Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Substituent-controlled Chemoselective Synthesis of Multi-substituted Pyridones via One-pot Three-component Cascade Reaction

Shitao Liu,^{a, ‡} Jisen Li,^{a, ‡} Junjie Lin,^a Fujun Liu,^a Teng Liu^{b,*} and Chao Huang^{a,*}

^a National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, P. R. China
^b Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, Qujing Normal University, Qujing, 655011, P. R. China.

[‡]The two authors contributed equally to this paper.

* E-mail: huangchao@ynu.edu.cn

Table of Contents

Characterization data of compounds 4a-4ff, 6a-6j and intermediate I,	S2-S21
II, III, IV, 7	
X-ray crystallography structures of compound 4a	S21-S23
¹ H NMR and ¹³ C NMR spectra of 2-Pyridones 4a-4ff	S24-S54
¹ H NMR and ¹³ C NMR spectra of 4-Pyridones 6a-6j	S55-S66
¹ H NMR and ¹³ C NMR spectra of intermediate	S67-S71

EXPERIMENTAL SECTION

General Methods

All reagents were obtained from commercial suppliers and used without further purification. All compounds were characterized by full spectroscopic data. The ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III 400MHz (¹H NMR: 400 MHz, ¹³C NMR: 100 MHz) using CDCl₃ and DMSO- d_6 as solvent with TMS as internal standard. Chemical shifts are given in ppm (δ) referenced to CDCl₃ with 7.26 for ¹H and 76.01 for ¹³C, DMSO- d_6 with 2.50 for ¹H and 39.46 for ¹³C. Signals are abbreviated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet, and coupling constants are expressed in hertz. The melting points were determined on Tech X-5 melting point apparatus and are uncorrected. IR spectra (KBr pellet) were detected by a Thermo Nicolet S10 FT-IR instrument. HRMS were performed on an Agilent LC/MSD TOF instrument.

General experimental procedure for the synthesis of Pyridone.

Cascade raction process : anilines 1 (1.2 mmol), alkyne diester 2a (1.2 mmol), diethyl ethoxymethylenemalonate 3a (1.0 mmol) and Cs_2CO_3 (0.5 mmol) were placed into a 5.0 mL reaction tube, closed the tube and stirred for 5 h at room temperature to make the raw materials mix well. The reaction was monitored by thin-layer chromatography (TLC) until all the substrate disappeared. The mixture was then washed with water and extracted with ethyl acetate. The mixture was purified by flash

column chromatography on silica gel (Eluent: Ethyl acetate/Petroleum ether = 1:4 (v/v)) to give the final product pyridone derivatives. All the other compounds were synthesized according to this typical procedure. The products were further identified by FTIR, NMR, HRMS and X-ray, being in good agreement with the assigned structures.

Characterization Data of Compounds 4a-4ff, 6a-6j and intermediate I, II, III, IV and 7

6-Oxo-1-phenyl-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (4a). Pale yellow solid; yield 85%; mp: 92-94 °C; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 8.49 (s, 1H, CH), 7.52 (q, J = 3.2 Hz, 3H, Ph-H), 7.36-7.34 (m, 2H, Ph-H), 4.27 (q, J = 7.2 Hz, 4H, OCH₂), 3.92 (q, J = 7.2 Hz, 2H, OCH₂), 1.28-1.23 (m, 6H, CH₃), 0.85 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.1, 162.2, 160.1, 157.3, 148.9, 143.1, 136.1, 129.8, 128.9, 128.8, 120.6, 104.5, 62.3, 61.6, 61.0, 14.0, 13.8, 13.0; IR (KBr) (v_{max} , cm⁻¹): 3059, 2988, 1743, 1707, 1604, 1400, 1232, 757, 699; HRMS (ESI-TOF⁺) m/z: calcd for C₂₀H₂₂NO₇⁺ [(M + H)⁺], 388.1391; found, 388.1400.

6-Oxo-1-p-tolyl-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (4b). Pale yellow solid; yield 82%; mp: 100-102 °C; ¹H NMR (DMSO-d₆, 400 MHz, TMS) δ
8.47 (s, 1H, CH), 7.32 (d, J = 8.4 Hz, 2H, Ph-H), 7.22 (d, J = 8.4 Hz, 2H, Ph-H), 4.26 (q, J = 7.2 Hz, 4H, OCH₂), 3.93 (q, J = 7.2 Hz, 2H, OCH₂), 2.36 (s, 3H, CH₃), 1.28-1.23 (m, 6H, CH₃), 0.88 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO-d₆, 100 MHz) δ

163.2, 162.2, 160.1, 157.4, 149.1, 143.0, 139.5, 133.5, 129.3, 128.4, 120.5, 104.4,
62.3, 61.5, 61.0, 20.7, 14.0, 13.8, 13.0; IR (KBr) (v_{max}, cm⁻¹): 2978, 2922, 1741, 1686,
1605, 1403, 802; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₁H₂₄NO₇⁺ [(M + H)⁺], 402.1547;
found, 402.1570.

6-(4-Methoxy-phenyl)-5-oxo-cyclohexa-1,3-diene-1,2,4-tricarboxylic acid triethyl ester (4c). Pale yellow solid; yield 80%; mp: 83-85 °C; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 8.47 (s, 1H, CH), 7.26 (q, J = 4.4 Hz, 2H, Ph-H), 7.04 (q, J = 4.8 Hz, 2H, Ph-H), 4.26 (q, J = 7.2 Hz, 4H, OCH₂), 3.95 (q, J = 7.2 Hz, 2H, OCH₂), 3.80 (s, 3H, OCH₃), 1.28-1.23 (m, 6H, CH₃), 0.90 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.2, 162.2, 160.1, 159.9, 157.5, 149.4, 143.0, 130.0, 128.5, 120.4, 114.0, 104.3, 62.3, 61.5, 61.0, 55.4, 14.0, 13.9, 13.1; IR (KBr) (v_{max} , cm⁻¹): 2977, 2929, 1743, 1705, 1607, 1463, 1241, 865; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₁H₂₄NO₈⁺ [(M + H)⁺], 418.1496; found, 418.1522.

