Electronic Supplementary Information (ESI)

Switching of regioselectivity in base-mediated diastereoselective annulation of 2,3-epoxy tosylates and their *N*-tosylaziridine analogs with 2-mercaptobenzimidazole

Arup Jyoti Das,[#] Hemi Borgohain,[#] Bipul Sarma and Sajal Kumar Das^{*}

(#equal contribution)

Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, India-784028

*E-mail: <u>sajalkd@tezu.ernet.in</u>

Table of Contents

1.	General information	S1
2.	Synthesis of 2,3-epoxy tosylates	S2
3.	Synthesis of 2,3-(N-tosyl)aziridino tosylate 1u and its nosylate analog	
	1v	S6
4.	X-ray crystallography data	S8
5.	NMR spectral analysis of compound 4w	S11
6.	References	S13
7.	Copies of ¹ H and ¹³ C NMR spectra of compounds	S13

1. General information:

All commercially available reagents were used without further purification. All dry reactions were carried out in oven-dried glassware and under nitrogen atmosphere. Solvents used in reactions were distilled over appropriate drying agents prior to use. Thinlayer chromatography (TLC) was performed on pre-coated Merck silica gel plates (60 F254). Compounds were visualized with UV light ($\lambda = 254$ nm). Column chromatography was performed using silica gel (60–120 mesh) procured from Merck using freshly distilled solvents. Melting points were determined with a Buchi-535 apparatus and are not corrected. Perkin Elmer 20 analyzer was utilized for elemental analysis of all compounds. ¹H NMR and ¹³C NMR spectra were run on JEOL 400 MHz and Bruker Avance III 400 MHz spectrometers in CDCl₃ or DMSO- d_6 as solvent. Chemical shifts are expressed in δ ppm using residual solvent as the internal standard. Coupling constants (/) are reported in Hz. The following abbreviations were used to describe the NMR multiplicities: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, ddd = doublet of doublets of doublets, td = triplet of doublets, dt = doublet of triplets, tt = triplet of triplets, dq = doublet of quartets, qd = quartet of doublets, and m = multiplet. All spectra wererecorded at 25 °C.

2. Synthesis of 2,3-epoxy tosylates:

2,3-Epoxy tosylates **1a-d**,¹ **1h-i**,¹ **1l**,² **1p**³ and **1s**³ are known compounds and were prepared following the reported procedures. Scheme ESI-1 shows the preparation of the remaining starting epoxy tosylates **1e-g**, **1j-k** and **1q-r**.

Scheme ESI-1. Preparation of 2,3-epoxy tosylates 1e-g, 1j-k and 1q-r.

General procedure of tosylation: To a stirred solution of appropriate epoxy alcohol **7** (2.0 mmol) in CH_2Cl_2 (20 mL) at 0 °C was added triethylamine (0.5 mL, 3.5 mmol) followed by tosyl chloride (429 mg, 2.25 mmol) and kept in the refrigerator for 12 h. The reaction mixture was diluted with H_2O (20 mL), and extracted with CH_2Cl_2 (2 × 20 mL). The combined organic layers were washed with brine (40 mL) and dried over anhydrous Na_2SO_4 . After filtration, the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (5-10% EtOAc/hexanes) to afford epoxy tosylate **1**.

((2*S**,3*S**)-3-(4-Fluorophenyl)oxiran-2-yl)methyl 4-methylbenzenesulfonate (1e):

The title compound **1e** was prepared from epoxy alcohol **7e** (336 mg, 2.0 mmol) according to the general procedure. Colorless semi-solid. Yield: 85% (548 mg). ¹H NMR (CDCl₃, 400 MHz): δ 7.82 (dt, *J* = 8.2, 2.3 Hz, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.22-7.17 (m, 2H), 7.06-7.01 (m, 2H), 4.32 (dd, *J* = 11.5, 4.1 Hz, 1H), 4.16 (dd, *J* = 11.5, 5.0 Hz, 1H), 3.76 (d, *J* = 1.8 Hz, 1H), 3.23-3.20 (m, 1H), 2.46 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 164.1, 161.6, 145.2, 132.5, 131.3, 129.9, 127.9, 115.4, 69.2, 58.4, 55.9, 21.6. Anal. calcd. for C₁₆H₁₅FO₄S: C, 59.62; H, 4.69; found: C, 59.78; H, 4.75.

