Coumarin-3-formylpyrazoles as 3-Carbon Synthons in

Cyclocondensation for the Synthesis of Spiro-fused Pentacyclic

Spirooxindoles

Chuan-Wen Lei,^{a,d} Chuan-Bao Zhang,^{a,d} Zhen-Hua Wang,^b Ke-Xin Xie,^c Jian-Qiang Zhao,^{b,*}

Ming-Qiang Zhou,^a Xiao-Mei Zhang,^a Xiao-Ying Xu^a and Wei-Cheng Yuan^{a,b,*}

^a National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry,

Chinese Academy of Sciences, Chengdu, 610041, China

^b Institute for Advanced Study, Chengdu University, Chengdu, 610106, China

^c Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China

^d University of Chinese Academy of Sciences, Beijing, 100049, China

E-mail: zhaojianqiang@cdu.edu.cn yuanwc@cioc.ac.cn

Table of Contents

1.	General experimental information	S1
2.	General procedure for the synthesis of compounds 1	S1
3.	General experimental procedures for synthesis of compounds 3	S3
4.	Procedure for the scale-up experiment	. S 10
5.	Synthesis of product 4	S10
6.	X-ray crystal structure of compound 3a	.S10
7.	Control experiments (The Scheme 6 and Fig. 3 in manuscript)	S11
8.	¹ H and ¹³ C NMR spectra for compounds 1 , 3 , 4 , 7 , 8 and HPLC of 3a	.S13

1. General experimental information.

Reagents were purchased from commercial sources and were used as received unless mentioned otherwise. Reactions were monitored by TLC. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ and DMSO- d_6 . ¹H NMR chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃ at 7.26 ppm, DMSO- d_6 at 2.50 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃ at 77.23 ppm, DMSO- d_6 at 39.51 ppm). Melting points were recorded on a melting point apparatus.

2. General procedure for the synthesis of 1.

To a suspension of the 2-oxo-2*H*-chromene-3-carboxylic acid (5.0 mmol), HOBt (1.01 g, 7.5 mmol) and pyrazole (0.51 g, 7.5 mmol) in CH_2Cl_2 (20 mL) was added DCC (1.03 g, 5.0 mmol) at 0 °C and stirred for 15 min. The reaction mixture was warmed to room temperature and stirred for 24-72 h. Upon completion, the mixture was filtered through celite, and washed with CH_2Cl_2 (approximately 10 mL) and concentrated *in vacuo*. The desired products were recrystallised from absolute ethanol to give compounds **1a-m** as a solid.

3-(1*H***-pyrazole-1-carbonyl)-2***H***-chromen-2-one (1a). White solid; 744.1 mg, 62% yield; m.p. 168.5-169.3 °C; ¹H NMR (300 MHz, CDCl₃) \delta 8.37 (d,** *J* **= 2.9 Hz, 1H), 8.18 (s, 1H), 7.75 (s, 1H), 7.69 – 7.58 (m, 2H), 7.42 – 7.32 (m, 2H), 6.54 (dd,** *J* **= 2.9, 1.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) \delta 162.9, 157.6, 154.9, 146.0, 145.3, 134.1, 129.5, 129.4, 125.2, 122.3, 117.9, 117.3, 110.8; HRMS (ESI) calcd. for C₁₃H₈N₂NaO₃ [M + Na]⁺ 263.0433, found: 263.0427.**

6-fluoro-3-(1*H*-pyrazole-1-carbonyl)-2*H*-chromen-2-one (1b). White solid; 283.6 mg, 22% yield; m.p. 214.2-215.0 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.37 (d, *J* = 2.9 Hz, 1H), 8.10 (s, 1H), 7.75 (d, *J* = 0.9 Hz, 1H), 7.46 - 7.32 (m, 2H), 7.32 - 7.27 (m, 1H), 6.56 (dd, *J* = 2.9, 1.5 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 162.5, 159.1 (d, J = 245.9 Hz), 157.2, 151.0, 145.4, 144.6 (d, J = 2.9 Hz), 129.4, 123.6, 121.6 (d, J = 24.5 Hz), 118.9 (d, J = 8.3 Hz), 118.5 (d, J = 9.2 Hz), 114.5 (d, J = 24.0 Hz), 111.0; HRMS (ESI) calcd. for C₁₃H₇FN₂NaO₃ [M + Na]⁺ 281.0333, found: 281.0326.

6-bromo-3-(1*H***-pyrazole-1-carbonyl)-2***H***-chromen-2-one (1c). White solid; 380.0 mg, 24% yield; m.p. 212.7-214.6 °C; ¹H NMR (300 MHz, CDCl₃) \delta 8.36 (d, J = 2.9 Hz, 1H), 8.07 (s, 1H), 7.76 – 7.69 (m, 3H), 7.32**

-7.27 (m, 1H), 6.55 (dd, J = 2.9, 1.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 156.9, 153.6, 145.4, 144.4, 136.7, 131.5, 129.4, 123.4, 119.8, 119.0, 117.8, 111.0; HRMS (ESI) calcd. for C₁₃H₇BrN₂NaO₃ [M + Na]⁺ 340.9532, found: 340.9529.

7-bromo-3-(1*H***-pyrazole-1-carbonyl)-2***H***-chromen-2-one (1d). White solid; 396.3 mg, 25% yield; m.p. 200.1-201.1 °C; ¹H NMR (300 MHz, CDCl₃) \delta 8.36 (d,** *J* **= 2.9 Hz, 1H), 8.13 (s, 1H), 7.75 (s, 1H), 7.58 (s, 1H),**

7.53 – 7.41 (m, 2H), 6.55 (dd, J = 2.9, 1.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 156.6, 154.8, 145.1, 145.1, 130.1, 129.2, 128.6, 128.3, 122.2, 120.4, 116.6, 110.8; HRMS (ESI) calcd. for C₁₃H₇BrN₂NaO₃ [M + Na]⁺ 340.9532, found: 340.9547.

8-bromo-3-(1*H***-pyrazole-1-carbonyl)-2***H***-chromen-2-one (1e). White solid; 301.0 mg, 19% yield; m.p. 196.9-197.8 °C; ¹H NMR (300 MHz, CDCl₃) \delta 8.36 (d, J = 2.9 Hz, 1H), 8.13 (s, 1H), 7.87 (dd, J = 7.9, 1.4 Hz, 1H), 7.76 (s, 1H), 7.61 – 7.51 (m, 1H), 7.25 (d, J = 5.8 Hz, 1H), 6.56 (dd, J = 2.9, 1.5 Hz,**

1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 156.6, 151.6, 145.4, 145.3, 137.4, 129.4, 128.6, 125.8, 123.2, 119.2, 111.0, 110.8; HRMS (ESI) calcd. for C₁₃H₇BrN₂NaO₃ [M + Na]⁺ 340.9532, found: 340.9522.

