 (d, *J* = 3.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): *δ* 133.3, 130.9, 129.8, 129.1, 127.4, 127.0, 126.3, 125.3, 123.7, 121.9, 114.9, 56.1, 44.8.

2. Optimization on the Tandem Reaction Conditions

Table S1. Optimization on the reaction of *cis*-3-(4-bromophenyl)oxirane-2-carbonitrile (*cis*-1a) and aniline under refluxed conditions ^a

			NH ₂ Ac	id, solvent	Br	O
Br	(<u>+</u>)		Ti	me, Temp.		N Ph H
 	cis-1	a 2a				3a
Entry	2/equiv.	Acid/equiv.	Temp.	Solvent	Time/h	Yield/%
1	1	$BF_3 \bullet OEt_2/1.3$	refluxed	THF	9	trace
2	1	$BF_3 \bullet OEt_2/1.3$	refluxed	MeCN	9	trace
3	1	$BF_3 \bullet OEt_2/1.3$	refluxed	DCE	9	mess
4	1	$BF_3 \bullet OEt_2/1.3$	refluxed	toluene	9	mess
5	1	$BF_3 \bullet OEt_2/1.3$	refluxed	DMF	9	
6	1	$BF_3 \bullet OEt_2/1.3$	refluxed	<i>i</i> -PrOH	9	
7	1	$BF_3 \bullet OEt_2/1.3$	refluxed	EtOH	9	
8	1	$BF_3 \bullet OEt_2/1.3$	refluxed	1,4-dioxane	9	42

^aReactions were conducted on a 0.5 mmol scale of *cis*-1a in 5 mL of commercial solvent. All yields are isolated yields.

Table S2. Optimization on the reaction of cis-3-(4-bromophenyl)oxirane-2-carbonitrile(cis-1a) and ethanol under microwave irradiation conditions^a

			BF ₃ •OEt ₂ , 1,4-dioxar	ne Br	► O □	
		N + EtOH -	MW, Temp., Time			_
Br ~	(<u>+</u>) cis- 1a	4a			5a	
Entry	4/equiv.	BF ₃ •OEt ₂ / ec	quiv. Temp./ °C	Time/min	Yield/%	
1	1.1	1.3	190	30	41	
2	1.5	1.3	190	30	46	
3	1.8	1.3	190	30	49	
4	2.0	1.3	190	30	48	
5	2.2	1.3	190	30	49	
6	2.5	1.3	190	30	46	
7	3.0	1.3	190	30	43	
8	1.8	1.0	190	30	51	
9	1.8	1.5	190	30	50	
10	1.8	0.8	190	30	49	
11	1.8	0.5	190	30	43	
12	1.8	1.0	180	30	51	
13	1.8	1.0	175	30	53	
14	1.8	1.0	130	30	28	
15	1.8	1.0	110	30	21	
16	1.8	1.0	175	20	49	
17	1.8	1.0	175	40	53	

^aReactions were conducted on a 0.5 mmol scale of *cis*-1a in 5 mL of anhydrous 1,4-dioxane and

anhydrous EtOH purified with standard process was used. All yields are isolated yields.

Table S3. Optimization on the reaction of cis-3-(4-bromophenyl)oxirane-2-carbonitrile(cis-1a) and water under microwave irradiation conditions^a

Br	O (<u>+</u>) <i>cis-</i> 1a	H_2O BF ₃ •OEt ₂ , 1, Temperature,	4-dioxane ★ MW, 30 min.	Br O OF
Entry	H ₂ O/equiv.	BF ₃ •OEt ₂ / equiv.	Temp./ °C	Yield/%
1	1.8	1	190	50
2	1.8	1	175	52
3	1.8	1	160	50
4	2.0	1	175	29
5	1.4	1	175	59
6	1.2	1	175	64
7	1	1	175	70
8	1	1.2	175	61
9	1.2	1.2	175	78
10	1.5	1.5	175	54

^aReactions were conducted on a 0.5 mmol scale of *cis*-1a in 5 mL of 1,4-dioxane with water. All yields are isolated yields.