6-Oxo-1-o-tolyl-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (4d). Yellow oil; yield 83%; ¹H NMR (DMSO-*d*₆, 400 MHz, TMS) δ 8.53 (s, 1H, CH), 7.45-7.38 (m, 2H, Ph-H), 7.35-7.31 (m, 1H, Ph-H), 7.26 (t, J = 7.2 Hz 1H, Ph-H), 4.29-4.23 (m, 4H, OCH₂), 3.94-3.86 (m, 2H, OCH₂), 2.04 (s, 3H, CH₃), 1.27 (q, J =6.4 Hz, 6H, CH₃), 0.83 (t, J = 6.8 Hz, 3H, CH₃); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 163.1, 162.1, 160.0, 156.7, 148.8, 143.4, 136.2, 135.3, 130.5, 130.1, 128.8, 126.6, 120.5, 104.8, 62.4, 61.6, 61.1, 16.9, 14.0, 13.8, 12.9; IR (KBr) (v_{max} , cm⁻¹): 2983, 2933, 1747, 1719, 1605, 1403, 1242, 762; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₁H₂₄NO₇⁺ [(M + H)⁺], 402.1547; found, 402.1569. 6-(2-Methoxy-phenyl)-5-oxo-cyclohexa-1,3-diene-1,2,4-tricarboxylic acid triethyl ester (4e). Yellow oil; yield 80%; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 8.50 (s, 1H, CH), 7.51 (q, J = 7.2 Hz, 1H, Ph-H), 7.28 (q, J = 6.0 Hz, 1H, Ph-H), 7.22 (d, J =8.0 Hz, 1H, Ph-H), 7.07 (q, J = 7.2 Hz, 1H, Ph-H), 4.29-4.23 (m, 4H, OCH₂), 3.93-3.88 (m, 2H, OCH₂), 3.75 (s, 3H, OCH₃), 1.27 (q, J = 7.6 Hz, 6H, CH₃), 0.86 (t, J =7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.1, 162.1, 159.9, 156.6, 154.7, 149.6, 143.3, 131.7, 129.8, 124.5, 120.3, 120.2, 112.2, 104.6, 62.2, 61.6, 61.0, 55.8, 14.0, 13.8, 13.0; IR (KBr) (*v*_{max}, cm⁻¹): 2981, 2927, 1722, 1603, 1404, 1243, 757; HRMS (ESI-TOF⁺) m/z: calcd for $C_{21}H_{24}NO_8^+$ [(M + H)⁺], 418.1496; found, 418.1520.

1-(2-Tert-Butyl-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (4f). Yellow oil; yield 75%; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 8.50 (s, 1H, CH), 7.68 (q, J = 7.2 Hz, 1H, Ph-H), 7.48-7.43 (m, 1H, Ph-H), 7.30-7.26 (m, 1H, Ph-H), 7.07 (q, J = 6.4 Hz, 1H, Ph-H), 4.29-4.23 (m, 4H, OCH₂), 3.97-3.91 (m, 2H, OCH₂), 1.29-1.23 (m, 6H, CH₃), 1.20 (s, 9H, CH₃), 0.84 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.0, 162.1, 160.2, 158.4, 149.2, 146.6, 143.2, 132.6, 130.8, 130.2, 129.9, 126.3, 120.4, 104.7, 62.5, 61.7, 61.1, 36.4, 31.0, 14.0, 13.8, 12.9; IR (KBr) $(v_{\text{max}}, \text{ cm}^{-1})$: 2980, 1745, 1722, 1604, 1402, 1241, 764; HRMS (ESI-TOF⁺) m/z: calcd for C₂₄H₃₀NO₇⁺ [(M + H)⁺], 444.2017; found, 444.2040.

6-Oxo-1-m-tolyl-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (4g). Pale yellow solid; yield 80%; mp: 102-104 °C; ¹H NMR (DMSO-*d*₆, 400 MHz, TMS) δ 8.48 (s, 1H, CH), 7.39 (t, J = 7.6 Hz, 1H, Ph-H), 7.34 (d, J = 8.0 Hz, 1H, Ph-H), S4

7.14 (t, J = 7.6 Hz, 2H, Ph-H), 4.26 (q, J = 7.2 Hz, 4H, OCH₂), 3.97-3.89 (m, 2H, OCH₂), 2.33 (s, 3H, CH₃), 1.28-1.23 (m, 6H, CH₃), 0.85 (t, J = 6.8 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.2, 162.2, 160.1, 157.3, 148.9, 143.0, 138.5, 135.9, 130.3, 129.0, 128.7, 125.7, 120.5, 104.4, 62.3, 61.6, 61.0, 20.5, 14.0, 13.8, 13.0; IR (KBr) (v_{max} , cm⁻¹): 2986, 2925, 1744, 1708, 1605, 1404, 1233, 860, 784; HRMS (ESI-TOF⁺) m/z: calcd for C₂₁H₂₄NO₇⁺ [(M + H)⁺], 402.1547; found, 402.1570.

1-(3-Methoxy-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (**4h**). Yellow oil; yield 79%; ¹H NMR (DMSO-*d*₆, 400 MHz, TMS) δ 8.48 (s, 1H, CH), 7.41 (t, *J* = 8.0 Hz, 1H, Ph-H), 7.10-7.07 (m, 1H, Ph-H), 6.99 (t, *J* = 2.4 Hz, 1H, Ph-H), 6.91-6.89 (m, 1H, Ph-H), 4.26 (q, *J* = 7.2 Hz, 4H, OCH₂), 3.98-3.92 (m, 2H, OCH₂), 3.75 (s, 3H, OCH₃), 1.26 (q, *J* = 5.6 Hz, 6H, CH₃), 0.88 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 163.1, 162.2, 160.1, 159.4, 157.2, 148.9, 143.0, 137.0, 129.7, 120.8, 120.5, 115.5, 114.5, 104.5, 62.3, 61.6, 61.0, 55.4, 14.0, 13.8, 13.0; IR (KBr) (ν_{max} , cm⁻¹): 2983, 1746, 1718, 1605, 1403, 1244, 864, 783; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₁H₂₄NO₈⁺ [(M + H)⁺], 418.1496; found, 418.1529.

1-(2,3-Dimethyl-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (**4i**). Yellow oil; yield 75%; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 8.53 (s, 1H, CH), 7.32 (d, J = 7.6 Hz, 1H, Ph-H), 7.21 (t, J = 7.6 Hz, 1H, Ph-H), 7.08 (d, J = 7.6 Hz, 1H, Ph-H), 4.29-4.23 (m, 4H, OCH₂), 3.96-3.85 (m, 2H, OCH₂), 2.29 (s, 3H, CH₃), 1.90 (s, 3H, CH₃), 1.27 (q, J = 6.8 Hz, 6H, CH₃), 0.81 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.1, 162.1, 159.9, 156.8, 148.9, 143.4, 137.6, 135.2, 134.7, 131.1, 126.3, 125.9, 120.3, 104.7, 62.2, 61.6, 61.0, 19.6, 14.0, 13.9, 13.8 12.9; IR (KBr) (v_{max} , cm⁻¹): 2983, 1748, 1719, 1604, 1403, 1238, 783, 720, 672; HRMS (ESI-TOF⁺) m/z: calcd for C₂₂H₂₆NO₇⁺ [(M + H)⁺], 416.1704; found, 416.1735.

I-(2,4-Dimethyl-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (**4j**). Yellow oil; yield 73%; ¹H NMR (DMSO-*d*₆, 400 MHz, TMS) δ 8.52 (s, 1H, CH), 7.19 (s, 1H, Ph-H), 7.14-7.09 (m, 2H, Ph-H), 4.28-4.23 (m, 4H, OCH₂), 3.95-3.87 (m, 2H, OCH₂), 2.32 (s, 3H, CH₃), 1.99 (s, 3H, CH₃), 1.27 (q, *J* = 6.4 Hz, 6H, CH₃), 0.87 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 163.1, 162.1, 160.0, 156.7, 149.0, 143.3, 139.7, 135.7, 132.8, 131.0, 128.5, 127.0, 120.4, 104.7, 62.3, 61.6, 61.0, 20.6, 16.8, 14.0, 13.8, 12.9; IR (KBr) (ν_{max} , cm⁻¹): 2983, 1748, 1719, 1610, 1403, 1242, 863, 802; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₂H₂₆NO₇⁺ [(M + H)⁺], 416.1704; found, 416.1738.