7-chloro-3-(1*H***-pyrazole-1-carbonyl)-2***H***-chromen-2-one (1f). White solid; 301.1 mg, 22% yield; m.p. 213.1-214.7 °C; ¹H NMR (300 MHz, CDCl₃) \delta 8.36 (d,** *J* **= 2.9 Hz, 1H), 8.14 (s, 1H), 7.75 (s, 1H), 7.54 (d,** *J* **=**

8.3 Hz, 1H), 7.41 (d, J = 1.9 Hz, 1H), 7.33 (dd, J = 8.3, 1.9 Hz, 1H), 6.55 (dd, J = 2.9, 1.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5, 156.8, 155.1, 145.3, 145.1, 140.3, 130.2, 129.4, 125.9, 122.2, 117.6, 116.5, 110.9; HRMS (ESI) calcd. for C₁₃H₇ClN₂NaO₃ [M + Na]⁺ 297.0037, found: 297.0048.

6-methyl-3-(1*H***-pyrazole-1-carbonyl)-2***H***-chromen-2-one (1g). White solid; 825.7 mg, 65% yield; m.p. 172.1-173.9 °C; ¹H NMR (300 MHz, CDCl₃) \delta 8.36 (d, J = 2.9, 1H), 8.12 (s, 1H), 7.74 (d, J = 1.7, 1H), 7.45 (dd,**

J = 8.6, 1.7, 1H,), 7.38 (s, 1H), 7.28 (d, J = 8.6, 1H), 6.54 (dd, J = 2.9, 1.5, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 157.8, 153.1, 146.2, 145.2, 135.2, 135.1, 129.4, 129.1, 122.0, 117.6, 116.9, 110.7, 20.9; HRMS (ESI) calcd. for C₁₄H₁₀N₂NaO₃ [M + Na]⁺ 277.0584, found: 277.0572.

8-methyl-3-(1*H***-pyrazole-1-carbonyl)-2***H***-chromen-2-one (1h): White solid; 558.6 mg, 44% yield; m.p. 165.3-167.2 °C; ¹H NMR (300 MHz, CDCl₃) \delta 8.41 (d, J = 2.9 Hz, 1H), 8.21 (s, 1H), 7.80 (s, 1H), 7.54 (d, J = 7.7 Hz, 1H), 7.48 (d, J = 7.7 Hz, 1H), 7.30 (d, J = 7.7 Hz, 1H), 6.58 (dd, J = 2.9,**

1.4 Hz, 1H), 2.52 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 163.0, 157.7, 153.2, 146.5, 145.1, 135.4, 129.4, 127.2, 126.8, 124.8, 121.9, 117.6, 110.7, 15.6; HRMS (ESI) calcd. for C₁₄H₁₀N₂NaO₃ [M + Na]⁺ 277.0584, found: 277.0576.

7-methoxy-3-(1*H***-pyrazole-1-carbonyl)-2***H***-chromen-2-one (1i). MeO (1i) MeO (1i) MeO (1i) MeO (1i) MeO (1i) Mite solid; 891.1 mg, 66% yield; m.p. 164.9-166.7 °C; ¹H NMR (300 MHz, CDCl₃) \delta 8.36 (d, J = 2.9 Hz, 1H), 8.20 (s, 1H), 7.75 (s, 1H), 7.49 (d, J = 8.7 Hz, 1H), 6.90 (dd, J = 8.7, 2.3 Hz, 1H), 6.85 (d, J = 2.3 Hz, 1H), 6.53 (dd, J = 2.9, 1.4 Hz, 1H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 165.1, 163.0, 157.9, 157.2, 147.1, 144.9, 130.8, 129.6, 117.8, 113.8, 111.6, 110.5, 100.9, 56.2; HRMS (ESI) calcd. for C₁₄H₁₀N₂NaO₄ [M + Na]⁺ 293.0533, found: 293.0528.**

8-ethoxy-3-(1*H***-pyrazole-1-carbonyl)-2***H***-chromen-2-one (1j). White solid; 894.1 mg, 63% yield; m.p. 185.0-186.8 °C; ¹H NMR (300 MHz, CDCl₃) \delta 8.34 (d, J = 2.9 Hz, 1H), 8.13 (s, 1H), 7.76 – 7.68 (m, 1H), 7.26 –**

7.20 (m, 1H), 7.19 – 7.10 (m, 2H), 6.52 (dd, J = 2.9, 1.4 Hz, 1H), 4.19 (q, J = 7.0 Hz, 2H), 1.49 (t, J = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 163.0, 157.3, 146.8, 146.2, 145.1, 144.8, 129.6, 125.0, 122.4, 120.6, 118.6, 117.1, 110.8, 65.4, 14.9; HRMS (ESI) calcd. for C₁₅H₁₂N₂NaO₄ [M + Na]⁺ 307.0689, found: 307.0688.

6-(*tert*-butyl)-3-(1*H*-pyrazole-1-carbonyl)-2*H*-chromen-2-one (1k). White solid; 591.6 mg, 40% yield; m.p. 162.0-163.7 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.37 (d, J = 2.9 Hz, 1H), 8.19 (s, 1H), 7.75 (s, 1H), 7.69

(dd, J = 8.8, 2.3 Hz, 1H), 7.55 (d, J = 2.3 Hz, 1H), 7.33 (d, J = 8.8 Hz, 1H), 6.54 (dd, J = 2.9, 1.5 Hz, 1H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 157.9, 152.9, 148.5, 146.7, 145.2, 132.0, 129.5, 125.7, 121.8, 117.3, 116.8, 110.7, 34.8, 31.5; HRMS (ESI) calcd. for C₁₇H₁₆N₂NaO₃ [M + Na]⁺ 319.1053, found: 319.1044.

2-(1*H***-pyrazole-1-carbonyl)-3***H***-benzo[***f***]chromen-3-one (11). Yellow solid; 376.8 mg, 26% yield; m.p. 174.6-176.5 °C; ¹H NMR (300 MHz, CDCl₃) \delta 9.00 (s, 1H), 8.41 (d,** *J* **= 2.5 Hz, 1H), 8.22 (d,** *J* **= 8.3 Hz, 1H), 8.09 (d,** *J* **= 9.0 Hz, 1H), 7.93 (d,** *J* **= 7.9 Hz, 1H), 7.79 (s, 1H), 7.77 –**

7.68 (m, 1H), 7.65 – 7.57 (m, 1H), 7.48 (d, J = 9.0 Hz, 1H), 6.57 (dd, J = 2.9, 1.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 157.6, 155.5, 145.2, 142.4, 135.8, 130.5, 129.5, 129.4, 129.2, 126.8, 121.6, 120.6, 117.0, 112.4, 110.8; HRMS (ESI) calcd. for C₁₇H₁₀N₂NaO₃ [M + Na]⁺ 313.0584, found: 313.0584.

6-bromo-8-methoxy-3-(1*H***-pyrazole-1-carbonyl)-2***H***-chromen-2-one (1m**). White solid; 365.1 mg, 21% yield; m.p. 226.4-228.3 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.35 (d, J = 2.9 Hz, 1H), 8.03 (s, 1H), 7.73 (d, J = 1.9 Hz, 1H), 7.30 (d, J = 1.9 Hz, 1H), 7.26 (s, 1H), 6.54 (dd, J = 2.9, 1.4

Hz, 1H), 3.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 156.5, 148.2, 145.4, 144.6, 143.7, 129.4, 123.7, 122.6, 119.5, 118.8, 117.5, 111.0, 56.9; HRMS (ESI) calcd. for C₁₄H₉N₂NaO₄ [M + Na]⁺ 370.9638, found: 370.9625.