3. Characterization Data for Products 3, 5, and 6a.

2-(4-Bromophenyl)-N-phenylacetamide (3a)^[3]

Colorless solid 111 mg, 77%. M.p. 190–192 °C. $R_f = 0.48$, 33% ethyl acetate in petroleum ether. ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.29 (t, J = 8.0 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.10 (t, J = 7.2 Hz, 1H), 3.68 (s, 2H), 1.66 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 168.3, 137.4, 133.3, 132.3, 131.2, 129.0, 124.7, 121.7, 119.9, 44.1.

2-(4-Bromophenyl)-N-(p-tolyl)acetamide (3b)

Colorless solid 119 mg, 78%. M.p. 213–214 °C. $R_f = 0.47$, 33% ethyl acetate in petroleum ether. ¹H NMR (400 MHz, DMSO- d_6): δ 10.07 (s, 1H), 7.51 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 7.09 (d, J = 8.2 Hz, 2H), 3.60 (s, 2H), 2.23 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 168.3, 136.6, 135.5, 132.1, 131.4, 131.1, 129.0, 119.7, 119.1, 42.4, 20.4.

IR (KBr): v 1012, 1073, 1113, 1404, 1488, 1602, 1650, 3280 cm⁻¹.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₁₅H₁₅BrNO⁺ 304.0332, found 304.0333.

2-(4-Bromophenyl)-N-(m-tolyl)acetamide (3c)

Colorless solid 87 mg, 57%. M.p. 161–162 °C. $R_f = 0.38$, 33% ethyl acetate in petroleum ether. ¹H NMR (400 MHz, DMSO- d_6): δ 10.08 (s, 1H), 7.51 (d, J = 8.4 Hz, 2H), 7.42 (s, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.29 (d, J = 8.4 Hz, 2H), 7.16 (t, J = 7.8 Hz, 1H), 6.85 (d, J = 7.8 Hz, 1H), 3.61 (s, 2H), 2.26 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 168.5, 139.0, 137.9, 135.4, 131.4, 131.1, 128.5, 123.9, 119.7, 119.6, 116.3, 42.5, 21.2.

IR (KBr): v 1012, 1070, 1198, 1411, 1487, 1536, 1591, 1663, 3272 cm⁻¹.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{15}H_{15}BrNO^+ 304.0332$, found 304.0331.

2-(4-Bromophenyl)-N-(o-tolyl)acetamide (3d)

Colorless solid 97 mg, 64%. M.p. 210–211 °C. $R_f = 0.34$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, DMSO-*d*₆): δ 9.51 (s, 1H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 7.6 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.07 (t, *J* = 7.6 Hz, 1H), 3.66 (s, 2H), 2.15 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 168.6, 136.1, 135.7, 131.7, 131.3, 131.1, 130.2, 125.9, 125.2, 125.1, 119.6, 41.9, 17.7.

IR (KBr): v 1012, 1071, 1142, 1180, 1384, 1413, 1489, 1532, 1588, 1657, 3258 cm⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₅H₁₅BrNO⁺ 304.0332, found 304.0339.

2-(4-Bromophenyl)-N-(4-methoxyphenyl)acetamide (3e)

The residue was subjected to silica gel column chromatography (PE/EA 5:1, v/v) to give the desired product as colorless solid 130 mg, 81%. M.p. 205–206 °C. R_f = 0.32, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, DMSO- d_6): δ 10.02 (s, 1H), 7.52 – 7.48 (m, 4H), 7.28 (d, J = 8.0 Hz, 2H), 6.87 (d, J = 8.0 Hz, 2H), 3.71 (s, 3H), 3.59 (s, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 168.1, 155.2, 135.5, 132.2, 131.4, 131.1, 120.6, 119.7, 113.8, 55.1, 42.4.

IR (KBr): v 1031, 1074, 1142, 1180, 1384, 1409, 1451, 1489, 1512, 1604, 1649, 3282 cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₁₅H₁₅BrNO₂⁺ 320.0281, found 320.0276.