I-(2,5-Dimethyl-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (**4**k). Yellow oil; yield 76%; ¹H NMR (DMSO-*d*₆, 400 MHz, TMS) δ 8.52 (s, 1H, CH), 7.27-7.22 (m, 2H, Ph-H), 7.06 (s, 1H, Ph-H), 4.27 (q, *J* = 7.2 Hz, 4H, OCH₂), 3.95-3.90 (m, 2H, OCH₂), 2.28 (s, 3H, CH₃), 1.98 (s, 3H, CH₃), 1.27 (q, *J* = 6.4 Hz, 6H, CH₃), 0.84 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 163.1, 162.1, 160.0, 156.6, 148.8, 143.3, 136.0, 135.1, 132.9, 130.6, 130.3, 129.0, 120.4, 104.7, 62.3, 61.6, 61.0, 20.1, 16.5, 14.0, 13.8, 12.9; IR (KBr) (*v*_{max}, cm⁻¹): 2982, 2927, 1748, 1720, 1604, 1403, 1240, 862; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₂H₂₆NO₇⁺ [(M + H)⁺], 416.1704; found, 416.1752. *I-(2,6-Dimethyl-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester* (**4**I). Yellow oil; yield 65%; ¹H NMR (CDCl₃, 400 MHz, TMS) δ 8.80 (s, 1H, CH), 7.23 (d, *J* = 7.6 Hz, 1H, Ph-H), 7.12 (d, *J* = 7.6 Hz, 2H, Ph-H), 4.41-4.30 (m, 4H, OCH₂), 3.99 (q, *J* = 7.2 Hz, 2H, OCH₂), 2.11 (s, 6H, CH₃), 1.39-1.33 (m, 6H, CH₃), 0.95 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 163.0, 161.7, 159.5, 156.2, 148.6, 143.8, 135.4, 134.0, 128.9, 127.4, 119.8, 105.0, 61.7, 60.8, 60.7, 16.8, 13.2, 13.1, 12.2; IR (KBr) (ν_{max} , cm⁻¹): 2982, 2931, 1739, 1611, 1471, 1272, 777; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₂H₂₆NO₇⁺ [(M + H)⁺], 416.1704; found, 416.1734.

I-(3,5-Dimethyl-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (**4m**). Pale yellow solid; yield 76%; mp: 128-130 °C; ¹H NMR (DMSO-*d*₆, 400 MHz, TMS) δ 8.47 (s, 1H, CH), 7.15 (s, 1H, Ph-H), 6.94 (s, 2H, Ph-H), 4.26 (q, *J* = 7.2 Hz, 4H, OCH₂), 3.96 (q, *J* = 7.2 Hz, 2H, OCH₂), 2.29 (s, 6H, CH₃), 1.28-1.23 (m, 6H, CH₃), 0.87 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 163.2, 162.2, 160.1, 157.2, 148.9, 143.0, 138.3, 135.8, 130.9, 126.1, 120.5, 104.4, 62.2, 61.6, 61.0, 20.5, 14.0, 13.8, 13.0; IR (KBr) (*v*_{max}, cm⁻¹): 2987, 2920, 1745, 1709, 1610, 1403, 1227, 862; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₂H₂₆NO₇⁺ [(M + H)⁺], 416.1704; found, 416.1734.

1-(3,4-Dimethyl-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (**4n**). Pale yellow solid; yield 73%; mp: 114-115 °C; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 8.47 (s, 1H, CH), 7.27 (d, J = 8.0 Hz, 1H, Ph-H), 7.10 (d, J = 2.0 Hz, 1H, Ph-H), 7.03 (q, J = 5.6 Hz, 1H, Ph-H), 4.26 (q, J = 6.8 Hz, 4H, OCH₂), 3.98-3.89 (m, 2H, OCH₂), 2.26 (s, 3H, CH₃), 2.23 (s, 3H, CH₃), 1.28-1.23 (m, 6H, CH₃), 0.88 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.2, 162.2, 160.1, 157.3, 149.1, 142.9, 138.1, 137.1, 133.6, 129.7, 129.2, 125.8, 120.5, 104.4, 62.2, 61.5, 61.0, 19.1, 19.0, 14.0, 13.8, 13.0; IR (KBr) (v_{max} , cm⁻¹): 2985, 1742, 1710, 1607, 1404, 1235, 801, 716; HRMS (ESI-TOF⁺) m/z: calcd for C₂₂H₂₆NO₇⁺ [(M + H)⁺], 416.1704; found, 416.1742.

6-Oxo-1-(2,4,6-trimethyl-phenyl)-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (40). White solid; yield 66%; mp: 131-132 °C; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 8.56 (s, 1H, CH), 7.02 (s, 2H, Ph-H), 4.29-4.23 (m, 4H, OCH₂), 3.93 (q, J = 6.8 Hz, 2H, OCH₂), 2.28 (s, 3H, CH₃), 1.96 (s, 6H, CH₃), 1.27 (q, J = 7.2 Hz, 6H, CH₃), 0.86 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.0, 162.0, 159.8, 156.3, 148.9, 143.6, 139.4, 135.5, 132.2, 128.8, 120.5, 105.2, 62.4, 61.7, 61.1, 20.5, 17.1, 14.0, 13.8, 12.9; IR (KBr) (ν_{max} , cm⁻¹): 2984, 2932, 1747, 1720, 1606, 1404, 1218, 868; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₃H₂₈NO₇⁺ [(M + H)⁺], 430.1860; found, 430.1879.

6-Oxo-1-(3,4,5-trimethyl-phenyl)-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (4p). Pale yellow solid; yield 75%; mp: 147-148 °C; ¹H NMR (DMSO d_6 , 400 MHz, TMS) δ 8.46 (s, 1H, CH), 6.94 (s, 2H, Ph-H), 4.26 (q, J = 6.8 Hz, 4H, OCH₂), 3.96 (q, J = 7.2 Hz, 2H, OCH₂), 2.25 (s, 6H, CH₃), 2.16 (s, 3H, CH₃), 1.28-1.23 (m, 6H, CH₃), 0.88 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.2, 162.2, 160.1, 157.3, 149.1, 142.9, 136.8, 136.6, 132.8, 127.0, 120.5, 104.3, 62.2, 61.5, 61.0, 19.9, 14.9, 14.0, 13.8, 13.0; IR (KBr) (v_{max} , cm⁻¹): 2986, 2910, 1743, ⁵⁸ 1709, 1605, 1405, 1231, 781; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₃H₂₈NO₇⁺ [(M + H)⁺], 430.1860; found, 430.1871.

1-Naphthalen-1-yl-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester

(4q). Drak green oil; yield 70%; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 8.64 (s, 1H, CH), 8.13 (d, J = 8.0 Hz, 1H, Ph-H), 8.06 (t, J = 7.2 Hz, 1H, Ph-H), 7.65-7.55 (m, 4H, Ph-H), 7.52 (d, J = 8.0 Hz, 1H, Ph-H), 4.30-4.25 (m, 4H, OCH₂), 3.72-3.66 (m, 2H, OCH₂), 1.27 (q, J = 6.8 Hz, 6H, CH₃), 0.41 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.1, 162.2, 159.9, 157.3, 149.5, 143.7, 133.4, 132.8, 130.4, 129.5, 128.1, 127.4, 127.4, 126.7, 125.1, 122.5, 120.5, 105.1, 62.0, 61.6, 61.0, 14.0, 13.8, 12.5; IR (KBr) (v_{max} , cm⁻¹): 3063, 2980, 1748, 1706, 1601, 1405, 1243, 796, 773; HRMS (ESI-TOF⁺) m/z: calcd for C₂₄H₂₄NO₇⁺ [(M + H)⁺], 438.1547; found, 438.1592.

