Effect of n-alkyl substitution on Cu(II)-selective chemosensing of Rhodamine-B derivatives

Santosh Kumar Mishra[†], Suryakanta Dehuri^{†‡} and Bamaprasad Bag*^{†‡}

[†] Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, Odisha, India. Email: *bpbag@immt.res.in*

[‡] Academy of Scientific and Innovative Research (AcSIR), CSIR-IMMT, P.O.: R.R.L.; Bhubaneswar 751 013, Odisha, India.

Electronic Supplementary Information

S2

Fig. S3: MS (ESI) spectrum of compound 1.

Fig. S6: MS (ESI) spectrum of compound 2.

Fig. S8: ¹³C-NMR spectrum of compound **3** (in CDCl₃).

Fig. S9: MS (ESI) spectrum of compound 3.

Fig. S10: ¹H-NMR spectrum of compound **4** (in CDCl₃).

Fig. S12: MS (ESI) spectrum of compound 4.

Fig. S14: ¹³C-NMR spectrum of compound 5 (in CDCl₃).

Fig. S15: MS (ESI) spectrum of compound 5.

Fig. S16: ¹H-NMR spectrum of compound **6** (in CDCl₃).

Fig. S17: ¹³C-NMR spectrum of compound 6 (in CDCl₃).

Fig. S18: MS (ESI) spectrum of compound 6.

Fig. S20: ¹³C-NMR spectrum of compound 7 (in CDCl₃).

Fig. S21: MS (ESI) spectrum of compound 7.

Fig. S23: ¹³C-NMR spectrum of compound 8 (in CDCl₃).

Fig. S24: MS (ESI) spectrum of compound 8.

Fig. S26: ¹³C-NMR spectrum of compound **9** (in CDCl₃).

Fig. S27: MS (ESI) spectrum of compound 9.

I

Fig. S28: ¹H-NMR spectrum of compound 10 (in CDCl₃).

Fig. S30: MS (ESI) spectrum of compound 10.

Fig. S31: MS (ESI) spectrum of 1⊂Cu(II) complex.

Fig. S32: MS (ESI) spectrum of 2⊂Cu(II) complex.

Fig. S33: MS (ESI) spectrum of **5**⊂Cu(II) complex.

Fig. S34: MS (ESI) spectrum of **6**⊂Cu(II) complex.

Fig. S35: MS (ESI) spectrum of 10⊂Cu(II) complex.

Fig. S36: Comparison between IR-spectra of 2 and its Cu(II)-complex.

Fig. S37: Comparison between IR-spectra of 3 and its Cu(II)-complex.

Fig. S38: Comparison between IR-spectra of 6 and its Cu(II)-complex.

Fig. S39: Comparison between IR-spectra of 9 and its Cu(II)-complex.

Absorption and Fluorescence spectral investigation of the probes in presence of various metal ions

Fig. S40: (a) Absorption and (b) steady-state fluorescence spectra of **1** alone and in presence of various metal ions in EtOH-H₂O(0.1 M PBS, 9:1 v/v) medium. Conditions: Absorption (Abs.): [**1**] = 1×10^{-5} M, [M(I/II/III)] = 1×10^{-4} M in all the cases. Fluorescence (Fluo.): [**1**] = 1×10^{-6} M, [M(I/II/III)] = 1×10^{-5} M, λ_{ex} =500nm, RT, ex. and em. b. p. = 5 nm.

Fig. S41: (a) Absorption and (b) steady-state fluorescence spectra of **2** alone and in presence of various metal ions in EtOH-H₂O(0.1 M PBS, 9:1 v/v) medium. Conditions: Absorption (Abs.): [**2**] = 1×10^{-5} M, [M(I/II/III)] = 1×10^{-4} M in all the cases. Fluorescence (Fluo.): [**2**] = 1×10^{-6} M, [M(I/II/III)] = 1×10^{-5} M, λ_{ex} =500nm, RT, ex. and em. b. p. = 5 nm.

Fig. S42: (a) Absorption and (b) steady-state fluorescence spectra of **3** alone and in presence of various metal ions in EtOH-H₂O(0.1 M PBS, 9:1 v/v) medium. Conditions: Absorption (Abs.): [**3**] = 1×10^{-5} M, [M(I/II/III)] = 1×10^{-4} M in all the cases. Fluorescence (Fluo.): [**3**] = 1×10^{-6} M, [M(I/II/III)] = 1×10^{-5} M, λ_{ex} =500nm, RT, ex. and em. b. p. = 5 nm.

Fig. S43: (a) Absorption and (b) steady-state fluorescence spectra of **4** alone and in presence of various metal ions in EtOH-H₂O(0.1 M PBS, 9:1 v/v) medium. Conditions: Absorption (Abs.): [**4**] = 1×10^{-5} M, [M(I/II/III)] = 1×10^{-4} M in all the cases. Fluorescence (Fluo.): [**4**] = 1×10^{-6} M, [M(I/II/III)] = 1×10^{-5} M, λ_{ex} =500nm, RT, ex. and em. b. p. = 5 nm.