2-(4-Bromophenyl)-N-(4-hydroxyphenyl)acetamide (3f)

Colorless solid 93 mg, 61%. M.p. 245–247 °C. $R_f = 0.44$, 33% ethyl acetate in petroleum ether. ¹H NMR (400 MHz, DMSO- d_6): δ 9.90 (s, 1H), 9.16 (s, 1H), 7.51 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.8 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 8.8 Hz, 2H), 3.56 (s, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 167.8, 153.3, 135.7, 131.3, 131.1, 130.7, 120.9, 119.7, 115.0, 42.4.

IR (KBr): *v* 1013, 1070, 1240, 1298, 1346, 1412, 1453, 1487, 1511, 1541, 1661, 3216, 3285 cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₁₄H₁₃BrNO₂⁺ 306.0124, found 306.0123.

2-(4-Bromophenyl)-N-(4-fluorophenyl)acetamide (3g)

Colorless solid 101 mg, 66%. M.p. 182–183 °C. $R_f = 0.42$, 33% ethyl acetate in petroleum ether. ¹H NMR (400 MHz, DMSO- d_6): δ 10.22 (s, 1H), 7.61 – 7.58 (m, 2H), 7.52 (d, J = 8.0, Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.13 (t, J = 8.8 Hz, 2H), 3.62 (s, 2H). ¹³C NMR (101 MHz, DMSO- d_6): δ 168.5, 157.9 (d, $J_{C-F} = 240.4 \text{ Hz}$), 135.5 (d, $J_{C-F} = 2.0 \text{ Hz}$), 135.3,

131.4, 131.1, 120.8 (d, *J*_{C-F} = 8.0 Hz), 119.7, 115.2 (d, *J*_{C-F} = 23.2 Hz), 42.3.

¹⁹F NMR (376 MHz, DMSO- d_6): δ -119.29.

IR (KBr): v 1013, 1071, 1222, 1405, 1487, 1511, 1532, 1663, 3279 cm⁻¹.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{14}H_{12}BrFNO^+$ 308.0081, found 308.0083.

2-(4-Bromophenyl)-N-(4-chlorophenyl)acetamide (3h)

Colorless solid 105 mg, 65%. M.p. 195–197 °C. $R_f = 0.48$, 33% ethyl acetate in petroleum ether. ¹H NMR (400 MHz, DMSO- d_6): δ 10.30 (s, 1H), 7.61 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 3.63 (s, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 168.8, 138.0, 135.1, 131.4, 131.1, 128.6, 126.8, 120.6, 119.8, 42.4.

IR (KBr): v 1012, 1072, 1181, 1408, 1486, 1524, 1592, 1657, 3257 cm⁻¹.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{14}H_{12}BrCINO^+$ 323.9785, found 323.9787.

N,2-Bis(4-bromophenyl)acetamide (3i)

Colorless solid 140 mg, 76%. M.p. 211–213 °C. $R_f = 0.43$, 33% ethyl acetate in petroleum ether. ¹H NMR (400 MHz, DMSO- d_6): δ 10.30 (s, 1H), 7.56 (d, J = 8.8 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.47 (d, J = 8.8 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 3.63 (s, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 168.8, 138.4, 135.1, 131.5, 131.4, 131.1, 121.0, 119.8, 114.8, 42.4.

IR (KBr): v 1012, 1070, 1407, 1487, 1524, 1589, 1659, 3261 cm⁻¹.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{14}H_{12}Br_2NO^+$ 367.9280, found 367.9279.

2-(4-Bromophenyl)-N-(4-cyanophenyl)acetamide (3j)

The residue was subjected to silica gel column chromatography (PE/EA 5:1, v/v) to give the desired product as colorless solid 71 mg, 45%. M.p. 172–173 °C. $R_f = 0.17$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, DMSO- d_6): δ 10.61 (s, 1H), 7.77 (s, 4H), 7.52 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 3.69 (s, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 169.5, 143.3, 134.8, 133.3, 131.5, 131.2, 119.9, 119.1, 119.0, 105.0, 42.5.