3. General experimental procedures for synthesis of compounds 3.

In an ordinary glass tube equipped with a magnetic stirring bar, coumarin-3-formylpyrazoles **1** (0.1 mmol, 1.0 equiv.), 3-hydroxyoxindoles **2** (0.12 mmol, 1.2 equiv.) and DABCO (20 mol %, 0.02 mmol) were placed in 0.5 mL of DCM at room temperature, and the mixture was stirred at this temperature until the reaction completed (monitored by TLC). Then, the resulting mixture was purified by column chromatography (dichloromethane/ethyl acetate = 100/1 to 20/1) to give the desired product **3**. The diastereomeric ratio (dr) was determined by ¹H NMR.

1'-methylspiro[furo[3,4-c]chromene-1,3'-indoline]-2',3,4(3aH,9bH)-trione

(3a). White solid; 33.3 mg, 99% yield; > 20:1 dr; m.p. 267.8-269.5 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.87 (dd, J = 7.5, 1.3 Hz, 1H), 7.55 (td, J = 7.8, 1.3 Hz, 1H), 7.37 – 7.28 (m, 2H), 7.13 – 7.03 (m, 2H), 6.93 (td, J = 7.6, 1.2 Hz, 1H), 6.30 (dd, J = 7.6, 1.6 Hz, 1H), 4.67 (s, 2H), 2.78 (s, 3H); ¹³C NMR (100 MHz, 100 MHz).

DMSO- d_6) δ 172.3, 168.9, 158.5, 150.8, 144.4, 132.21, 130.2, 127.2, 125.5, 124.5, 124.0, 123.1, 117.1, 114.4, 109.8, 85.4, 43.2, 42.7, 25.9; HRMS (ESI) calcd. for C₁₉H₁₃NNaO₅ [M + Na]⁺ 358.0691, found: 358.0691. The ee of compound **3a** was determined by HPLC analysis using a Chiralpak AD-H column (60/40 hexane/EtOH; flow rate: 1.0 mL/min; λ = 254 nm; t_{major} = 11.8 min, t_{minor} = 10.3 min).

8-fluoro-1'-methylspiro[furo[3,4-*c***]chromene-1,3'-indoline]-2',3,4(3aH,9b** *H***)-trione (3b). White solid; 27.2 mg, 77% yield; > 20:1 dr; m.p. 274.1-276.0 °C; ¹H NMR (300 MHz, DMSO-d_6) \delta 7.86 (d, J = 7.4 Hz, 1H), 7.57 (dd, J = 8.3, 7.2 Hz, 1H), 7.33 (t, J = 7.7 Hz, 1H), 7.25 – 7.13 (m, 2H), 7.10 (d, J = 7.7 Hz, 1H), 6.20 – 5.92 (m, 1H), 4.84 – 4.56 (m, 2H), 2.83 (s,**

3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.1, 168.6, 158.2, 157.9 (d, J = 240.3 Hz), 147.2 (d, J = 2.3 Hz), 144.3, 132.3, 125.6, 124.1, 122.6, 118.9 (d, J = 8.7 Hz), 117.0 (d, J = 23.4 Hz), 116.1 (d, J = 8.2 Hz), 113.3 (d, J = 24.2 Hz), 109.8, 85.2, 43.1, 42.2, 26.0; HRMS (ESI) calcd. for C₁₉H₁₂FNNaO₅ [M + Na]⁺ 376.0592, found: 376.0578.

8-bromo-1'-methylspiro[furo[3,4-*c***]chromene-1,3'-indoline]-2',3,4(3aH,9 bH)-trione (3c).** White solid; 34.6 mg, 84% yield; > 20:1 dr; m.p. 289.2-291.1 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.86 (d, J = 7.2 Hz, 1H), 7.64 – 7.46 (m, 2H), 7.34 (t, J = 7.7 Hz, 1H), 7.11 (dd, J = 8.3, 5.3 Hz, 2H), 6.37 (d, J = 2.4 Hz, 1H), 4.68 (s, 2H), 2.83 (s, 3H); ¹³C NMR (100 MHz,

DMSO- d_6) δ 172.1, 168.5, 158.0, 150.2, 144.3, 132.9, 132.3, 129.6, 125.6, 124.1, 122.6, 119.3, 117.0, 115.6, 109.8, 85.2, 42.8, 42.3, 26.0; HRMS (ESI) calcd. for C₁₉H₁₂BrNNaO₅ [M + Na]⁺: 435.9791, found: 435.9782.

7-bromo-1'-methylspiro[furo[3,4-*c*]**chromene-1,3'-indoline]-2',3,4(3aH,9** bH)-trione (3d). White solid; 33.4 mg, 81% yield; > 20:1 dr; m.p. 256.6-257.9 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.86 (d, *J* = 7.1 Hz, 1H), 7.55 (td, *J* = 7.8, 1.3 Hz, 1H), 7.43 (d, *J* = 2.0 Hz, 1H), 7.38 – 7.25 (m, 1H), 7.17 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.09 (d, *J* = 7.8 Hz, 1H), 6.25 (d, *J* = 8.2 Hz, 1H), 4.67 (s, 2H), 2.84 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.2,

168.5, 158.1, 151.5, 144.4, 132.3, 128.9, 127.4, 125.6, 124.1, 122.8, 122.1, 120.0, 114.1, 109.9, 85.1, 42.6, 42.5, 26.0; HRMS (ESI) calcd. for $C_{19}H_{12}BrNNaO_5$ [M + Na]⁺ 435.9791, found: 435.9793.

6-bromo-1'-methylspiro[furo[3,4-*c*]**chromene-1,3'-indoline]-2',3,4(3aH,9b** H)-trione (3e). White solid; 40.0 mg, 97% yield; > 20:1 dr; m.p. 267.9-269.4 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.88 (d, J = 7.3 Hz, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.55 (t, J = 7.7 Hz, 1H), 7.32 (t, J = 7.3 Hz, 1H), 7.08 (d, J = 7.7 Hz, 1H), 6.89 (t, J = 7.7 Hz, 1H), 6.30 (d, J = 7.3 Hz, 1H), 4.84 –

4.62 (m, 2H), 2.83 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*_δ) δ 172.1, 168.5, 158.0, 147.6, 144.4, 133.6, 132.3, 126.7, 125.6, 125.5, 124.1, 122.9, 116.7, 109.9, 109.7, 85.3, 43.1, 42.8, 26.0; HRMS

(ESI) calcd. for $C_{19}H_{12}BrNNaO_5 [M + Na]^+ 435.9791$, found: 435.9786.

7-chloro-1'-methylspiro[furo[3,4-c]chromene-1,3'-indoline]-2',3,4(3aH,9 bH)-trione (3f). White solid; 29.5 mg, 80% yield; > 20:1 dr; m.p. 296.6-297.9 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.86 (d, J = 7.3 Hz, 1H), 7.55 (t, J = 7.8 Hz, 1H), 7.37 – 7.27 (m, 2H), 7.13 – 6.99 (m, 2H), 6.31 (d, J = 8.3 Hz, 1H), 4.87 – 4.54 (m, 2H), 2.83 (s, 3H); ¹³C NMR (100 MHz,

DMSO- d_6) δ 172.2, 168.6, 158.1, 151.5, 144.4, 134.0, 132.3, 128.7, 125.5, 124.6, 124.1, 122.8, 117.2, 113.7, 109.9, 85.2, 42.5, 42.5, 26.0; HRMS (ESI) calcd. for C₁₉H₁₂ClNNaO₅ [M + Na]⁺ 392.0296, found: 392.0297.