1-Naphthalen-2-yl-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester

(**4r**). Drak green oil; yield 72%; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 8.54 (s, 1H, CH), 8.04-7.93 (m, 4H, Ph-H), 7.65-7.57 (m, 2H, Ph-H), 7.44 (q, J = 6.4 Hz, 1H, Ph-H), 4.28-4.23 (m, 4H, OCH₂), 3.85-3.77 (m, 2H, OCH₂), 1.25 (q, J = 6.8 Hz, 6H, CH₃), 0.66 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.2, 162.2, 160.1, 157.6, 149.0, 143.2, 133.7, 132.8, 132.3, 128.7, 128.0, 127.6, 127.6, 127.0, 126.0, 120.6, 104.8, 62.3, 61.7, 61.1, 13.9, 13.8, 12.8; IR (KBr) (v_{max} , cm⁻¹): 2923, 2853, 1738, 1721, 1633, 1403, 1247, 605; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₄H₂₄NO₇⁺ [(M + H)⁺], 438.1547; found, 438.1582.

I-(4-Fluoro-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (4s). Pale yellow solid; yield 79%; mp: 113-114 °C; ¹H NMR (DMSO-*d*₆, 400 MHz, TMS) δ 8.48 (s, 1H, CH), 7.47-7.43 (m, 2H, Ph-H), 7.40 (q, *J* = 6.0 Hz, 2H, Ph-H), 4.29-4.23 (m, 4H, OCH₂), 3.96 (q, *J* = 7.2 Hz, 2H, OCH₂), 1.28-1.23 (m, 6H, CH₃), 0.90 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 163.1, 162.2, 160.1, 157.4, 148.9, 143.1, 132.3, 132.2, 131.3, 131.2, 120.6, 116.0, 115.8, 104.6, 62.5, 61.6, 61.0, 14.0, 13.9, 13.0; IR (KBr) (*v*_{max}, cm⁻¹): 3076, 2991, 1740, 1604, 1403, 1240, 850; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₀H₂₁FNO₇⁺ [(M + H)⁺], 406.1297; found, 406.1366.

I-(4-Chloro-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (4t). White solid; yield 78%; mp: 106-108 °C; ¹H NMR (DMSO-*d*₆, 400 MHz, TMS) δ 8.48 (s, 1H, CH), 7.63 (d, *J* = 8.8 Hz, 2H, Ph-H), 7.44 (d, *J* = 8.8 Hz, 2H, Ph-H), 4.29-4.23 (m, 4H, OCH₂), 3.97 (q, *J* = 7.2 Hz, 2H, OCH₂), 1.28-1.23 (m, 6H, CH₃), 0.90 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 163.1, 162.1, 160.1, 157.2, 148.7, 143.1, 135.0, 134.5, 130.8, 129.1, 120.6, 104.7, 62.5, 61.6, 61.0, 14.0, 13.9, 13.0; IR (KBr) (*v*_{max}, cm⁻¹): 3071, 2986, 1740, 1715, 1608, 1405, 1238, 857; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₀H₂₁ClNO₇⁺ [(M + H)⁺], 422.1001; found, 422.1026.

1-(4-Bromo-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (4u). Pale yellow solid; yield 80%; mp: 110-111 °C; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 8.48 (s, 1H, CH), 7.76 (d, J = 8.8 Hz, 2H, Ph-H), 7.37 (d, J = 8.8 Hz, 2H, Ph-H), 4.29-4.23 (m, 4H, OCH₂), 3.98 (q, J = 7.2 Hz, 2H, OCH₂), 1.28-1.23 (m, ⁵¹⁰

6H, CH₃), 0.91 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.1, 162.1, 160.1, 157.2, 148.6, 143.1, 135.4, 132.0, 131.0, 123.2, 120.6, 104.7, 62.5, 61.6, 61.0, 14.0, 13.9, 13.0; IR (KBr) (v_{max} , cm⁻¹): 3093, 2985, 1742, 1711, 1540, 1405, 1240, 857; HRMS (ESI-TOF⁺) m/z: calcd for C₂₀H₂₁BrNO₇⁺ [(M + H)⁺], 466.0496; found, 466.0493.

I-(4-Iodo-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (4v). Pale yellow solid; yield 80%; mp: 128-129 °C; ¹H NMR (DMSO-*d*₆, 400 MHz, TMS) δ 8.47 (s, 1H, CH), 7.91 (d, *J* = 8.8 Hz, 2H, Ph-H), 7.19 (d, *J* = 8.4 Hz, 2H, Ph-H), 4.27 (q, *J* = 7.2Hz, 4H, OCH₂), 3.97 (q, *J* = 7.2 Hz, 2H, OCH₂), 1.28-1.23 (m, 6H, CH₃), 0.90 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 163.1, 162.1, 160.1, 157.1, 148.6, 143.1, 137.9, 135.9, 130.9, 120.6, 104.7, 96.5, 62.5, 61.6, 61.0, 14.0, 13.8, 13.0; IR (KBr) (*v*_{max}, cm⁻¹): 3088, 2985, 1742, 1710, 1606, 1406, 1270, 858; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₀H₂₁INO₇⁺ [(M + H)⁺], 514.0357; found, 514.0380.

6-Oxo-1-(4-trifluoromethyl-phenyl)-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (4w). White solid; yield 68%; mp: 164-166 °C; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 8.50 (s, 1H, CH), 7.95 (d, J = 8.4 Hz, 2H, Ph-H), 7.68 (d, J = 8.0Hz, 2H, Ph-H), 4.29-4.24 (m, 4H, OCH₂), 3.95 (q, J = 6.8 Hz, 2H, OCH₂), 1.28-1.24 (m, 6H, CH₃), 0.83 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.0, 162.1, 160.0, 157.2, 148.3, 143.2, 139.8, 130.1, 126.2, 120.8, 105.0, 62.6, 61.7, 61.1, 14.0, 13.8, 12.8; IR (KBr) (v_{max} , cm⁻¹): 3081, 2988, 1742, 1610, 1404, 1245, 851; HRMS (ESI-TOF⁺) m/z: calcd for C₂₁H₂₁F₃NO₇⁺ [(M + H)⁺], 456.1265; found, 456.1296.

I-(4-Cyano-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (**4x**). Yellow oil; yield 54%; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 8.49 (s, 1H, CH), 8.06 (d, J = 8.8 Hz, 2H, Ph-H), 7.66 (d, J = 8.4 Hz, 2H, Ph-H), 4.30-4.24 (m, 4H, OCH₂), 3.96 (q, J = 7.2 Hz, 2H, OCH₂), 1.28-1.24 (m, 6H, CH₃), 0.89 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.0, 162.1, 160.0, 157.1, 148.1, 143.2, 140.3, 133.2, 130.3, 120.9, 117.8, 112.8, 105.1, 62.7, 61.7, 61.1, 13.9, 13.8, 13.0; IR (KBr) (v_{max} , cm⁻¹): 2985, 2228, 1740, 1689, 1600, 1424, 1260, 856; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₁H₂₁N₂O₇⁺ [(M + H)⁺], 413.1343; found, 413.1374.