IR (KBr): v 1013, 1072, 1142, 1175, 1257, 1311, 1408, 1488, 1528, 1596, 1672, 2224, 3315 cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₁₅H₁₂BrN₂O⁺ 315.0128, found 315.0120.

N-Benzyl-2-(4-bromophenyl)acetamide (3k)

The residue was subjected to silica gel column chromatography (PE/EA 5:1, v/v) to give the desired product as colorless solid 81 mg, 53%. M.p. 174–175 °C. $R_f = 0.22$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.4 Hz, 2H), 7.33 – 7.24 (m, 3H), 7.19 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 5.69 (s, 1H), 4.41 (d, J = 5.8 Hz, 2H), 3.55 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) *δ* 170.1, 137.9, 133.7, 132.1, 131.1, 128.7, 127.6, 127.6, 121.4, 43.7, 43.1.

IR (KBr): v 1044, 1073, 1286, 1384, 1416, 1450, 1606, 1643, 1666, 2967, 3282 cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₁₅H₁₅BrNO⁺ 304.0332, found 304.0333.

2-(4-Bromophenyl)-N-propylacetamide (31)

The residue was subjected to silica gel column chromatography (PE/EA 5:1, v/v) to give the desired product as colorless solid 55 mg, 43%. M.p. 113–115 °C. $R_f = 0.15$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.02 (s, 1H), 7.48 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 3.37 (s, 2H), 2.99 (q, J = 7.2 Hz, 2H), 1.39 (sext, J = 7.2 Hz, 2H), 0.82 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 169.4, 136.0, 131.2, 131.0, 119.4, 41.6, 40.4, 22.3, 11.3. IR (KBr): v 1012, 1071, 1086, 1179, 1402, 1441, 1484, 1548, 1591, 1650, 2951, 3299 cm⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₁H₁₅BrNO⁺ 256.0332, found 256.0335.

Ethyl 4-(2-(4-bromophenyl)acetamido)benzoate (3m)

The residue was subjected to silica gel column chromatography (PE/EA 6:1, v/v) to give the desired product as colorless solid 83 mg, 46%. Mp: 163–165 °C. $R_f = 0.22$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, DMSO- d_6): δ 10.51 (s, 1H), 7.91 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 4.27 (q, J = 7.0 Hz, 2H), 3.68 (s, 2H), 1.30 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 169.2, 165.2, 143.4, 135.0, 131.5, 131.1, 130.2, 124.2, 119.8, 118.4, 60.4, 42.5, 14.2.

IR (KBr): *v* 1050, 1177, 1276, 1332, 1364, 1488, 1518, 1535, 1596, 1614, 1693, 2977, 3344 cm⁻¹. HRMS (ESI-TOF) *m/z*: $[M + H]^+$ calcd for C₁₇H₁₇BrNO₃⁺ 362.0386, found 362.0388.

2-(4-Bromophenyl)-N-methyl-N-phenylacetamide (3n)

The residue was subjected to silica gel column chromatography (PE/EA 10:1, v/v) to give the desired product as pale yellow oil 95 mg, 63%. $R_f = 0.38$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.34 (m, 5H), 7.12 (d, *J* = 7.8 Hz, 2H), 6.93 (d, *J* = 7.8 Hz, 2H), 3.40 (s, 2H), 3.27 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 170.4, 143.7, 134.3, 131.3, 130.8, 129.8, 128.0, 127.5, 120.5, 40.3, 37.6.

IR (KBr): v 1012, 1072, 1121, 1377, 1495, 1595, 1658, 3290 cm⁻¹.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₁₅H₁₅BrNO⁺ 304.0332, found 304.0336.