1',8-dimethylspiro[furo[3,4-*c***]chromene-1,3'-indoline]-2',3,4(3***aH***,9 b***H*)-trione (**3g**). White solid; 34.3 mg, 98% yield; > 20:1 dr; m.p. 253.4-254.9 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.86 (d, J = 7.4 Hz, 1H), 7.56 (td, J = 7.8, 1.3 Hz, 1H), 7.40 - 7.23 (m, 1H), 7.20 - 7.04 (m, 2H), 6.97 (d, J = 8.4 Hz, 1H), 6.05 (d, J = 2.2 Hz, 1H), 4.66 - 4.56 (m, 2H), 2.79

(s, 3H), 1.99 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.2, 168.8, 158.5, 148.7, 144.4, 133.4, 132.1, 130.5, 127.2, 125.3, 123.9, 123.1, 116.7, 114.0, 109.6, 85.3, 43.2, 42.6, 25.9, 20.0; HRMS (ESI) calcd. for C₂₀H₁₅NNaO₅ [M + Na]⁺ 372.0842, found: 372.0842.

1',6-dimethylspiro[furo[3,4-*c*]**chromene-1,3'-indoline]-2',3,4(3***aH*,9**b***H*)-**trion e (3h).** White solid; 33.8 mg, 97% yield; > 20:1 dr; m.p. 276.9-278.3 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.87 (d, *J* = 7.4 Hz, 1H), 7.64 – 7.47 (m, 1H), 7.31 (t, *J* = 7.5 Hz, 1H), 7.18 (d, *J* = 7.5 Hz, 1H), 7.06 (d, *J* = 7.9 Hz, 1H), 6.82 (t, *J* = 7.6 Hz, 1H), 6.12 (d, *J* = 7.6 Hz, 1H), 4.73 – 4.54 (m, 2H), 2.80 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.2, 168.9, 158.5, 149.1, 144.4,

132.1, 131.3, 125.5, 125.4, 124.7, 123.9, 123.8, 123.2, 114.1, 109.7, 85.4, 43.1, 42.6, 25.9, 15.5; HRMS (ESI) calcd. for $C_{20}H_{15}NNaO_5$ [M + Na]⁺ 372.0842, found: 372.0835.

7-methoxy-1'-methylspiro[furo[3,4-*c*]**chromene-1,3'-indoline]-2',3,4(3a** *H*,**9b***H*)-**trione (3i).** White solid; 36.1 mg, 99% yield; > 20:1 dr; m.p. 265.1-266.7 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.84 (d, *J* = 6.9 Hz, 1H), 7.53 (td, *J* = 7.8, 1.1 Hz, 1H), 7.30 (t, *J* = 7.4 Hz, 1H), 7.06 (d, *J* = 7.8 Hz, 1H), 6.68 (d, *J* = 2.5 Hz, 1H), 6.53 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.20 (d, *J* =

8.5 Hz, 1H), 4.68 – 4.54 (m, 2H), 3.70 (s, 3H), 2.82 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.4, 168.9, 160.4, 158.6, 151.8, 144.4, 132.2, 128.0, 125.5, 124.0, 123.2, 111.0, 109.8, 106.0, 102.2, 85.4, 55.6, 42.7, 42.7, 26.0; HRMS (ESI) calcd. for C₂₀H₁₅NNaO₆ [M + Na]⁺ 388.0792, found: 388.0787.

6-ethoxy-1'-methylspiro[furo[3,4-*c*]**chromene-1,3'-indoline]-2',3,4(3***aH***,9***bH***)** -**trione (3j).** White solid; 36.8 mg, 97% yield; > 20:1 dr; m.p. 233.3-234.7 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.86 (d, *J* = 7.6 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.06 (d, *J* = 7.8 Hz, 1H), 6.99 (d, *J* = 8.1 Hz, 1H), 6.85 (t, *J* = 7.9 Hz, 1H), 5.82 (d, *J* = 7.6 Hz, 1H), 4.71 – 4.57 (m, 2H), 4.11 – 3.96 (q, *J* = 7.0 Hz, 2H), 2.82 (s, 3H), 1.36 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz,

DMSO-*d*₆) δ 172.2, 168.9, 158.4, 146.2, 144.5, 140.0, 132.2, 125.4, 124.4, 124.0, 123.3, 118.1, 115.1, 113.6, 109.8, 85.3, 64.1, 43.2, 42.5, 26.0, 14.6; HRMS (ESI) calcd. for C₂₁H₁₇NNaO₆ [M +

8-(*tert*-butyl)-1'-methylspiro[furo[3,4-*c*]chromene-1,3'-indoline]-2',3,4(3 a*H*,9b*H*)trione (3k). White solid; 27.4 mg, 70% yield; > 20:1 dr; m.p. 255.6-257.2 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.87 (d, J = 7.4 Hz, 1H), 7.56 (t, J = 7.8 Hz, 1H), 7.41 – 7.28 (m, 2H), 7.07 (d, J = 7.8 Hz, 1H), 6.99 (d, J = 8.6 Hz, 1H), 6.13 (d, J = 2.2 Hz, 1H), 4.65 – 4.55 (m, 2H), 2.71 (s,

3H), 0.96 (s, 9H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.3, 169.0, 158.5, 148.4, 146.7, 144.3, 132.0, 126.8, 125.5, 124.0, 123.3, 116.4, 113.6, 109.6, 85.6, 44.0, 42.4, 33.7, 30.7, 25.7; HRMS (ESI) calcd. for C₂₃H₂₁NNaO₅ [M + Na]⁺ 414.1312, found: 414.1325.

1'-methylspiro[benzo[*f*]**furo**[3,4-*c*]**chromene-1,3'-indoline**]-2',3,4(3a*H*,11c *H*)-**trione (3l).** Yellow solid; 33.1 mg, 86% yield; > 20:1 dr; m.p. 268.3-270.1 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 8.09 (dd, J = 7.4, 1.4 Hz, 1H), 7.93 (d, J = 9.0 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.46 (td, J = 7.6, 1.4 Hz, 1H), 7.37 (td, J = 7.6, 1.1 Hz, 1H), 7.32 – 7.23 (m, 2H), 6.99 (d, J = 3.9

Hz, 2H), 6.77 (d, J = 7.8 Hz, 1H), 5.41 (d, J = 10.5 Hz, 1H), 4.74 (d, J = 10.5 Hz, 1H), 2.58 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.3, 169.0, 158.9, 149.4, 144.1, 132.0, 131.0, 130.5, 130.3, 128.5, 126.4, 125.5, 125.1, 124.1, 123.8, 122.5, 117.5, 109.8, 108.0, 86.0, 43.3, 40.7, 25.8; HRMS (ESI) calcd. for C₂₃H₁₅NNaO₅ [M + Na]⁺ 408.0842, found: 408.0848.