((2*S**,3*S**)-3-(3-Bromophenyl)oxiran-2-yl)methyl 4-methylbenzenesulfonate (1f):

The title compound **1f** was prepared from epoxy alcohol **7f** (458 mg, 2.0 mmol) according to the general procedure. Colorless semi-solid. Yield: 82% (628 mg). ¹H NMR (CDCl₃, 400 MHz): δ 7.83 (dt, *J* = 8.2, 1.8 Hz, 2H), 7.46-7.43 (m, 1H), 7.38-7.33 (m, 3H), 7.21 (t, *J* = 7.8 Hz, 1H), 7.16 (dt, *J* = 7.8, 1.4 Hz, 1H), 4.31 (dd, *J* = 11.9, 3.7 Hz, 1H), 4.17 (dd, *J* = 11.5, 5.0 Hz, 1H), 3.73 (d, *J* = 2.3 Hz, 1H), 3.21-3.18 (m, 1H), 2.46 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ

145.3, 137.9, 132.6, 131.7, 130.0, 129.9, 128.6, 128.0, 124.4, 122.7, 68.9, 58.6, 55.7, 21.6. Anal. calcd. for C₁₆H₁₅BrO₄S: C, 50.14; H, 3.94; found: C, 50.31; H, 3.84.

((2*S**,3*S**)-3-(3-Chlorophenyl)oxiran-2-yl)methyl 4-methylbenzenesulfonate (1g):

The title compound **1g** was prepared from epoxy alcohol **7g** (369 mg, 2.0 mmol) according to the general procedure. Colorless semi-solid. Yield: 86% (583 mg). ¹H NMR (CDCl₃, 400 MHz): δ 7.82 (dt, *J* = 8.2, 2.3 Hz, 2H), 7.37 (d, *J* = 0.9 Hz, 1H), 7.35 (s, 1H), 7.30-7.26 (m, 2H), 7.17 (t, *J* = 1.8 Hz, 1H), 7.10 (dt, *J* = 6.4, 1.8 Hz, 1H), 4.31 (dd, *J* = 11.9, 4.1 Hz, 1H), 4.16 (dd, *J* = 11.5, 5.5 Hz, 1H), 3.73 (d, *J* = 2.3 Hz, 1H), 3.20-3.17 (m, 1H), 2.45 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 145.2, 137.7, 134.6, 132.6, 130.0, 129.9, 128.7, 127.9, 125.7, 123.9, 68.9, 58.6, 55.7, 21.7. Anal. calcd. for C₁₆H₁₅ClO₄S: C, 56.72; H, 4.46; found: C, 56.57; H, 4.41.

((2*S**,3*S**)-3-(5-Bromo-2-fluorophenyl)oxiran-2-yl)methyl 4-methylbenzene sulfonate (1j):

The title compound **1***j* was prepared from epoxy alcohol **7***j* (494 mg, 2.0 mmol) according to the general procedure. Colorless semi-solid. Yield: 80% (642 mg). ¹H NMR (CDCl₃, 400 MHz): δ 7.83 (d, *J* = 8.2 Hz, 2H), 7.41-7.36 (m, 3H), 7.24 (dd, *J* = 6.4, 2.7 Hz, 1H), 6.97-6.91 (m, 1H), 4.37 (dd, *J* = 11.4, 3.2 Hz, 1H), 4.13 (dd, *J* = 11.9, 6.0 Hz, 1H), 3.98 (d, *J* = 1.8 Hz, 1H), 3.24-3.21 (m, 1H), 2.46 (s, 3H). Anal. calcd. for C₁₆H₁₄BrFO₄S: C, 47.89; H, 3.52; found: C, 48.11; H, 3.57.

((2*S**,2*S**)-2-Methyl-3-phenyloxiran-2-yl)methyl 4-methylbenzenesulfonate (1k):

The title compound **1k** was prepared from epoxy alcohol **7k** (328 mg, 2.0 mmol) according to the general procedure. Colorless semi-solid. Yield: 84% (535 mg). ¹H NMR (CDCl₃, 400 MHz): δ 7.83 (d, *J* = 8.2 Hz, 2H), 7.38-7.32 (m, 4H), 7.31-7.29 (m, 1H), 7.26-7.24 (m, 2H), 4.12 (q, *J* = 8.9 Hz, 2H), 3.97 (s, 1H), 2.46 (s, 3H), 1.09 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 145.1, 134.4, 132.6, 130.0, 129.9, 128.1, 128.0, 126.4, 73.6, 61.7, 60.5, 21.7, 13.3. Anal. calcd. For C₁₇H₁₈O₄S: C, 64.13; H, 5.70; found: C, 64.01; H, 5.75.