N,2-Diphenylacetamide (3o)^[4]

Colorless solid 70 mg, 66%. M.p. 123–124 °C (lit.^[2] mp 118–120 °C). $R_f = 0.38$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, DMSO- d_6): δ 10.15 (s, 1H), 7.60 (d, J = 7.6 Hz, 2H), 7.34 – 7.23 (m, 7H), 7.03 (t, J = 7.6 Hz, 1H), 3.64 (s, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 169.0, 139.2, 136.0, 129.1, 128.7, 128.3, 126.5, 123.2, 119.1, 43.3.

N-Phenyl-2-(*p*-tolyl)acetamide (3p)^[4]

Colorless solid 62 mg, 55%. M.p. 154–156 °C (lit.^[4] mp 156–18 °C). $R_f = 0.43$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, DMSO-*d*₆): δ 10.10 (s, 1H), 7.58 (d, J = 7.7 Hz, 2H), 7.28 (t, J = 7.7 Hz, 2H), 7.21 (d, J = 7.8 Hz, 2H), 7.12 (d, J = 7.8 Hz, 2H), 7.02 (t, J = 7.7 Hz, 1H), 3.57 (s, 2H), 2.27 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 169.2, 139.2, 135.5, 132.9, 128.9, 128.8, 128.7, 123.1, 119.0, 42.9, 20.6.

2-(4-Fluorophenyl)-*N*-phenylacetamide (3q)^[4]

Colorless solid 62 mg, 54%. M.p. 133–134 °C (lit.^[4] mp 124–126 °C). $R_f = 0.35$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, DMSO- d_6): δ 10.15 (s, 1H), 7.58 (d, J = 7.8 Hz, 2H), 7.38 – 7.34 (m, 2H), 7.29 (t, J = 7.8 Hz, 2H), 7.17 – 7.12 (m, 2H), 7.03 (t, J = 7.8 Hz, 1H), 3.63 (s, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 168.9, 161.1 (d, *J*_{C-F} = 243.4 Hz), 139.1, 132.1 (d, *J*_{C-F} = 3.0 Hz), 130.9 (d, *J*_{C-F} = 8.1 Hz), 128.7, 123.2, 119.1, 115.0 (d, *J*_{C-F} = 21.2 Hz), 42.2.

¹⁹F NMR (376 MHz, DMSO- d_6): δ -116.59.

2-(4-Chlorophenyl)-N-phenylacetamide (3r)^[4]

Colorless solid 81 mg, 66%. M.p. 175–176 °C (lit.^[4] mp 170–172 °C). R_f = 0.32, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, DMSO-*d*₆): δ 10.16 (s, 1H), 7.58 (d, *J* = 7.8 Hz, 2H), 7.39 (d, *J*=8.8 Hz, 2H), 7.35 (d, *J* = 8.8 Hz, 2H), 7.29 (t, *J* = 7.8 Hz, 2H), 7.03 (t, *J* = 7.8 Hz, 1H), 3.64 (s, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 168.7, 139.1, 135.0, 131.2, 131.0, 128.7, 128.2, 123.2, 119.1, 42.4.

2-(2-Bromophenyl)-N-phenylacetamide (3s)

The residue was subjected to silica gel column chromatography (PE/EA 10:1, v/v) to give the desired product as colorless solid 70 mg, 48%. M.p. 160–161 °C. $R_f = 0.51$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, DMSO- d_6): δ 10.20 (s, 1H), 7.62 – 7.58 (m, 3H), 7.42 (d, J = 6.8 Hz, 1H), 7.36 (t, J = 7.4 Hz, 1H), 7.30 (t, J = 7.8 Hz, 2H), 7.22 (t, J = 7.6 Hz, 1H), 7.04 (t, J = 7.2 Hz, 1H), 3.84 (s, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 167.8, 139.2, 135.7, 132.2, 128.7, 128.7, 127.6, 124.6, 123.1, 119.0, 43.2.

IR (KBr): v 1027, 1255, 1347, 1411, 1444, 1535, 1599, 1658, 3266 cm⁻¹.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{14}H_{13}BrNO^+$ 290.0175, found 290.0180.