I-(3,4-Dichloro-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (**4**y). White solid; yield 70%; mp: 142-144 °C; ¹H NMR (DMSO-*d*₆, 400 MHz, TMS) δ 8.48 (s, 1H, CH), 7.88 (q, *J* = 10.0 Hz, 2H, Ph-H), 7.47 (q, *J* = 6.0 Hz, 1H, Ph-H), 4.29-4.23 (m, 4H, OCH₂), 4.06-3.96 (m 2H, OCH₂), 1.28-1.23 (m, 6H, CH₃), 0.92 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 163.0, 162.1, 160.0, 157.1, 148.4, 143.2, 135.9, 132.9, 131.4, 131.2, 130.9, 129.4, 120.8, 104.9, 62.6, 61.7, 61.1, 14.0, 13.8, 13.0; IR (KBr) (*v*_{max}, cm⁻¹): 2988, 1741, 1709, 1605, 1404, 1233, 801, 781; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₀H₂₀Cl₂NO₇⁺ [(M + H)⁺], 456.0611; found, 456.0605. *I-(3-Bromo-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic* acid triethyl ester (4aa). White solid; yield 75%; mp: 107-108 °C; ¹H NMR (DMSO-*d*₆, 400 MHz, TMS) δ 8.48 (s, 1H, CH), 7.74 (t, *J* = 1.2 Hz, 2H, Ph-H), 7.49 (t, *J* = 8.0 Hz, 1H, Ph-H), 7.41 (t, *J* = 1.2 Hz, 1H, Ph-H), 4.29-4.23 (m, 4H, OCH₂), 4.02-3.93 (m, 2H, OCH₂), 1.28-1.23 (m, 6H, CH₃), 0.89 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 163.0, 162.1, 160.0, 157.2, 148.5, 143.1, 137.4, 132.8, 131.8, 130.8, 128.1, 121.2, 120.7, 104.7, 62.5, 61.6, 61.0, 14.0, 13.8, 13.0; IR (KBr) (*v*_{max}, cm⁻¹): 3075, 2984, 1741, 1716, 1580, 1403, 1258, 800, 782; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₀H₂₁BrNO₇⁺ [(M + H)⁺], 466.0496; found, 466.0486.

6-Oxo-1-(3-trifluoromethyl-phenyl)-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (4bb). White solid; yield 70%; mp: 160-162 °C; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 8.49 (s, 1H, CH), 7.90 (t, J = 6.0 Hz, 2H, Ph-H), 7.77 (t, J = 8.0 Hz, 1H, Ph-H), 7.72 (d, J = 8.4 Hz, 1H, Ph-H), 4.26 (q, J = 7.2 4H, OCH₂), 3.92 (q, J =7.2 Hz, 2H, OCH₂), 1.27-1.22 (m, 6H, CH₃), 0.82 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.1, 162.2, 160.1, 157.4, 148.4, 143.3, 136.8, 133.2, 130.4, 130.0, 129.6, 126.7, 126.1, 126.0, 124.8, 122.1, 120.8, 105.0, 62.6, 61.7, 61.1, 13.9, 13.8, 12.8; IR (KBr) (v_{max} , cm⁻¹): 2989, 1746, 1712, 1610, 1414, 1231, 804, 703; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₁H₂₁F₃NO₇⁺ [(M + H)⁺], 456.1265; found, 456.1297.

1-(3-Cyano-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (4cc). Pale yellow solid; yield 68%; mp: 153-155 °C; ¹H NMR (DMSO-d₆, 400 MHz, TMS) δ 8.49 (s, 1H, CH), 8.05-8.03 (m, 2H, Ph-H), 7.82-7.74 (m, 2H, Ph-H), 513

4.30-4.24 (m, 4H, OCH₂), 4.01-3.92 (m, 2H, OCH₂), 1.28-1.24 (m, 6H, CH₃), 0.88 (t, J = 6.8 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.0, 162.1, 160.0, 157.2, 148.3, 143.2, 136.9, 134.2, 133.8, 132.9, 130.5, 120.9, 117.5, 111.9, 105.0, 62.6, 61.7, 61.1, 14.0, 13.8, 13.0; IR (KBr) (v_{max} , cm⁻¹): 2985, 1740, 1642, 1611, 1424, 1258, 832, 714; HRMS (ESI-TOF⁺) m/z: calcd for C₂₁H₂₁N₂O₇⁺ [(M + H)⁺], 413.1343; found, 413.1400.

I-(3-Nitro-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (4dd). White solid; yield 52%; mp: 123-124 °C; ¹H NMR (DMSO-*d*₆, 400 MHz, TMS) δ 8.49 (s, 1H, CH), 8.44 (t, *J* = 1.6 Hz, 1H, Ph-H), 8.42-8.39 (m, 1H, Ph-H), 7.94-7.91 (m, 1H, Ph-H), 7.85 (t, *J* = 8.0 Hz, 1H, Ph-H), 4.30-4.24 (m, 4H, OCH₂), 3.99-3.91 (m, 2H, OCH₂), 1.29-1.24 (m, 6H, CH₃), 0.86 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 163.0, 162.2, 160.1, 157.3, 148.3, 147.8, 143.2, 137.1, 135.9, 130.6, 124.8, 124.3, 120.9, 105.1, 62.6, 61.7, 61.0, 14.0, 13.8, 13.0; IR (KBr) (v_{max} , cm⁻¹): 2981, 1723, 1689, 1654, 1406, 1260, 856, 769; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₁H₂₁N₂O₉⁺ [(M + H)⁺], 433.1242; found, 433.1292.

5-Ethyl 2,3-dimethyl 6-oxo-1-phenyl-1,6-dihydropyridine-2,3,5-tricarboxylate (4ee). Pale yellow solid; yield 80%; mp: 99-101 °C; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 8.49 (s, 1H, CH), 7.54-7.50 (m, 3H, Ph-H), 7.36-7.33 (m, 2H, Ph-H), 4.27 (q, J = 7.2Hz, 2H, OCH₂), 3.81 (s, 3H, CH₃), 3.45 (s, 3H, CH₃), 1.27 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.5, 163.2, 161.2, 157.8, 149.4, 143.5, 136.6, 130.3, 129.5, 129.0, 121.1, 104.9, 61.5, 53.5, 53.2, 14.5; IR (KBr) (v_{max} , cm⁻¹): 3010, 2968, 1711, 1701, 1623, 1426, 1223, 748, 692; HRMS (ESI-TOF⁺) *m/z*: calcd for C₁₈H₁₈NO₇⁺ [(M + H)⁺], 360.1078; found, 360.1092.

2,3-Diethyl 5-methyl 6-oxo-1-phenyl-1,6-dihydropyridine-2,3,5-tricarboxylate (4ff).