((2*S**,3*S**)-3phenethyloxiran-2-yl)methyl 4-methylbenzenesulfonate (1q):

The title compound **1q** was prepared from epoxy alcohol **7q** (356 mg, 2.0 mmol) according to the general procedure. Colorless semi-solid. Yield: 90% (598 mg). ¹H NMR (CDCl₃, 400 MHz): δ 7.79 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.31-7.27 (m, 2H), 7.22-7.16 (m, 3H), 4.13 (dd, *J* = 11.5, 3.7 Hz, 1H), 3.93 (dd, *J* = 11.0, 5.5 Hz, 1H), 2.92-2.89 (m,1H), 2.84-2.66 (m, 3H), 2.46 (s, 3H), 1.92-1.79 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ 145.0, 140.7, 132.7, 129.9, 128.5, 128.3, 127.9, 126.2, 69.9, 56.0, 54.7, 33.0, 31.9, 21.7. Anal. calcd. for C₁₈H₂₀O₄S: C, 65.04; H, 6.06; found: C, 65.19; H, 6.03.

((2*S**,3*S**)-3phenethyloxiran-2-yl)methyl 4-methylbenzenesulfonate (1r):

The title compound **1r** was prepared from epoxy alcohol **7r** (568 mg, 2.0 mmol) according to the general procedure. Colorless semi-solid. Yield: 87% (763 mg). ¹H NMR (400 MHz, CDCl3): δ 7.84-7.74 (m, 2H), 7.44-7.11 (m, 9H), 6.93-6.87 (m, 2H), 5.07 (s, 2H), 4.15-4.08 (m, 1H), 3.86-3.81 (m, 1H), 2.87-2.74 (m, 3H), 2.44 (s, 3H), 1.93-1.77 (m, 2H). ¹³C NMR (100 MHz, CDCl3): δ 156.3, 144.9, 137.0, 132.5, 129.9, 129.7, 129.2, 128.4, 127.7, 127.4, 127.0,

125.5, 120.6, 111.5, 70.1, 69.6, 56.0, 54.6, 31.3, 26.6, 21.5. Anal. calcd for C₂₅H₂₆O₅S: C, 68.47; H, 5.98, found: C, 68.39; H, 5.92.

3. Synthesis of 2,3-(N-tosyl)aziridino tosylate 1u and its nosylate analog 1v

2,3-(*N*-tosyl)aziridino tosylates $\mathbf{1t}^4$ and $\mathbf{1w}^5$ are known compounds and were prepared following the reported procedures. Scheme ESI-2 shows the preparation of tosylate $\mathbf{1u}$ and nosylate $\mathbf{1v}$.

Scheme ESI-2. Preparation of 2,3-(*N*-tosyl)aziridino tosylate **1u** and its nosylate analog **1v**.

((2R*,3S*)-3-(2-Fluorophenyl)-1-tosylaziridin-2-yl)methanol (9)

To a stirred mixture of chloramine-T trihydrate (1.86 g, 6.6 mmol) and **8** (914 mg, 6.0 mmol) in CH_3CN (15 mL) was added phenyltrimethylammonium tribromide (228 mg, 0.6 mmol) at room temperature. The reaction was stirred vigorously for 15 h and then concentrated under reduced pressure. The resulting residue was dissolved in CH_2Cl_2 and filtered through a short column of silica gel (eluted with 30% EtOAc in hexanes). After removal of the solvent, the resultant crude product was subjected to further purification

involving a silica gel column chromatography (5-20% EtOAc/hexanes) to furnish **9** as a colorless gum. Yield: 65% (1.25 g). ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 7.24 (t, *J* = 7.3 Hz, 1H), 7.04-7.00 (m, 2H), 6.95 (t, *J* = 6.9 Hz, 1H), 4.38-4.31 (m, 1H), 4.24-4.18 (m, 2H), 3.25-3.21 (m, 1H), 3.10-3.06 (dd, *J* = 10.1, 5.0 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 161.4 (d, *J*_{C-F} = 248.2 Hz), 144.5, 136.8, 129.3 (d, *J*_{C-F} = 8.6 Hz), 129.7, 127.3, 124.3 (d, *J*_{C-F} = 3.8 Hz), 121.9 (d, *J*_{C-F} = 13.4 Hz), 115.5, 115.2, 60.7, 53.4, 41.0, 21.6. Anal. calcd. for C₁₆H₁₆FNO₃S: C, 59.80; H, 5.02; N, 4.36; found: C, 59.63; H, 5.15; N, 4.27.