2-(3-Bromophenyl)-N-phenylacetamide (3t)

Colorless solid 67 mg, 46%. M.p. 154–155 °C. $R_f = 0.44$, 33% ethyl acetate in petroleum ether. ¹H NMR (400 MHz, DMSO- d_6): δ 10.17 (s, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.55 (s, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.35 – 7.27 (m, 4H), 7.04 (t, J = 7.4 Hz, 1H), 3.66 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆): δ 168.5, 139.1, 138.6, 131.9, 130.4, 129.4, 128.7, 128.3, 123.3, 121.4, 119.1, 42.6.
IR (KBr): *v* 1094, 1384, 1443, 1498, 1546, 1599, 1659, 3288 cm⁻¹.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{14}H_{13}BrNO^+$ 290.0175, found 290.0174.

Br OFt

Ethyl 2-(4-bromophenyl)acetate (5a)^[5]

Colorless oil 65 mg, 53%. $R_f = 0.71$, 33% ethyl acetate in petroleum ether. ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 4.15 (q, J = 7.0 Hz, 2H), 3.56 (s, 2H), 1.25 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 171.0, 133.1, 131.6, 131.0, 121.0, 61.0, 40.7, 14.1.

Br OMe

Methyl 2-(4-bromophenyl)acetate (5b)^[5]

Colorless oil 49 mg, 43%. $R_f = 0.68$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 3.69 (s, 3H), 3.58 (s, 2H).

¹³C NMR (101 MHz, CDCl₃): *δ* 171.4, 132.9, 131.6, 131.0, 121.1, 52.1, 40.5.

Br

Hexyl 2-(4-bromophenyl)acetate (5c).

The residue was subjected to silica gel column chromatography (PE/EA 50:1, v/v) to give the desired product as colorless oil 85 mg, 55%. $R_f = 0.85$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.2 Hz, 2H), 7.16 (d, J = 8.2 Hz, 2H), 4.08 (t, J = 6.6 Hz, 2H), 3.56 (s, 2H), 1.60 (quintet, J = 6.6 Hz, 2H), 1.28 (m, 6H), 0.88 (t, J = 6.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 171.1, 133.1, 131.6, 131.0, 121.0, 65.2, 40.8, 31.3, 28.4, 25.4, 22.5, 13.9.

IR (KBr): *v* 1014, 1073, 1165, 1255, 1344, 1471, 1496, 1508, 1749, 2933, 2961 cm⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₄H₂₀BrO₂⁺ 299.0641, found 299.0643.

Br

4-Methylpentyl 2-(4-bromophenyl)acetate (5d).

The residue was subjected to silica gel column chromatography (PE/EA 50:1, ν/ν) to give the desired product as colorless oil 83 mg, 54%. $R_f = 0.87$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 4.07 (t, J = 6.8 Hz,

2H), 3.56 (s, 2H), 1.64 – 1.47 (m, 3H), 1.20 – 1.14 (m, 2H), 0.87 (d, J = 6.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 133.1, 131.6, 131.0, 121.0, 65.4, 40.8, 34.8, 27.6, 26.4, 22.4. IR (KBr): v 1014, 1073, 1166, 1259, 1339, 1385, 1408, 1468, 1489, 1590, 1736, 2929, 2957 cm⁻¹. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₄H₂₀BrO₂⁺ 299.0641, found 299.0644.

(1*S*,2*R*,4*R*)-Bicyclo[2.2.1]heptan-2-yl 2-(4-bromophenyl)acetate (5e) Colorless oil 74 mg, 48%. $R_f = 0.89$, 33% ethyl acetate in petroleum ether.

 $[\alpha]_{D}^{25} = +12.0$ (*c* 0.50, chloroform).

¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 4.96 – 4.93 (m, 1H), 3.56 (s, 2H), 2.45 (s, 1H), 2.20 (s, 1H), 2.01 – 1.93 (m, 1H), 1.67 – 1.61 (m, 1H), 1.59 – 1.53 (m, 1H), 1.38 – 1.36 (m, 1H), 1.33 – 1.31 (m, 1H), 1.29 – 1.21 (m, 2H), 0.96 – 0.91 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 171.0, 133.2, 131.6, 131.0, 121.0, 76.3, 41.0, 40.2, 37.3, 36.9, 36.4, 29.2, 20.9.

IR (KBr): v 1013, 1072, 1146, 1162, 1255, 1336, 1489, 1732, 2873, 2960 cm⁻¹. HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{15}H_{18}BrO_2^+$ 309.0485, found 309.0486.

Ethyl 2-(4-methylphenyl)acetate (5f)^[6]

Colorless oil 37 mg, 42%. $R_f = 0.78$, 33% ethyl acetate in petroleum ether. ¹H NMR (400 MHz, CDCl₃): δ 7.17 (d, J = 7.6 Hz, 2H), 7.12 (d, J = 7.6 Hz, 2H), 4.13 (q, J = 6.8 Hz, 2H), 3.56 (s, 2H), 2.32 (s, 3H), 1.24 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 171.8, 136.6, 131.1, 129.2, 129.0, 60.7, 41.0, 21.0, 14.1.

CI OFt

Ethyl 2-(4-chlorophenyl)acetate (5g)^[6]

Colorless oil 44 mg, 44%. $R_f = 0.78$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 7.29 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 4.15 (q, J = 7.2 Hz, 2H), 3.57 (s, 2H), 1.25 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ* 171.1, 133.0, 132.6, 130.6, 128.6, 61.0, 40.7, 14.1.

2-(4-Bromophenyl)acetic acid (5h)^[7]

The residue was subjected to silica gel column chromatography (PE/EA 8:1, v/v) to give the desired

product as colorless solid 84 mg, 78%. M.p. 121–123 °C. $R_f = 0.11$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 10.73 (s, 1H), 7.46 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 3.61 (s, 2H).

¹³C NMR (101 MHz, CDCl₃): *δ* 176.9, 132.1, 131.8, 131.1, 121.5, 40.3.

2-Phenylacetic acid (5i)^[7]

Colorless solid 52 mg, 76%. M.p. 75–78 °C (lit.^[6] mp 76–78 °C). $R_f = 0.11$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): *δ* 11.44 (s, 1H), 7.35 – 7.25 (m, 5H), 3.65 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): *δ* 177.7, 133.2, 129.4, 128.6, 127.4, 41.0.

2-(4-Methylphenyl)acetic acid (5j)^[8]

Colorless solid 56 mg, 75%. M.p. 91–94 °C (lit.^[8] mp 91–92 °C). $R_f = 0.23$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 11.10 (s, 1H), 7.17 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 3.61 (s, 2H), 2.33 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): *δ* 177.6, 137.0, 130.2, 129.3, 129.2, 40.5, 21.1.

2-(4-Methoxyphenyl)acetic acid (5k)^[8]

The residue was subjected to silica gel column chromatography (PE/EA 8:1, v/v) to give the desired product as colorless solid 45 mg, 54%. M.p. 75–78 °C (lit.^[6] mp 85–87 °C). $R_f = 0.12$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 7.20 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 3.80 (s, 3H), 3.59 (s, 2H), 3.49 (s, 1H).

¹³C NMR (101 MHz, CDCl₃): *δ* 177.0, 158.9, 130.4, 125.4, 114.1, 55.3, 40.0.

2-(4-Fluorophenyl)acetic acid (5l)^[7]

Colorless solid 53 mg, 69%. M.p. 75–78 °C (lit.^[8] mp 82–85 °C). $R_f = 0.12$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 11.30 (s, 1H), 7.26 – 7.23 (m, 2H), 7.04 – 7.00 (m, 2H), 3.62 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 177.7, 162.15 (d, *J*_{C-F} = 247.5 Hz), 131.0 (d, *J*_{C-F} = 8.1 Hz), 128.9 (d, $J_{C-F} = 3.0 \text{ Hz}$), 115.5 (d, $J_{C-F} = 21.2 \text{ Hz}$), 40.1. ¹⁹F NMR (377 MHz, CDCl₃): δ -115.23.