White solid; yield 78%; mp: 106-107 °C; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 8.51 (s, 1H, CH), 7.52 (t, J = 3.2 Hz, 3H, Ph-H), 7.36-7.33 (m, 2H, Ph-H), 4.27 (q, J = 6.8 Hz, 2H, OCH₂), 3.92 (q, J = 7.2 Hz, 2H, OCH₂), 3.79 (s, 3H, CH₃), 1.25 (t, J = 7.2 Hz, 3H, CH₃), 0.86 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 163.5, 162.2, 160.1, 157.3, 149.0, 143.3, 136.0, 129.8, 128.9, 128.7, 120.3, 104.5, 62.4, 61.6, 52.2, 13.9, 13.0; IR (KBr) (v_{max} , cm⁻¹): 3025, 2998, 1726, 1702, 1602, 1400, 1222, 751, 682; HRMS (ESI-TOF⁺) m/z: calcd for C₁₉H₂₀NO₇⁺ [(M + H)⁺], 374.1234; found, 374.1259.

1-(2-Bromo-phenyl)-6-oxo-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (6a). Yellow oil; yield 70%; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 6.93 (s, 1H, CH), 7.81 (t, J = 7.6 Hz, 1H, Ph-H), 7.54 (q, J = 3.6 Hz, 2H, Ph-H), 7.49-7.44 (m, 1H, Ph-H), 4.30 (q, J = 7.2 Hz, 2H, OCH₂), 4.20-4.16 (m, 2H, OCH₂), 3.93-3.87 (m, 2H, OCH₂), 1.29 (t, J = 7.2 Hz, 3H, CH₃), 1.19 (t, J = 7.2 Hz, 3H, CH₃), 0.86 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 164.7, 162.6, 159.8, 158.8, 144.7, 143.4, 135.5, 133.0, 131.8, 130.7, 128.6, 122.7, 120.7, 106.0, 62.5, 62.1, 62.0, 13.7, 13.5, 13.0; IR (KBr) (v_{max} , cm⁻¹): 2984, 2932, 1738, 1690, 1623, 1423, 1264, 762; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₀H₂₁BrNO₇⁺ [(M + H)⁺], 466.0496; found, 466.0490.

6-Oxo-1-(2-trifluoromethyl-phenyl)-1,6-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (6b). Yellow oil; yield 66%; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 6.90 (s, 1H, CH), 7.92 (q, J = 6.8 Hz, 1H, Ph-H), 7.85-7.75 (m, 2H, Ph-H), 7.60 (d, J= 7.6 Hz, 1H, Ph-H), 4.29 (q, J = 6.8 Hz, 2H, OCH₂), 4.19-4.14 (m, 2H, OCH₂), 3.88 (q, J = 7.2 Hz, 2H, OCH₂), 1.27 (t, J = 7.2 Hz, 3H, CH₃), 1.18 (t, J = 7.2 Hz, 3H, CH₃), 0.82 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 164.5, 162.8, 159.8, 159.8, 144.4, 143.3, 133.7, 133.0, 131.7, 131.0, 127.8, 127.7, 127.2, 126.9, 124.1, 121.4, 120.6, 115.3, 106.8, 62.7, 62.3, 62.1, 13.6, 13.4, 12.9; IR (KBr) (ν_{max} , cm⁻¹): 2986, 1739, 1692, 1604, 1422, 1218, 772; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₁H₂₁F₃NO₇⁺ [(M + H)⁺], 456.1265; found,456.1291.

I-(2-Cyano-phenyl)-4-oxo-1,4-dihydro-pyridine-2,3,5-tricarboxylic acid triethyl ester (6c). Yellow oil; yield 60%; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 7.00 (s, 1H, CH), 8.12 (q, J = 6.8 Hz, 1H, Ph-H), 7.93-7.88 (m, 1H, Ph-H), 7.77-7.71 (m, 2H, Ph-H), 4.32 (q, J = 7.2 Hz, 2H, OCH₂), 4.25-4.16 (m, 2H, OCH₂), 3.95-3.89 (m, 2H, OCH₂), 1.29 (t, J = 7.2 Hz, 3H, CH₃), 1.20 (t, J = 7.2 Hz, 3H, CH₃), 0.86 (t, J = 6.8 Hz, 134, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 164.4, 162.6, 159.8, 159.2, 144.1, 143.4, 138.4, 134.6, 133.5, 130.9, 129.8, 121.1, 115.2, 112.6, 106.9, 62.9, 62.2, 62.1, 13.6, 13.5, 13.0; IR (KBr) (v_{max} , cm⁻¹): 2980, 2942, 1741, 1689, 1670, 1404, 1252, 750; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₁H₂₁N₂O₇⁺ [(M + H)⁺], 413.1343; found, 413.1394.

Triethyl 1-(2-fluorophenyl)-4-oxo-1,4-dihydropyridine-2,3,5-tricarboxylate (6d). Yellow oil; yield 66%; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 6.91 (s, 1H, CH), ^{S16} 7.62-7.57 (m, 1H, Ph-H), 7.52-7.43 (m, 2H, Ph-H), 7.34 (t, J = 7.6 Hz, 1H, Ph-H), 4.30 (q, J = 7.2 Hz, 2H, OCH₂), 4.23-4.17 (m, 2H, OCH₂), 3.93 (q, J = 7.2 Hz, 2H, OCH₂), 1.28 (t, J = 7.2 Hz, 3H, CH₃), 1.19 (t, J = 7.2 Hz, 3H, CH₃), 0.87 (t, J = 7.2Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 164.5, 162.6, 160.0, 159.0, 156.1, 144.9, 143.3, 132.5, 130.3, 125.1, 123.8, 120.6, 116.1, 106.4, 62.7, 62.1, 62.0, 13.6, 13.5, 13.0; ¹⁹F NMR (DMSO- d_6 , 311 MHz) δ -120.9 (s, 1F); IR (KBr) (v_{max} , cm⁻¹): 3030, 2998, 1732, 1601, 1412, 1238, 762; HRMS (ESI-TOF⁺) m/z: calcd for C₂₀H₂₁FNO₇⁺ [(M + H)⁺], 406.1297; found, 406.1345.

Triethyl 1-(2-chlorophenyl)-4-oxo-1,4-dihydropyridine-2,3,5-tricarboxylate (6e). Yellow oil; yield 68%; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 6.92 (s, 1H, CH), 7.70-7.67 (m, 1H, Ph-H), 7.58-7.54 (m, 2H, Ph-H), 7.52-7.48 (m, 1H, Ph-H), 4.30 (q, J = 7.2 Hz, 2H, OCH₂), 4.21-4.16 (m, 2H, OCH₂), 3.93-3.88 (m, 2H, OCH₂), 1.28 (t, J = 7.2 Hz, 3H, CH₃), 1.19 (t, J = 7.2 Hz, 3H, CH₃), 0.85 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 165.1, 163.1, 160.3, 159.3, 145.3, 143.9, 134.4, 132.6, 132.3, 131.1, 130.3, 128.6, 121.2, 106.6, 63.1, 62.7, 62.5, 14.2, 14.0, 13.5; IR (KBr) (v_{max} , cm⁻¹): 2994, 2912, 1710, 1658, 1610, 1452, 1286, 756; HRMS (ESI-TOF⁺) m/z: calcd for C₂₀H₂₁ClNO₇⁺ [(M + H)⁺], 422.1001; found, 422.1012.