((2R*,3S*)-3-(2-Fluorophenyl)-1-tosylaziridin-2-yl)methyl 4-methylbenzene

sulfonate (1u)

The title compound **1u** was prepared from **9** (643 mg, 2.0 mmol) following the general procedure described in ESI-1. Colorless semi-solid. Yield: 60% (571 mg). ¹H NMR (400 MHz, CDCl₃): δ 7.82-7.78 (m, 4H), 7.35-7.26 (m, 5H), 7.03-7.01 (m, 3H), 4.69 (dd, *J* = 11.5, 6.0 Hz, 1H), 4.59 (dd, *J* = 11.5, 6.9 Hz, 1H), 4.02 (d, *J* = 4.1 Hz, 1H), 3.27-3.23 (m, 1H), 2.44 (s, 3H), 2.42 (s, 3H). Anal. calcd. for C₂₃H₂₂FNO₅S₂: C, 58.09; H, 4.66; N, 2.95; found C, 58.32; H, 4.76; N, 2.83.

((2*R**,3*S**)-3-(2-Fluorophenyl)-1-tosylaziridin-2-yl)methyl 4-nitrobenzene sulfonate (1v)

The title compound **1v** was prepared from **9** (643 mg, 2.0 mmol) and 4nitrobenzenesulphonyl chloride (499 mg, 2.25 mmol) following the general procedure described in ESI-1. Colorless semi-solid. Yield: 54% (547 mg). ¹H NMR (400 MHz, CDCl₃): δ 8.39 (d, *J* = 9.2 Hz, 2H), 8.15 (d, *J* = 8.7 Hz, 2H), 7.77 (d, *J* = 8.2 Hz, 2H), 7.31-7.23 (m, 3H), 7.03-6.98 (m, 2H), 6.95-6.91 (m, 1H), 4.80 (d, *J* = 6.4 Hz, 2H), 4.02 (d, *J* = 3.7 Hz, 1H), 3.27-3.23 (m, 1H), 2.42 (s, 3H). Anal. calcd. for C₂₂H₁₉FN₂O₇S₂: C, 52.17; H, 3.78; N, 5.53; found C, 52.35; H, 3.86; N, 5.44.

4. X-ray crystallography data

X-ray reflections were collected on a Bruker APEX-II, CCD diffractometer using Mo K α (λ = 0.71073 Å) radiation. Data reduction was performed using Bruker SAINT Software.⁶ Intensities for absorption were corrected using SADABS. Structures were solved and refined using SHELXL-2014 with anisotropic displacement parameters for non-H atoms. Hydrogen atom on O was experimentally located in the crystal structure. All C–H atoms were fixed geometrically using the HFIX command in SHELX-TL.⁷ A check of the final CIF file using PLATON did not show any missed symmetry.^{8,9} The crystallographic parameters for all structures are summarized in table ESI-1.

Crystal Data	5p	6р	5j	4t
Formula unit	C ₁₃ H ₁₆ N ₂ OS	C ₁₃ H ₁₆ N ₂ OS	C ₁₆ H ₁₂ BrFN ₂ OS	$C_{23}H_{21}N_3O_2S_2$
Formula wt.	248.34	248.34	379.25	435.55
Crystal system	monoclinic	orthorhombic	monoclinic	monoclinic
T [K]	296	100	296	296
a [Å]	6.3476 (3)	9.914(3)	21.440(8)	12.881(3)
<i>b</i> [Å]	13.4188 (6)	12.666(5)	6.442(2)	19.724(4)
<i>c</i> [Å]	15.2697(7)	10.006(3)	30.004(9)	9.3055(19)
α[°]	90	90	90	90
β[°]	96.662(3)	90	132.808(18)	101.12(3)
γ[°]	90	90	90	90
Volume [Å ³]	1291.85(10)	1256.5(7)	3040.2(19)	2319.7(8)
Space group	<i>P</i> 2 ₁ / <i>n</i>	Pna2 ₁	P2 ₁ /c	<i>P</i> 2 _{1/c}
Ζ	4	4	8	4
$D_{\rm calc} [{ m g}{ m cm}^{-3}]$	1.277	1.313	1.657	1.230
μ/mm ⁻¹	0.236	0.243	2.854	0.252