8-bromo-6-methoxy-1'-methylspiro[furo[3,4-c]chromene-1,3'-indoline]-2 ',3,4(3aH,9bH)-trione (3m). White solid; 34.0 mg, 77% yield; > 20:1 dr; m.p. 236.9-238.7 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.85 (d, J = 7.4 Hz, 1H), 7.57 (td, J = 7.8, 1.2 Hz, 1H), 7.33 (t, J = 7.4 Hz, 1H), 7.23 (d, J = 2.2Hz, 1H), 7.12 (d, J = 7.8 Hz, 1H), 5.92 (d, J = 2.0 Hz, 1H), 4.74 – 4.57 (m, 2H), 3.83 (s, 3H), 2.86 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.0,

168.4, 157.7, 147.8, 144.4, 139.4, 132.3, 125.5, 124.0, 122.8, 120.4, 116.9, 115.8, 115.6, 109.7, 85.1, 56.4, 42.8, 42.2, 26.0; HRMS (ESI) calcd. for $C_{20}H_{14}BrNNaO_6$ [M + Na]⁺ 465.9902, found: 465.9880.

1'-ethylspiro[furo[3,4-c]chromene-1,3'-indoline]-2',3,4(3aH,9bH)-trione

(3n). White solid; 33.9 mg, 97% yield; > 20:1 dr; m.p. 229.1-231.0 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.86 (d, J = 7.5 Hz, 1H), 7.53 (td, J = 7.8, 1.2 Hz, 1H), 7.38 – 7.26 (m, 2H), 7.16 – 7.06 (m, 2H), 6.92 (td, J = 7.5, 1.1 Hz, 1H), 6.32 – 6.20 (m, 1H), 4.79 – 4.48 (m, 2H), 3.52 – 3.40 (m, 1H), 3.32 –

3.21 (m, 1H), 0.49 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.0, 168.9, 158.4, 150.9, 143.2, 132.1, 130.1, 127.3, 125.6, 124.4, 123.8, 123.2, 116.9, 114.3, 109.7, 85.3, 43.7, 42.6, 34.0, 11.6; HRMS (ESI) calcd. for C₂₀H₁₅NNaO₅ [M + Na]⁺ 372.0842, found: 372.0834.

1'-isopropylspiro[furo[3,4-*c*]chromene-1,3'-indoline]-2',3,4(3*aH*,9*bH*)-trion e (30). White solid; 34.8 mg, 96% yield; > 20:1 dr; m.p. 338.6-340.1 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.85 (d, J = 6.6 Hz, 1H), 7.50 (dd, J = 12.3, 4.5 Hz, 1H), 7.37 - 7.24 (m, 2H), 7.19 (d, J = 8.0 Hz, 1H), 7.10 (d, J = 8.2 Hz, 1H), 6.93 (t, J = 7.5 Hz, 1H), 6.23 (d, J = 6.5 Hz, 1H), 4.61 (q, J = 11.0 Hz, 2H), 4.12

- 3.93 (m, 1H), 0.99 (d, J = 6.9 Hz, 3H), 0.86 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.2, 168.9, 158.3, 150.9, 143.1, 132.0, 130.0, 127.2, 125.7, 124.3, 123.6, 123.4, 116.9, 114.4, 110.5, 85.2, 44.0, 43.9, 42.5, 18.5, 17.9; HRMS (ESI) calcd. for $C_{21}H_{17}NNaO_5$ [M + Na]⁺ 386.0999, found: 386.0985.

1'-isobutylspiro[furo[3,4-*c***]chromene-1,3'-indoline]-2',3,4(3aH,9bH)-trione** (**3p**). White solid; 33.2 mg, 88% yield; > 20:1 dr; m.p. 261.4-263.1 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.88 (d, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.8 Hz, 1H), 7.30 (t, *J* = 7.7 Hz, 2H), 7.13 - 7.05 (m, 2H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.37 (d, *J* = 7.7 Hz, 1H), 4.75 - 4.62 (m, 2H), 3.26 (dd, *J* = 13.9, 7.8 Hz, 1H), 3.13 (dd, *J* = 13.9, 6.6

Hz, 1H), 1.49 (dt, J = 13.6, 6.7 Hz, 1H), 0.58 (d, J = 6.7 Hz, 3H), 0.25 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.7, 168.9, 158.5, 151.0, 144.4, 132.1, 130.2, 127.6, 125.6, 124.6, 123.7, 123.0, 117.0, 114.4, 110.2, 85.2, 46.8, 43.1, 42.7, 26.5, 19.8, 18.9; HRMS (ESI) calcd. for C₂₂H₁₉NNaO₅ [M + Na]⁺ 400.1155, found: 400.1148.

1'-allylspiro[furo[3,4-*c*]chromene-1,3'-indoline]-2',3,4(3aH,9bH)-trione

(**3q**). White solid; 31.4 mg, 87% yield; > 20:1 dr; m.p. 252.2-253.9 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.89 (d, J = 6.7 Hz, 1H), 7.51 (td, J = 7.8, 1.2 Hz, 1H), 7.32 (ddd, J = 10.9, 4.7, 2.0 Hz, 2H), 7.14 – 7.04 (m, 1H), 6.95 (ddd, J = 8.7, 5.3, 1.5 Hz, 2H), 6.34 (dd, J = 7.6, 1.4 Hz, 1H), 5.32 – 5.21 (m, 1H), 4.83

-4.75 (m, 1H), 4.75 - 4.60 (m, 2H), 4.40 (dd, J = 17.0, 1.2 Hz, 1H), 4.18 - 4.04 (m, 1H), 3.91 (dd, J = 17.0, 5.3 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.2, 168.9, 158.5, 151.0, 143.5, 132.1, 130.4, 130.2, 127.5, 125.7, 124.5, 124.0, 123.0, 117.1, 116.3, 114.4, 110.3, 85.4, 43.4, 42.7, 41.4; HRMS (ESI) calcd. for C₂₁H₁₅NNaO₅ [M + Na]⁺ 384.0842, found: 384.0831.

1'-benzylspiro[furo[3,4-c]chromene-1,3'-indoline]-2',3,4(3aH,9bH)-trione (**3r).** White solid; 36.2 mg, 88% yield; > 20:1 dr; m.p. 188.7-190.2 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.91 (d, J = 7.1 Hz, 1H), 7.44 (dd, J = 15.0, 7.1 Hz, 2H), 7.29 (t, J = 7.5 Hz, 1H), 7.21 – 7.03 (m, 4H), 6.97 (t, J = 7.2 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 6.51 (d, J = 7.0 Hz, 2H), 6.37 (d, J = 6.7 Hz, 1H), 4.93 –

4.66 (m, 3H), 4.45 (d, J = 16.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.6, 168.8, 158.6, 151.0, 143.5, 134.8, 132.1, 130.4, 128.6, 127.8, 127.3, 126.4, 125.8, 124.8, 124.1, 123.0, 117.2, 114.3, 110.3, 85.3, 43.1, 42.8, 42.8; HRMS (ESI) calcd for C₂₅H₁₇NNaO₅ [M + Na]⁺ 434.0999, found: 434.1009.