Triethyl 1-(2-iodophenyl)-4-oxo-1,4-dihydropyridine-2,3,5-tricarboxylate (6f). Yellow oil; yield 65%; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 6.91 (s, 1H, CH), 7.99 (q, J = 6.8 Hz, 1H, Ph-H), 7.55-7.47 (m, 2H, Ph-H), 7.28-7.24 (m, 1H, Ph-H), 4.31 (q, J = 7.2 Hz, 2H, OCH₂), 4.21-4.11 (m, 2H, OCH₂), 3.92-3.86 (m, 2H, OCH₂), 1.29 (t, J = 7.2 Hz, 3H, CH₃), 1.19 (t, J = 7.2 Hz, 3H, CH₃), 0.87 (t, J = 6.8 Hz, 3H, 517 CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 164.7, 162.7, 159.7, 158.8, 144.7, 143.4, 139.2, 139.1, 131.4, 130.0, 129.1, 120.9, 106.0, 100.2, 62.4, 62.1, 62.0, 13.7, 13.5, 13.0; IR (KBr) (v_{max} , cm⁻¹): 3011, 2985, 1742, 1714, 1602, 1406, 1270, 762; HRMS (ESI-TOF⁺) m/z: calcd for C₂₀H₂₁INO₇⁺ [(M + H)⁺], 514.0357; found, 514.0382.

Triethyl 1-(3-chloro-2-fluorophenyl)-4-oxo-1,4-dihydropyridine-2,3,5-tricarboxylate

(**6g**). Yellow oil; yield 56%; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 6.97 (s, 1H, CH), 7.85-7.81 (m, 1H, Ph-H), 7.60-7.54 (m, 1H, Ph-H), 7.43-7.38 (m, 1H, Ph-H), 4.32-4.26 (m, 2H, OCH₂), 4.21-4.16 (m, 2H, OCH₂), 4.01-3.94 (m, 2H, OCH₂), 1.28 (t, J = 7.2 Hz, 3H, CH₃), 1.19 (t, J = 7.2 Hz, 3H, CH₃), 0.88 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 164.9, 163.1, 160.4, 159.4, 155.0, 144.8, 143.8, 133.2, 129.8, 125.9, 121.4, 120.9, 107.4, 63.3, 62.7, 62.6, 14.1, 14.0, 13.4; ¹⁹F NMR (DMSO- d_6 , 311 MHz) δ -122.2 (s, 1F); IR (KBr) (v_{max} , cm⁻¹): 2992, 1722, 1701, 1602, 1435, 1211, 822, 786; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₀H₂₀ClFNO₇⁺ [(M + H)⁺], 440.0907; found, 440.0935.

Trimethyl 1-(2-bromophenyl)-4-oxo-1,4-dihydropyridine-2,3,5-tricarboxylate (6h). Yellow oil; yield 72%; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 6.96 (s, 1H, CH), 7.81 (t, J = 1.2 Hz, 1H, Ph-H), 7.56-7.51 (m, 2H, Ph-H), 7.48-7.44 (m, 1H, Ph-H), 3.85 (s, 3H, CH₃), 3.74 (s, 3H, CH₃), 3.45 (s, 3H, CH₃), ¹³C NMR (DMSO- d_6 , 100 MHz) δ 165.2, 163.1, 160.4, 158.8, 144.7, 143.0, 135.5, 133.0, 131.8, 130.4, 128.6, 122.4, 121.0, 105.9, 53.3, 53.2, 53.1; IR (KBr) (v_{max} , cm⁻¹): 3045, 2998, 1735, 1711, 1605, 1406, 1248, 760; HRMS (ESI-TOF⁺) *m/z*: calcd for C₁₇H₁₅BrNO₇⁺ [(M + H)⁺], 424.0026; found, 424.0056. *Triethyl 4-oxo-1-phenyl-1,4-dihydropyridine-2,3,5-tricarboxylate* (6i). Yellow oil; yield 70%; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 6.84 (s, 1H, CH), 7.52-7.49 (m, 3H, Ph-H), 7.37-7.34 (m, 2H, Ph-H), 4.30 (q, J = 6.8 Hz, 2H, OCH₂), 4.18 (q, J = 7.2Hz, 2H, OCH₂), 3.88 (q, J = 6.8 Hz, 2H, OCH₂), 1.28 (t, J = 6.8 Hz, 3H, CH₃), 1.18 (t, J = 6.8 Hz, 3H, CH₃), 0.85 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 164.8, 162.8, 160.2, 159.7, 145.2, 142.9, 136.3, 129.6, 129.0, 128.5, 120.6, 105.6, 62.4, 62.0, 61.8, 13.7, 13.5, 13.0; IR (KBr) (v_{max} , cm⁻¹): 3032, 2922, 1704, 1683, 1604, 1432, 1258, 742, 654; HRMS (ESI-TOF⁺) m/z: calcd for C₂₀H₂₂NO₇⁺ [(M + H)⁺], 388.1391; found, 388.1411.

Triethyl 4-oxo-1-(o-tolyl)-1,4-dihydropyridine-2,3,5-tricarboxylate (6j). Yellow oil; yield 52%; ¹H NMR (DMSO-*d*₆, 400 MHz, TMS) δ 6.87 (s, 1H, CH), 7.43-7.37 (m, 2H, Ph-H), 7.33-7.29 (m, 1H, Ph-H), 7.26 (d, *J* = 8.0 Hz, 2H, Ph-H), 4.30 (q, *J* = 6.8 Hz, 2H, OCH₂), 4.22-4.14 (m, 2H, OCH₂), 3.87 (q, *J* = 7.2 Hz, 2H, OCH₂), 2.06 (s, 3H, CH₃), 1.29 (t, *J* = 6.8 Hz, 3H, CH₃), 1.19 (t, *J* = 7.2 Hz, 3H, CH₃), 0.83 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 164.8, 162.7, 160.1, 159.1, 145.2, 143.3, 136.1, 135.5, 130.5, 130.0, 128.5, 126.7, 120.5, 105.6, 62.4, 62.1, 61.9, 16.9, 13.7, 13.5, 12.9; IR (KBr) (*v*_{max}, cm⁻¹): 3012, 2903, 1769, 1711, 1622, 1407, 1258, 760; HRMS (ESI-TOF⁺) *m/z*: calcd for C₂₁H₂₄NO₇⁺ [(M + H)⁺], 402.1547; found, 402.1582.

2-Phenylamino-but-2-enedioic acid diethyl ester (I).

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, TMS) δ 9.70 (s, 1H, NH), 7.28 (d, *J* = 15.2 Hz, 2H, Ph-H), 7.08 (t, *J* = 7.2 Hz, 1H, Ph-H), 6.93 (d, *J* = 7.6 Hz, 2H, Ph-H), 5.39 (s, 1H, CH), 4.22-4.12 (m, 4H, OCH₂), 1.29 (t, *J* = 7.6 Hz, 3H, CH₃), 1.08 (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 169.5, 164.3, 148.4, 140.4, 129.0, 124.2, 121.0, 93.7, 61.9, 59.8, 14.3, 13.6.

2-[(2-Bromo-phenylamino)-methylene]-malonic acid diethyl ester (II).