2-(4-Chlorophenyl)acetic acid (5m)^[7]

Colorless solid 44 mg, 52%. M.p. 106–109 °C (lit.^[6] mp 104–106 °C). $R_f = 0.11$, 33% ethyl acetate in petroleum ether.

¹H NMR (400 MHz, CDCl₃): δ 11.08 (s, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 3.62 (s, 2H).

¹³C NMR (101 MHz, CDCl₃): *δ* 177.1, 133.4, 131.6, 130.7, 128.8, 40.2.

2-(Naphthalen-2-yl)acetic acid (5n)^[7]

Colorless solid 46 mg, 49%. M.p. 148–151 °C. $R_f = 0.12$, 33% ethyl acetate in petroleum ether. ¹H NMR (400 MHz, CDCl₃): δ 11.33 (s, 1H), 7.82 – 7.78 (m, 3H), 7.73 (s, 1H), 7.48 – 7.43 (m, 2H), 7.40 (d, J = 8.4 Hz, 1H), 3.81 (s, 2H).

¹³C NMR (101 MHz, CDCl₃): *δ* 177.6, 133.4, 132.5, 130.7, 128.3, 128.2, 127.7, 127.3, 126.2, 126.0, 41.1.

2-(Naphthalen-1-yl)acetic acid (50)^[7]

Colorless solid 36 mg, 39%. M.p. 129–132 °C. $R_f = 0.12$, 33% ethyl acetate in petroleum ether. ¹H NMR (400 MHz, CDCl₃): δ 11.53 (s, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 7.6 Hz, 1H), 7.79 (d, J = 7.2 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.43 – 7.37 (m, 2H), 4.06 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 177.9, 133.8, 132.0, 129.7, 128.8, 128.3, 128.2, 126.5, 125.8, 125.4, 123.7, 38.8.

2-(4-Bromophenyl)acetyl cyanide (6a).

¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 4.16 (s, 2H) (obtained from ¹H NMR spectrum of mixed **5h** and **6a**).

HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for C₉H₇BrO⁺ 223.9706, found 223.9708.

References

- [1] C. C. Xu, J. X. Xu, J. Org. Chem. 2018, 83, 14733-14742.
- [2] C. Kaiser, P. A. Dandridge, E. Garvey, K. E. Flaim, R. L. Zeid, J. P. Hieble, J. Med. Chem. 1985, 28, 1803-1810.
- [3] X. Li, Z. Li, H. Deng, X. Zhou, *Tetrahedron Lett.* **2013**, *54*, 2212-2216.
- [4] W. Yu, S. Yang, F. Xiong, T. Fan, Y. Feng, Y. Huang, J. Fu, T. Wang, Org. Biomol. Chem. 2018, 16, 3099-3103.
- [5] S. T. Heller, R. Sarpong, Org. Lett. 2010, 12, 4572-4575.
- [6] B. Zimmermann, W. I. Dzik, T. Himmler, L. J. Goossen, J. Org. Chem. 2011, 76, 8107-8112.
- S. S. Yan, L. Zhu, J. H. Ye, Z. Zhang, H. Huang, H. Zeng, C. J. Li, Y. Lan, D. G. Yu, *Chem. Sci.* 2018, 9, 4873-4878.
- [8] G.-B. Zhou, P.-F. Zhang, Y.-J. Pan, *Tetrahedron* 2005, *61*, 5671-5677.

4. Copies of NMR Spectra of All Products 3, 5, 1 and HRMS and GC-MS of 6.

¹H and ¹³C spectra of **3s**.

¹H and ¹³C spectra of **5c**.

¹H and ¹³C spectra of **5f**.

S74

HRMS of 6a.

EI MS of 1a

GC-MS of **1b**. GC profile of **1b**

EI MS of 1b

