Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Insights into DNA catalysis from structural and functional studies of the 8-17 DNAzyme

Marjorie Cepeda-Plaza,^a Alessio Peracchi.^b

^a Chemical Sciences Department, Universidad Andres Bello, Santiago, Chile

^b Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy

Supplementary Table 1.

Comparison of different numbering systems for the 8-17 residues.

Numbering adopted in most of the functional literature ¹	Numbering adopted in the structural paper in Liu et al. ²	Residues numbering in the PDB file (5XM8)	Notes
G18	G-1	dG12 (chain F)	Subtrate residues flanking the cleavable phosphodiester
G1.1	G+1	dG13 (chain F)	- the clearable phosphoarester
T2.1	T1	dT11 (chain E)	
G3	G2	dG12 (chain E)	Residues involved in the core
C4	СЗ	dC13 (chain E)	- stem (rs)
C5	C4	dC14 (chain E)	
A6	A5	dA15 (chain E)	
G7	G6	dG16 (chain E)	
C8	C7	dC17 (chain E)	
G 9	G8	dG18 (chain E)	Residues involved in the core
G10	G9	dG19 (chain E)	- stem (r <i>s)</i>
C11	C10	dC20 (chain E)	-
T12	T11	dT21 (chain E)	
C13	C12	dC22 (chain E)	
G14	G13	dG23 (chain E)	General acid-base catalyst
A15	A14	dA24 (chain E)	
A15.0	A15	dA25 (chain E)	

Supplementary Table 2. Functional effects arising from substitution of selected functional groups in the 8-17 core.

		k _{rel}				
Original residue	Modification	Mg (3 mM)	Mg (10 or 20 mM)	Mn (30 mM)	Pb (0.5 mM)	Reference
		0.007		0.011		3
		0.12		0.13		3
A6	H N CH3	0.013		0.022		3
	H,Z H,Z H		1.4			4
		0.04	0.4	0.17		3, 5
N N N N N N N H H	N N H N N H H	0.0004		0.0007		3
G7	H ₃ C N N N H H				0.036	2
		0.001		0.002		3

	N H N H N H	0.06		0.03		3
	H N H H ₃ C N O	0.6		0.8		3
H N H	H N H Br	0.25		0.2		3
C13	H N CH3	0.03		0.02		3
		0.3	0.3	0.3		3, 5
N H N N H N H H	N N N N N N N N N N N N N N N N N N N	0.5		0.1		3
	H ₃ C N N N N H H				0.025	2
G14	H N H N N H H	≤0.0005		0.0002		3
	N CH ₃ N N H H				≤0.0001	2

	0.003		0.003		3
--	-------	--	-------	--	---

Legend of Supplementary Table 2.

 k_{rel} is defined as k_{mutant}/k_{wt} , where k_{mutant} and k_{wt} are the first-order rate constants for cleavage measured, respectively, for the mutant and for the "wild-type" 8-17 construct.

Data from different studies were obtained not only in the presence of different metal ions but also at different temperatures, pH, buffers and using different constructs.

Supplementary Figure 1 – Apparent correlation between the activating ability of nine different divalent metal ions and their affinity for trianionic citrate. k_{act} values are taken from)⁶: in that publication the metals' activating effciencies were correlated to the affinities for AMP, which however can coordinate metals through both oxygen and nitrogen groups; these latter are biased towards binding of 'soft' metal ions. Citrate, on the other hand, contains only oxygen liganding groups. Stabilities for the complexes between trianionic citrate and the metals (at 0.1 M ionic strength, 25°C) were taken from.⁷⁻¹⁰ The solid line is the linear best fit of the data, with a slope of 1.19 and r²=0.59.

References

- 1. A. Peracchi, *J Biol Chem*, 2000, **275**, 11693-11697.
- 2. H. Liu, X. Yu, Y. Chen, J. Zhang, B. Wu, L. Zheng, P. Haruehanroengra, R. Wang, S. Li, J. Lin, J. Li, J. Sheng, Z. Huang, J. Ma and J. Gan, *Nature Communications*, 2017, **8**, 2006.
- 3. A. Peracchi, M. Bonaccio and M. Clerici, *Journal of Molecular Biology*, 2005, **352**, 783-794.
- 4. M. H. Raz and M. Hollenstein, *Mol Biosyst*, 2015, **11**, 1454-1461.
- 5. W. Rong, L. Xu, Y. Liu, J. Yu, Y. Zhou, K. Liu and J. He, *Bioorg Med Chem Lett*, 2012, **22**, 4238-4241.
- 6. M. Bonaccio, A. Credali and A. Peracchi, *Nucleic Acids Research*, 2004, **32**, 916-925.
- 7. Y. Matsushima, *Chemical and Pharmaceutical Bulletin*, 1963, **11**, 566-570.
- 8. S. Capone, A. De Robertis, C. De Stefano and S. Sammartano, *Talanta*, 1986, **33**, 763-161.
- 9. C. A.K. and E. Y. Danish, *J Solution Chem*, 2009, **38**, 1449–1462.
- 10. D. Wyrzykowski and L. Chmurzynski, *J Therm Anal Calorim*, 2010, **102**, 61–64.