Fig. S44: (a) Absorption and (b) steady-state fluorescence spectra of **5** alone and in presence of various metal ions in EtOH-H₂O(0.1 M PBS, 9:1 v/v) medium. Conditions: Absorption (Abs.): [**5**] = 1×10^{-5} M, [M(I/II/III)] = 1×10^{-4} M in all the cases. Fluorescence (Fluo.): [**5**] = 1×10^{-6} M, [M(I/II/III)] = 1×10^{-5} M, λ_{ex} =500nm, RT, ex. and em. b. p. = 5 nm.

Fig. S45: (a) Absorption and (b) steady-state fluorescence spectra of 7 alone and in presence of various metal ions in EtOH-H₂O(0.1 M PBS, 9:1 v/v) medium. Conditions: Absorption (Abs.): [7] = 1×10^{-5} M, [M(I/II/III)] = 5×10^{-5} M in all the cases. Fluorescence (Fluo.): [7] = 1×10^{-6} M, [M(I/II/III)] = 5×10^{-6} M, λ_{ex} =500nm, RT, ex. and em. b. p. = 5 nm.

Fig. S46: (a) Absorption and (b) steady-state fluorescence spectra of **8** alone and in presence of various metal ions in EtOH-H₂O(0.1 M PBS, 9:1 v/v) medium. Conditions: Absorption (Abs.): [**8**] = 1×10^{-5} M, [M(I/II/III)] = 5×10^{-5} M in all the cases. Fluorescence (Fluo.): [**8**] = 1×10^{-6} M, [M(I/II/III)] = 5×10^{-6} M, λ_{ex} =500nm, RT, ex. and em. b. p. = 5 nm.

Fig. S47: (a) Absorption and (b) steady-state fluorescence spectra of **9** alone and in presence of various metal ions in EtOH-H₂O(0.1 M PBS, 9:1 v/v) medium. Conditions: Absorption (Abs.): [**9**] = 1×10^{-5} M, [M(I/II/III)] = 5×10^{-5} M in all the cases. Fluorescence (Fluo.): [**9**] = 1×10^{-6} M, [M(I/II/III)] = 5×10^{-6} M, λ_{ex} =500nm, RT, ex. and em. b. p. = 5 nm

Fig. S48: (a) Absorption and (b) steady-state fluorescence spectra of **10** alone and in presence of various metal ions in EtOH-H₂O(0.1 M PBS, 9:1 v/v) medium. Conditions: Absorption (Abs.): [**10**] = 1×10^{-5} M, [M(I/II/III)] = 5×10^{-5} M in all the cases. Fluorescence (Fluo.): [**10**] = 1×10^{-6} M, [M(I/II/III)] = 5×10^{-6} M, λ_{ex} =500nm, RT, ex. and em. b. p. = 5 nm

Metal ions added: (a) Blank, (b) Cd(II), (c) Co(II), (d) Mn(II), (e) Cu(II), (f) Na(I), (g) K(I), (h) Cr(III) (i) Hg(II), (j) Ni(II), (k) Mg(II), (l) Fe(II), (m) Fe(III), (n) Pb(II) and (o) Zn(II) Solvent: Buffered Ethanol (EtOH, 0.1M PBS, 9:1 v/v)

Fig. S49: Photograph depicting colorimetric sensing of 1 in presence of various metal ions. $[1] = 10 \mu M$.

Fig. S50: The plot of absorption of these probes(L) with Cu(II) in buffered EtOH (EtOH: 0.1M PBS, 9:1 v/v) medium showing 1:1(for 1-5) and 2:1(for 6-10) L-Cu(II) complexation stoichiometry. The absorbances were monitored at 550nm wavelength. $[L] = 1 \times 10^{-5}$ M.

Absorption and Fluorescence titration of the probes with Cu(II) ion and association constants(Ka)

Fig. S51: Absorption (a) and fluorescence(b) titrations of **1** with Cu(II) ions in EtOH-H₂O(0.1M PBS, 9:1 v/v) medium, their corresponding titration profiles (c and d)and intensity versus concentration(ln[Cu(II)] plots(e and f) for determination of association constants. [**1**] = 0.1μ M(abs.), 1μ M(fluo.); λ ex = 500nm, em and ex band pass = 5nm.

Fig. S52: Absorption (a) and fluorescence(b) titrations of **2** with Cu(II) ions in EtOH-H₂O(0.1M PBS, 9:1 v/v) medium, their corresponding titration profiles (c and d)and intensity versus concentration(ln[Cu(II)] plots(e and f) for determination of association constants. [**2**] = 0.1μ M(abs.), 1μ M(fluo.); λ ex = 500nm, em and ex band pass = 5nm.