1'-phenylspiro[furo[3,4-*c***]chromene-1,3'-indoline]-2',3,4(3***aH***,9***bH***)-trione (3s**). White solid; 34.6 mg, 87% yield; > 20:1 dr; m.p. 270.1-271.7 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.97 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.55 – 7.34 (m, 6H), 7.15 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.02 (td, *J* = 7.4, 1.4 Hz, 1H), 6.76 – 6.66 (m, 3H), 6.36 (dd, *J* = 7.7, 1.6 Hz, 1H), 4.73 (s, 2H); ¹³C NMR (100 MHz,

DMSO- d_6) δ 172.2, 168.9, 158.3, 150.9, 143.9, 132.4, 132.2, 130.3, 129.8, 128.8, 127.3, 126.0, 125.9, 124.7, 124.5, 123.1, 117.2, 114.4, 109.9, 85.6, 44.4, 42.6; HRMS (ESI) calcd. for C₂₄H₁₅NNaO₅ [M + Na]⁺ 420.0842; found: 420.0826.

spiro[furo[3,4-*c***]chromene-1,3'-indoline]-2',3,4(3aH,9bH)-trione (3t).** White solid; 29.6 mg, 92% yield; > 20:1 dr; m.p. 247.1-248.1 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 10.66 (s, 1H), 7.82 (d, *J* = 7.3 Hz, 1H), 7.44 (td, *J* = 7.7, 1.2 Hz, 1H), 7.38 - 7.28 (m, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.15 - 7.05 (m, 1H), 7.03 - 6.93 (m, 1H), 6.84 (d, *J* = 7.7 Hz, 1H), 6.36 (dd, *J* = 7.6, 1.4 Hz, 1H), 4.64 (s,

2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 174.0, 168.8, 158.4, 150.9, 143.0, 132.0, 130.0, 127.4, 125.8, 124.5, 123.6, 123.3, 116.9, 114.7, 110.7, 85.7, 43.1, 42.6; HRMS (ESI) calcd. for C₁₈H₁₁NNaO₅ [M + Na]⁺ 344.0529, found: 344.0527.

4'-bromo-1'-methylspiro[furo[3,4-*c***]chromene-1,3'-indoline]-2',3,4(3aH,9bH)**)**-trione (3u).** White solid; 30.1 mg, 73% yield; > 20:1 dr; m.p. 288.1-290.0 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.58 – 7.44 (m, 2H), 7.36 (td, *J* = 7.9, 7.3, 1.6 Hz, 1H), 7.19 – 7.07 (m, 2H), 7.00 (td, *J* = 7.5, 1.2 Hz, 1H), 6.39 (dd, *J* = 7.7, 1.6 Hz, 1H), 4.94 (d, *J* = 11.2 Hz, 1H), 4.84 (d, *J* = 11.2 Hz, 1H), 2.77 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆) δ 171.5, 168.3, 158.0, 150.7, 146.4, 134.2, 130.5, 127.7, 127.4, 124.8, 120.3, 119.2, 117.2, 113.8, 109.6, 85.9, 41.7, 40.2, 26.1; HRMS (ESI) calcd. for $C_{19}H_{12}BrNNaO_5$ [M + Na]⁺ 435.9812, found: 435.9797.

5'-fluoro-1'-methylspiro[furo[3,4-*c*]**chromene-1,3'-indoline]-2',3,4(3aH,9b** *H*)-**trione** (**3v**): white solid; 31.0 mg, 88% yield; > 20:1 dr; m.p. 206.4-208.2 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.84 (dd, *J* = 7.9, 2.7 Hz, 1H), 7.42 (td, *J* = 9.3, 2.7 Hz, 1H), 7.32 (dd, *J* = 11.3, 4.2 Hz, 1H), 7.17 – 7.06 (m, 2H), 6.96 (t, *J* = 7.0 Hz, 1H), 6.40 (d, *J* = 6.3 Hz, 1H), 4.70 (s, 2H), 2.78 (s,

3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.1, 168.6, 150.1 (d, J = 237.8 Hz), 157.9, 150.8, 140.6 (d, J = 1.7 Hz), 130.2, 127.4, 124.8 (d, J = 8.6 Hz), 124.5, 118.5 (d, J = 23.5 Hz), 117.0, 114.2, 113.6 (d, J = 25.9 Hz), 111.1 (d, J = 8.1 Hz), 85.2, 43.1, 42.5, 26.1; HRMS (ESI) calcd. for C₁₉H₁₂FNNaO₅ [M + Na]⁺ 376.0592, found: 376.0596.

5'-chloro-1'-methylspiro[furo[3,4-*c*]**chromene-1,3'-indoline]-2',3,4(3aH,9b** *H*)**-trione (3w).** White solid; 31.7 mg, 86% yield; > 20:1 dr; m.p. 261.5-262.9 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.03 (d, *J* = 1.9 Hz, 1H), 7.62 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.33 (t, *J* = 7.2 Hz, 1H), 7.15 – 7.04 (m, 2H), 6.97 (t, *J* = 7.2 Hz, 1H), 6.41 (d, *J* = 6.9 Hz, 1H), 4.89 – 4.34 (m, 2H), 2.78 (s,

3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.0, 168.5, 158.4, 150.7, 143.2, 131.9, 130.2, 128.0, 127.3, 125.8, 125.1, 124.5, 117.0, 114.2, 111.4, 85.0, 43.0, 42.5, 26.0; HRMS (ESI) calcd. for C₁₉H₁₂ClNNaO₅ [M + Na]⁺ 392.0296, found: 392.0301.

5'-bromo-1'-methylspiro[furo[3,4-*c*]**chromene-1,3'-indoline]-2',3,4(3aH,9b** *H*)-**trione (3x).** White solid; 36.7 mg, 89% yield; > 20:1 dr; m.p. 265.9-267.8 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.15 (d, *J* = 1.9 Hz, 1H), 7.75 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.08 (dd, *J* = 10.4, 8.5 Hz, 2H), 6.97 (t, *J* = 7.2 Hz, 1H), 6.41 (d, *J* = 6.5 Hz, 1H), 4.78 – 4.63 (m, 2H),

2.78 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 171.9, 168.6, 158.4, 150.8, 143.7, 134.8, 130.2, 128.5, 127.3, 125.5, 124.6, 117.0, 115.6, 114.2, 111.9, 84.9, 43.0, 42.5, 26.1; HRMS (ESI) calcd. for C₁₉H₁₂BrNNaO₅ [M + Na]⁺ 435.9791, found: 435.9771.

7'-fluoro-1'-methylspiro[furo[3,4-*c*]**chromene-1,3'-indoline]-2',3,4(3aH,9bH**)-**trione (3y).** White solid; 33.2 mg, 94% yield; > 20:1 dr; m.p. 277.2-278.5 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.75 (dd, *J* = 7.4, 0.9 Hz, 1H), 7.52 – 7.40 (m, 1H), 7.40 – 7.29 (m, 2H), 7.11 (d, *J* = 8.2 Hz, 1H), 7.00 (td, *J* = 7.5, 1.1 Hz, 1H), 6.35 (dd, *J* = 7.6, 1.4 Hz, 1H), 4.82 – 4.45 (m, 2H), 2.94 (d, *J* = 2.7 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.1, 168.6, 158.4, 150.8, 147.0 (d, *J* = 244.0)

Hz), 130.6 (d, J = 8.9 Hz), 130.3, 127.2, 126.1 (d, J = 3.1 Hz), 125.3 (d, J = 6.4), 124.6, 121.9 (d, J = 3.1 Hz), 120.1 (d, J = 19.0 Hz), 117.1, 114.1, 85.1, 43.5, 42.6, 28.3 (d, J = 5.4 Hz); HRMS (ESI) calcd. for C₁₉H₁₂FNNaO₅ [M + Na]⁺ 376.0592, found: 376.0578.