Table ESI-1: The crystallographic parameters for compound **5j**, **5p**, **6p** and **4t**

Reflns. Collected	32562	36233	70108	72807
Unique reflns.	3304	3217	5363	5621
Observed reflns.	2238	1288	3505	2698
R_1 [I>2 σ (I)], wR_2	0.0490, 0.1400	0.0627, 0.0970	0.0663, 0.1844	0.0974, 0.1191
GOF	0.909	1.055	0.755	1.087
Instrument	Bruker APEX-II	Bruker APEX-II	Bruker APEX-II	Bruker APEX-II
	CCD	CCD	CCD	CCD
X-ray	МоК\а	МоК\а	МоК\а	МоК\а
CCDC Reference No.	1961866	1961865	1961867	1961868

Figure ESI-1. ORTEP diagram of 5j with 50% probability ellipsoid

Figure ESI-2. ORTEP diagram of $\mathbf{5p}$ with 50% probability ellipsoid

Figure ESI-3. ORTEP diagram of **6p** with 50% probability ellipsoid

Figure ESI-4. ORTEP diagram of 4t with 50% probability ellipsoid

6. NMR spectral analysis of compound 4w

The ¹H NMR of 4w shows two dd signals appearing at δ 4.12 and 4.00 assigned to the two diastereotopic 4-H (in structure **4w**, Figure ESI-5) or 2-H (in structure **4w'**, Figure ESI-5) protons. A correlated spectroscopy (COSY) correlation connected these two signals with the multiplet appearing at δ 3.86 which has another correlation connected to the multiplet at δ 3.38 (overlapped with DMSO water peak). A further network of COSY correlations of signal δ 3.38 with the two multiplets appearing at δ 1.75 and 1.36 (14-Hs) confirm that the multiplet at δ 3.86 is appearing for 3-H proton and multiplet at δ 3.38 is appearing for 2-H proton (in **4w**) or 4-H) proton (in **4w'**). The signal at δ 3.86 can also be assigned to 3-H proton from the COSY correlations with the N-H appearing at δ 8.39.

Figure ESI-5.

Based on the correlations observed in HSQC spectrum, the signals arising at δ 49.4, 45.0, 44.1 can be assigned to C-3, C-2 (or C-4 in **4w'**), and C-4 (or C-2 in **4w'**) of structure **4w**, respectively. In the aromatic region C-6 being the highly deshielded carbon atom can be assigned to signal appearing at δ 145.4, which does not show any correlation in HSQC spectrum but shows very good correlations with 2-H and 4-H protons in HMBC. Similarly, signal at δ 135.6 appears due to C-13 which gives good correlation with the two 4-Hs. However, had the structure been **4w'** instead of **4w**, only the multiplet of single 4-H would have shown correlation with C-13.

Similarly, in the NOESY spectrum, two doublet of doublets appearing at δ 4.12 and 4.00 shows very good correlations with the aromatic H appearing as doublet at δ 7.21 which can be assigned to 12-H from COSY spectrum. This NOE relation also further confirms the formation of product **4w**.

7. References

- 1. H. Borgohain, R. Devi, D. Dheer, B. J. Borah, R. Shankar and S. K. Das, *Eur. J. Org. Chem.*, 2017, 6671–6679.
- D. Gogoi, R. Devi, P. Pahari, B. Sarma and S. K. Das, *Beilstein J. Org. Chem.* 2016, **12**, 2816–2822.
- 3. Q. Liu, A. P. Marchington, N. Boden and C. M. Rayner, J. Chem. Soc., Perkin Trans. 1, 1997, 511–526.
- 4. R. Devi, J. Das, B. Sarma and S. K. Das, *Org. Biomol. Chem.* 2018, **16**, 5846-5858.
- 5. M. Karikomi, M. D'hooghe, G. Verniest and N. De Kimpe, Org. Biomol. Chem., 2008, 6, 902–1904.
- 6. SAINT Plus, Bruker AXS Inc.: Madison, WI, 2008; BRUKER AXS (v 6.14).
- 7. Bruker AXS Inc.: Madison, WI, 2008.
- 8. PLATON, A Multipurpose Crystallographic Tool; A. L. Spek, Utrecht University: Utrecht, Netherland, 2002.
- 9. Spek, A. L. J. Appl. Crystallogr., **2003**, 36, 7–13.