Fig. S53: Absorption (a) and fluorescence(b) titrations of **3** with Cu(II) ions in EtOH-H₂O(0.1M PBS, 9:1 v/v) medium, their corresponding titration profiles (c and d)and intensity versus concentration(ln[Cu(II)] plots(e and f) for determination of association constants. [**3**] = 0.1μ M(abs.), 1μ M(fluo.); λ ex = 500nm, em and ex band pass = 5nm.

Fig. S54: Absorption (a) and fluorescence(b) titrations of **4** with Cu(II) ions in EtOH-H₂O(0.1M PBS, 9:1 v/v) medium, their corresponding titration profiles (c and d)and intensity versus concentration(ln[Cu(II)] plots(e and f) for determination of association constants. [**4**] = 0.1μ M(abs.), 1μ M(fluo.); λ ex = 500nm, em and ex band pass = 5nm.

Fig. S55: Absorption (a) and fluorescence(b) titrations of **5** with Cu(II) ions in EtOH-H₂O(0.1M PBS, 9:1 v/v) medium, their corresponding titration profiles (c and d)and intensity versus concentration(ln[Cu(II)] plots(e and f) for determination of association constant (Ka). [**5**] = 0.1μ M(abs.), 1μ M(fluo.); λ ex = 500nm, em and ex band pass = 5nm.

Fig. S56: Absorption (a) and fluorescence(b) titrations of **6** with Cu(II) ions in EtOH-H₂O(0.1M PBS, 9:1 v/v) medium, (Insets) their corresponding titration profiles. Linear regression to the double reciprocal plot of absorption(c) and fluorescence(d) intensities($1/(X-X_0)$) as a function of concentration ($1/[Cu(II)]^{0.5}$) of metal ion added, which determined Ka. [**6**] = 0.1µM(abs.), 1µM(fluo.); $\lambda ex = 500$ nm, em and ex band pass = 5nm, RT.

Fig. S57: Absorption (a) and fluorescence (b) titrations of **7** with Cu(II) ions in EtOH-H₂O(0.1M PBS, 9:1 v/v) medium, (Insets) their corresponding titration profiles. Linear regression to the double reciprocal plot of absorption(c) and fluorescence (d) intensities $(1/(X-X_0))$ as a function of concentration $(1/[Cu(II)]^{0.5})$ of metal ion added, which determined Ka. [**7**] = 0.1μ M(abs.), 1.0μ M(fluo.); $\lambda ex = 500$ nm, em and ex band pass = 5nm, RT.

Fig. S58: Absorption (a) and fluorescence (b) titrations of **8** with Cu(II) ions in EtOH-H₂O(0.1M PBS, 9:1 v/v) medium, (Insets) their corresponding titration profiles. Linear regression to the double reciprocal plot of absorption(c) and fluorescence (d) intensities (1/(X-X₀)) as a function of concentration (1/[Cu(II)]^{0.5}) of metal ion added, which determined Ka. [**8**] = 0.1 μ M(abs.), 1 μ M(fluo.); λ ex = 500nm, em and ex band pass = 5nm, RT.

Fig. S59: Absorption (a) and fluorescence (b) titrations of **9** with Cu(II) ions in EtOH-H₂O(0.1M PBS, 9:1 v/v) medium, (Insets) their corresponding titration profiles. Linear regression to the double reciprocal plot of absorption(c) and fluorescence (d) intensities (1/(X-X₀)) as a function of concentration (1/[Cu(II)]^{0.5}) of metal ion added, which determined Ka. [**9**] = 0.1 μ M(abs.), 1 μ M(fluo.); λ ex = 500nm, em and ex band pass = 5nm, RT.

Fig. S60: Absorption (a) and fluorescence (b) titrations of **10** with Cu(II) ions in EtOH-H₂O(0.1M PBS, 9:1 v/v) medium, (Insets) their corresponding titration profiles. Linear regression to the double reciprocal plot of absorption(c) and fluorescence (d) intensities (1/(X-X₀)) as a function of concentration (1/[Cu(II)]^{0.5}) of metal ion added, which determined Ka. [**10**] = 0.1 μ M(abs.), 1 μ M(fluo.); λ ex = 500nm, em and ex band pass = 5nm, RT.

Fig. S61: XPS spectra (wide scan) of Cu(II) complex of 4.

Fig. S62: XPS spectra (wide scan) of Cu(II) complex of 5.

Fig. S63: XPS spectra (wide scan) of Cu(II) complex of 8.

Fig. S64: XPS spectra (wide scan) of Cu(II) complex of 10.

Fig. S65: XPS spectral profile and corresponding component fitting of $Cu(2P_{3/2})$ region in Cu(II)-complexes of (a) **5** and (b) **8**.

Fig. S66: XPS spectral profile and corresponding component fitting of (a) C(1s) and (b) N(1s) region in [4.Cu(II)] (ClO₄)₂-complexes, similar that of (c) C(1s) and (d) N(1s) region in [(10)₂.Cu(II)] (ClO₄)₂