6'-chloro-1'-methylspiro[furo[3,4-*c***]chromene-1,3'-indoline]-2',3,4(3aH, 9bH)-trione (3z).** White solid; 23.6 mg 64% yield; > 20:1 dr; m.p. 248.5-249.9 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.89 (d, J = 8.0 Hz, 1H), 7.45 – 7.28 (m, 2H), 7.27 (d, J = 1.8 Hz, 1H), 7.15 – 7.03 (m, 1H), 7.03 – 6.89 (m, 1H), 6.50 – 6.31 (m, 1H), 4.68 (s, 2H), 2.79 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.4, 168.7, 158.5, 150.8, 145.9, 136.7, 130.2, 127.3, 127.1, 124.6,

123.8, 122.0, 117.1, 114.2, 110.5, 84.9, 43.0, 42.6, 26.2; HRMS (ESI) calcd. for $C_{19}H_{12}CINNaO_5$ [M + Na]⁺ 392.0302, found: 392.0302.

7'-chloro-1'-methylspiro[furo[3,4-*c*]**chromene-1,3'-indoline]-2',3,4(3aH,9bH**)-**trione (3a').** White solid; 31.7 mg, 86% yield; > 20:1 dr; m.p. 260.0-261.6 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.88 (dd, *J* = 7.4, 1.0 Hz, 1H), 7.57 (dd, *J* = 8.3, 1.0 Hz, 1H), 7.39 – 7.27 (m, 2H), 7.11 (d, *J* = 7.6 Hz, 1H), 7.01 (td, *J* = 7.5, 1.0 Hz, 1H), 6.36 (dd, *J* = 7.6, 1.2 Hz, 1H), 4.75 – 4.54 (m, 2H), 3.07 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.8, 168.6, 158.4, 150.8, 139.9, 134.0,

130.3, 127.2, 126.3, 125.4, 124.7, 124.6, 117.1, 115.3, 114.1, 84.6, 43.5, 42.6, 29.2; HRMS (ESI) calcd. for $C_{19}H_{12}CINNaO_5$ [M + Na]⁺ 392.0319, found: 392.0302.

1',5'-dimethylspiro[furo[3,4-*c*]chromene-1,3'-indoline]-2',3,4(3aH,9bH)-t rione (3b'). White solid; 30.0 mg, 86% yield; > 20:1 dr; m.p. 247.1-248.5 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.69 (s, 1H), 7.36 – 7.26 (m, 2H), 7.08 (d, J = 8.0 Hz, 1H), 6.94 (t, J = 7.7 Hz, 2H), 6.33 (d, J = 7.5 Hz, 1H), 4.65 (s, 2H), 2.76 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.1, 168.8,

158.4, 150.8, 142.0, 133.2, 132.2, 130.0, 127.3, 126.0, 124.4, 123.1, 117.0, 114.4, 109.5, 85.5, 43.1, 42.6, 25.9, 20.7; HRMS (ESI) calcd. for $C_{20}H_{15}NNaO_5$ [M + Na]⁺ 372.0842, found: 372.0856.

5'-methoxy-1'-methylspiro[furo[3,4-*c***]chromene-1,3'-indoline]-2',3,4(3a** *H***,9b***H***)-trione (3c'). White solid; 34.4 mg, 94% yield; > 20:1 dr; m.p. 236.7-238.5 °C; ¹H NMR (300 MHz, DMSO-***d***₆) \delta 7.59 (d,** *J* **= 2.5 Hz, 1H), 7.31 (dd,** *J* **= 11.3, 4.3 Hz, 1H), 7.09 (dd,** *J* **= 8.5, 2.5 Hz, 2H), 7.03 – 6.87 (m, 2H), 6.35 (d,** *J* **= 6.3 Hz, 1H), 4.87 – 4.31 (m, 2H), 3.82 (s, 3H), 2.75 (s,**

3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 171.9, 168.8, 158.5, 156.5, 150.8, 137.5, 130.1, 127.4, 124.4, 124.3, 117.0, 116.7, 114.5, 112.2, 110.4, 85.6, 55.7, 43.1, 42.6, 25.9; HRMS (ESI) calcd. for C₂₀H₁₅NNaO₆ [M + Na]⁺ 388.0792, found: 388.0786.

1',7'-dimethylspiro[furo[3,4-*c***]chromene-1,3'-indoline]-2',3,4(3aH,9bH)-tri one (3d').** White solid; 32.5 mg, 93 % yield; >20:1 dr; m.p. 262.4-264.3 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.71 (d, *J* = 6.6 Hz, 1H), 7.38 – 7.25 (m, 2H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.09 (d, *J* = 7.5 Hz, 1H), 6.97 (t, *J* = 7.5 Hz, 1H), 6.36 – 6.26 (m, 1H), 4.89 – 4.48 (m, 2H), 3.04 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.9, 168.9, 158.6, 150.8, 142.1, 135.6, 130.1, 127.3,

124.5, 123.9, 123.8, 123.3, 121.1, 117.0, 114.5, 84.9, 43.3, 42.8, 28.9, 18.1; HRMS (ESI) calcd. for $C_{20}H_{15}NNaO_5$ [M + Na]⁺ 372.0842, found: 372.0842.

1',5',7'-trimethylspiro[furo[3,4-*c***]chromene-1,3'-indoline]-2',3,4(3aH,9b H)-trione (3e').** White solid; 31.3 mg, 86% yield; > 20:1 dr; m.p. 243.6-245.5 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.53 (s, 1H), 7.32 (t, J =7.2 Hz, 1H), 7.15 – 7.02 (m, 2H), 6.98 (t, J = 7.2 Hz, 1H), 6.35 (d, J = 6.7 Hz, 1H), 4.62 (q, J = 11.0 Hz, 2H), 3.01 (s, 3H), 2.40 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 172.8, 168.8, 158.5, 150.8, 139.6, 135.9,

133.0, 130.1, 127.4, 124.4, 123.8, 123.8, 120.8, 116.9, 114.5, 85.0, 43.3, 42.7, 28.8, 20.4, 17.9; HRMS (ESI) calcd. for $C_{21}H_{17}NNaO_5$ [M+Na]⁺ 386.0999, found: 386.0988.

4. Procedure for the gram-scale experiment.

In a round bottomed flask equipped with a magnetic stirring bar, coumarin-3-formylpyrazole **1a** (0.96 g, 4.0 mmol), 3-hydroxyoxindole **2a** (0.78 g, 4.8 mmol) and DABCO (20 mol %, 0.8 mmol) were placed in 20 mL of DCM at room temperature, and the reaction mixture was stirred at this temperature until the reaction completed (monitored by TLC). Then, the resulting mixture was concentrated and the residue was purified by column chromatography (dichloromethane/ethyl acetate = 50/1) on silica gel to afford the corresponding product **3a** as a white solid; 1.322 g, 99% yield.