8. Copies of ¹H and ¹³C NMR

¹H NMR spectrum (400 MHz, CDCl₃) of 1e

¹³C NMR spectrum (100 MHz, CDCl₃) of 1e

¹H NMR spectrum (400 MHz, CDCl₃) of 1f

 ^{13}C NMR spectrum (100 MHz, CDCl_3) of 1f

 ^{13}C NMR spectrum (100 MHz, CDCl_3) of 1g

¹H NMR spectrum (400 MHz, CDCl₃) of 1k

 $^{13}\mathrm{C}\,\mathrm{NMR}\,\mathrm{spectrum}$ (100 MHz, CDCl_3) of 1k

¹³C NMR spectrum (100 MHz, CDCl₃) of 1q

¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of 4a

¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of 5b

¹H NMR spectrum (400 MHz, DMSO-*d*₆) of 5c

¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of 5c

¹H NMR spectrum (400 MHz, DMSO-*d*₆) of 5d

¹³C NMR spectrum (100 MHz, DMSO- d_6) of 5d

¹H NMR spectrum (400 MHz, DMSO- d_6) of 5e

¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of 5e

¹H NMR spectrum (400 MHz, DMSO-*d*₆) of 5f

¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of 5f

¹H NMR spectrum (400 MHz, DMSO-*d*₆) of 5g

 $^{13}\mathrm{C}\,\mathrm{NMR}\,\mathrm{spectrum}$ (100 MHz, DMSO- d_6) of 5g

¹H NMR spectrum (400 MHz, DMSO-*d*₆) of 5h

 $^{13}\mathrm{C}\,\mathrm{NMR}\,\mathrm{spectrum}$ (100 MHz, DMSO- d_6) of 5h

¹H NMR spectrum (400 MHz, DMSO-*d*₆) of 5i

 $^{13}\mathrm{C}\,\mathrm{NMR}\,\mathrm{spectrum}$ (100 MHz, DMSO- d_6) of 5i

¹H NMR spectrum (400 MHz, DMSO-*d*₆) of 5j

¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of 5j

¹³C NMR spectrum (100 MHz, DMSO- d_6) of 5k

¹H NMR spectrum (400 MHz, DMSO-*d*₆) of 51

¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of 51

¹H NMR spectrum (400 MHz, DMSO-*d*₆) of 5m

 13 C NMR spectrum (100 MHz, DMSO- d_6) of 5m

S50

¹³C NMR spectrum (100 MHz, CDCl₃) of 5n

¹³C NMR spectrum (100 MHz, DMSO- d_6) of 50

¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of 5p

 $^{13}\mathrm{C}\,\mathrm{NMR}\,\mathrm{spectrum}$ (100 MHz, DMSO- d_6) of 6p

¹H NMR spectrum (400 MHz, DMSO- d_6) of 5q

 $^{13}\mathrm{C}\,\mathrm{NMR}\,\mathrm{spectrum}$ (100 MHz, DMSO- d_6) of 5q

¹³C NMR spectrum (100 MHz, CDCl₃) of 5r

¹H NMR spectrum (400 MHz, DMSO- d_6) of 5s

¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of 5s

¹H NMR spectrum (400 MHz, DMSO-*d*₆) of 6s

¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of 6s

¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of 4t

 $^{13}\mathrm{C}\,\mathrm{NMR}\,\mathrm{spectrum}$ (100 MHz, DMSO- d_6) of 4w

¹H – ¹H COSY spectrum (400 MHz, DMSO- d_6) of 4w

HSQC spectrum (400 MHz, DMSO-d₆) of 4w

Partial (expanded) HSQC spectrum (400 MHz, DMSO-*d*₆) of 4w

Partial (expanded) HSQC spectrum (400 MHz, DMSO-*d*₆) of 4w

HMBC spectrum (400 MHz, DMSO-*d*₆) of 4w

Partial (expanded) HMBC spectrum (400 MHz, DMSO-*d*₆) of 4w

Partial (expanded) HMBC spectrum (400 MHz, DMSO-d₆) of 4w

NOESY spectrum (400 MHz, DMSO-*d*₆) of 4w