5. Synthesis of compound 4.

To a solution of compound **3a** (33.5 mg, 0.1 mmol) in 2.0 mL DCM was added DDQ (33.9 mg, 0.15 mmol). Then the mixture was stirred at room temperature for 4 h. After completion, the reaction mixture was directly purified by flash chromatography on silica gel (dichloromethane/ethyl acetate = 100/1) to afford the corresponding product **4** with 98% yield.

1'-methylspiro[furo[3,4-*c***]chromene-1,3'-indoline]-2',3,4-trione (4).** White solid; 32.6 mg, 98% yield; m.p. 323.9-325.0 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.86 – 7.74 (m, 1H), 7.62 (dd, *J* = 8.7, 6.4 Hz, 2H), 7.51 (d, *J* = 7.4 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.28 (t, *J* = 7.6 Hz, 1H), 7.16 (t, *J* = 7.6 Hz, 1H), 6.84 (dd, *J* = 8.0, 1.5 Hz, 1H), 3.37 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.2,

165.0, 164.4, 155.8, 153.6, 144.1, 136.4, 132.9, 126.1, 126.0, 124.4, 124.2, 122.1, 117.9, 112.9, 112.8, 111.1, 82.6, 27.4; HRMS (ESI) calcd. for $C_{19}H_{11}NNaO_5$ [M + Na]⁺ 356.0529, found: 356.0517.

6. X-ray crystal structure of compound 3a.

Crystal data and structure refinement for 3a (CCDC 1941065).Identification code3aEmpirical formula $C_{19}H_{13}NO_5$ Formula weight335.30Temperature/K293(2)

Crystal system	orthorhombic		
Space group	Pbca		
a/Å	13.9043(5)		
b/Å	10.8551(4)		
c/Å	20.2244(7)		
$\alpha/^{\circ}$	90		
β/°	90		
γ/°	90		
Volume/Å ³	3052.52(19)		
Z	8		
$\rho_{calc}g/cm^3$	1.459		
μ/mm^{-1}	0.894		
F(000)	1392.0		
Crystal size/mm ³	0.19 imes 0.13 imes 0.09		
Radiation	$CuK\alpha (\lambda = 1.54184)$		
2Θ range for data collection/°	8.744 to 134.128		
Index ranges	$-13 \le h \le 16, -7 \le k \le 12, -24 \le l \le 21$		
Reflections collected	7243		
Independent reflections	2722 [$R_{int} = 0.0372$, $R_{sigma} = 0.0412$]		
Data/restraints/parameters	2722/0/228		
Goodness-of-fit on F ²	1.028		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0446, wR_2 = 0.1149$		
Final R indexes [all data]	$R_1 = 0.0543, wR_2 = 0.1253$		
Largest diff. peak/hole / e Å ⁻³	0.17/-0.24		

7. Control experiments (The Scheme 6 and Fig. 3 in manuscript).

Scheme 6 Control experiments

Fig.3 Tracking and monitoring to the reaction of **1a** and **2a**. (A) The reaction of **1a** and **2a** under the standard conditions for 10 mins. (B) The ¹H NMR spectra of compound **8**. (C) The ¹H NMR spectra of compounds **1a** and **2a**.

Synthesis of compound 7.

In an ordinary vial equipped with a magnetic stirring bar, compound **1a** (0.1 mmol), compound **6** (0.12 mmol) and DABCO (20 mol %, 0.02 mmol) were placed in 0.5 mL of DCM at room temperature for 60 h. Then, the mixture was by column chromatography (petroleum ether/ethyl acetate = 5:1) to give compound **7**.

2-ethoxy-2-oxo-1-phenylethyl 2-oxo-2H-chromene-3-carboxylate (**7**): White solid; 27.2 mg, 95%. yield; ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 7.68 – 7.53 (m, 4H), 7.44 – 7.37 (m, 3H), 7.35 – 7.31 (m, 2H), 6.13 (s, 1H), 4.30 – 4.20 (m, 1H), 4.18 – 4.09 (m, 1H), 1.21 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 168.6, 162.1, 156.5, 155.5, 149.7, 135.0, 133.6, 129.9, 129.5, 129.0, 127.8, 125.1, 117.9, 117.2, 117.0, 75.5, 62.1, 14.2. HRMS (ESI) calcd. for $C_{20}H_{16}NaO_6$ [M + Na]+ 375.0839, found: 375.0824.

Synthesis of compound 8.

To a 10 mL round bottomed flask was added 2-oxo-2*H*-chromene-3-carboxylic acids (1.0 mmol), HOBt (1.2. mmol), 3-hydroxy-1-methylindolin-2-one (1.05 mmol) and CH_2Cl_2 (5 mL). The mixture was added DCC (1.2 mmol) at 0 °C and stirred for 15 min. Then, the reaction system was warmed to room temperature and stirred for 24 h. Upon completion, the mixture was filtered through celite, and washed with CH_2Cl_2 and concentrated in vacuo. The desired product was recrystallised from absolute ethanol.

1-methyl-2-oxoindolin-3-yl 2-oxo-2*H***-chromene-3-carboxylate (8).** White solid, 48.7 mg, 15% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.64 (ddd, J = 8.7, 7.3, 1.6 Hz, 1H), 7.57 (dd, J = 7.8, 1.6 Hz, 1H), 7.45 (d, J = 7.4 Hz, 1H), 7.40 – 7.26 (m, 3H), 7.06 (td, J = 7.6, 1.0 Hz,

1H), 6.85 (d, J = 7.8 Hz, 1H), 6.14 (s, 1H), 3.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 161.9, 156.5, 155.5, 150.2, 144.8, 135.1, 130.8, 130.0, 126.2, 125.2, 124.0, 123.5, 117.9, 117.1, 116.7, 108.8, 71.0, 26.7; HRMS (ESI) calcd. for C₁₉H₁₃NNaO₅ [M + Na]⁺ 358.0686, found: 358.0683.

8. ¹H and ¹³C NMR spectra for compounds 1, 3 and 4.

¹H and ¹³C NMR of **1a**

¹H and ¹³C NMR of **1b**

¹H and ¹³C NMR of **1d**

¹H and ¹³C NMR of **1e**

¹H and ¹³C NMR of **1f**

¹H and ¹³C NMR of **1h**

1 H and 13 C NMR of **1m**

S26

¹H and ¹³C NMR of **3c**

S29

S41

¹H and ¹³C NMR of **3**q

¹H and ¹³C NMR of **3t**

¹H and ¹³C NMR of **3w**

¹H and ¹³C NMR of **3b'**

¹H and ¹³C NMR of **3e'**

fi (ppm) 190 180

140 150 120

60 80

rò,

¹H and ¹³C NMR of 7

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	11.053	2233081	94013	50.595	54.408			
2	12.742	2180519	78779	49.405	45.592			
Total		4413600	172792	100.000	100.000			

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	10.274	1505970	73659	30.516	34.102			
2	11.826	3428979	142340	69.484	65.898			
Total		4934948	215999	100.000	100.000			