White solid; mp: 84-85 °C; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 11.1 (d, J = 13.2 Hz, 1H, NH), 8.51 (d, J = 34.8 Hz, 1H, CH), 7.71 (q, J = 6.8 Hz, 1H, Ph-H), 7.63 (t, J = 7.2 Hz, 1H, Ph-H), 7.46-7.42 (m, 1H, Ph-H), 7.12-7.08 (m, 1H, Ph-H), 4.23 (q, J = 6.8 Hz, 2H, OCH₂), 4.15 (q, J = 7.2 Hz, 2H, OCH₂), 1.28-1.23 (m, 6H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 167.6, 164.5, 150.4, 136.9, 133.1, 129.2, 125.7, 116.9, 112.6, 94.8, 60.0, 59.6, 14.1, 14.1.

Diethyl 2-((2-bromophenyl)amino)fumarate (III).

Yellow oil; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 9.77 (s, 1H, NH), 7.63 (d, J = 8.0 Hz, 1H, Ph-H), 7.28 (t, J = 7.6 Hz, 1H, Ph-H), 7.01 (t, J = 7.6 Hz, 1H, Ph-H), 6.84 (q, J = 7.2 Hz, 1H, Ph-H), 5.45 (d, J = 0.8 Hz, 1H, CH), 4.18-4.11 (m, 4H, OCH₂), 1.22 (t, J = 7.2 Hz, 3H, CH₃), 1.06 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 168.4, 162.9, 146.6, 138.0, 132.6, 128.1, 125.2, 121.3, 114.8, 95.2, 62.0, 59.9, 13.9, 13.3.

3-{[(1,2-Bis-ethoxycarbonyl-vinyl)-(2-nitro-phenyl)-amino]-methylene}-2,4-dioxopentanedioic acid diethyl ester (IV). Yellow oil; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 8.34 (q, J = 6.8 Hz, 1H, Ph-H), 7.94-7.89 (m, 1H, Ph-H), 7.83-7.79 (m, 1H, Ph-H), 7.61 (q, J = 6.4 Hz, 1H, Ph-H), 7.55 (s, 1H, CH), 5.21 (s, 1H, CH), 4.20-4.02 (m, 8H, OCH₂), 1.17-1.1.12 (m, 9H, CH₃), 0.94 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 164.3, 163.9, 163.1, 162.1, 148.9, 144.8, 139.4, 135.8, 132.5, 132.0, 129.6, 126.4, 107.5, 102.2, 62.4, 60.9, 60.7, 60.4, 13.8, 13.8, 13.3, 13.2.

2-Phenylaminomethylene-malonic acid diethyl ester (7).

Yellow oil; ¹H NMR (DMSO- d_6 , 400 MHz, TMS) δ 10.73 (t, J = 6.0 Hz, 1H, NH), 8.42 (d, J = 14.0 Hz, 1H, CH), 7.38-7.30 (m, 4H, Ph-H), 7.14 (q, J = 6.0 Hz, 1H, Ph-H), 4.22-4.09 (m, 4H, OCH₂), 1.25 (q, J = 6.8 Hz, 6H, CH₃); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 167.4, 164.8, 151.0, 139.2, 129.5, 124.4, 117.3, 93.1, 59.5, 59.3, 14.1, 14.0.

X-Ray Crystallography structures of Compound 4a

Figure S1. X-ray crystal structure of 4a

Crystal data for md_lst1: C₂₀H₂₁NO₇, M = 387.38, a = 20.3966(5) Å, b = 5.58400(10) Å, c = 17.3130(4) Å, $a = 90^{\circ}$, $\beta = 108.5690(10)^{\circ}$, $\gamma = 90^{\circ}$, V = 1869.20(7) Å³, T = 100.(2) K, space group P121/c1, Z = 4, μ (Cu K α) = 0.880 mm⁻¹, 20590 reflections measured, 3693 independent reflections ($R_{int} = 0.0668$). The final R_I values were 0.0429 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.1048 ($I > 2\sigma(I)$). The final R_I values were 0.0525 (all data). The final $wR(F^2)$ values were 0.1122 (all data). The goodness of fit on F^2 was 1.053. **CCDC-1965346**.

View of a molecule of md_lst1 with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure S2. Crystal data and structure refinement for md_lst1_0m.

View of the pack drawing of md_lst1.

Hydrogen-bonds are shown as dashed lines.

Identification code	global	
Empirical formula	C20 H21 N O7	
Formula weight	387.38	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	a = 20.3966(5) Å	<i>α</i> = 90°.
	b = 5.58400(10) Å	β=108.5690(10)°.
	c = 17.3130(4) Å	$\gamma = 90^{\circ}$.
Volume	1869.20(7) Å ³	
Z	4	
Density (calculated)	1.377 Mg/m ³	
Absorption coefficient	0.880 mm ⁻¹	
F(000)	816	

Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 72.37° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole 0.600 x 0.060 x 0.030 mm³ 2.29 to 72.37°. $-25 \le h \le 25, -5 \le k \le 6, -21 \le l \le 21$ 20590 3693 [R(int) = 0.0668] 100.0 % Semi-empirical from equivalents 0.97 and 0.75 Full-matrix least-squares on F² 3693 / 0 / 256 1.053 R1 = 0.0429, wR2 = 0.1048 R1 = 0.0525, wR2 = 0.1122 0.430 and -0.333 e.Å⁻³

Figure S3. ¹H and ¹³C NMR spectra of compound 4a

Figure S4. ¹H and ¹³C NMR spectra of compound 4b

Figure S5. ¹H and ¹³C NMR spectra of compound 4c

Figure S6. ¹H and ¹³C NMR spectra of compound 4d

Figure S7. ¹H and ¹³C NMR spectra of compound 4e

Figure S8. ¹H and ¹³C NMR spectra of compound 4f

Figure S9. ¹H and ¹³C NMR spectra of compound 4g

Figure S10. ¹H and ¹³C NMR spectra of compound 4h

Figure S11. ¹H and ¹³C NMR spectra of compound 4i

Figure S12. ¹H and ¹³C NMR spectra of compound 4j

Figure S13. ¹H and ¹³C NMR spectra of compound 4k

Figure S14. ¹H and ¹³C NMR spectra of compound 4I

Figure S15. ¹H and ¹³C NMR spectra of compound 4m

Figure S16. ¹H and ¹³C NMR spectra of compound 4n

Figure S17. ¹H and ¹³C NMR spectra of compound 40

Figure S18. ¹H and ¹³C NMR spectra of compound 4p

Figure S19. ¹H and ¹³C NMR spectra of compound 4q

Figure S20. ¹H and ¹³C NMR spectra of compound 4r

Figure S21. ¹H and ¹³C NMR spectra of compound 4s

Figure S22. ¹H and ¹³C NMR spectra of compound 4t

Figure 23. ¹H and ¹³C NMR spectra of compound 4u

Figure S24. ¹H and ¹³C NMR spectra of compound 4v

Figure S25. ¹H and ¹³C NMR spectra of compound 4w

Figure S26. ¹H and ¹³C NMR spectra of compound 4x

Figure S27. 1 H and 13 C NMR spectra of compound 4y

Figure S28. ¹H and ¹³C NMR spectra of compound 4aa

Figure S29. ¹H and ¹³C NMR spectra of compound 4bb

Figure S30. ¹H and ¹³C NMR spectra of compound 4cc

Figure S31. ¹H and ¹³C NMR spectra of compound 4dd

Figure S32. ¹H and ¹³C NMR spectra of compound 4ee

Figure S33. ¹H and ¹³C NMR spectra of compound 4ff

Figure S34. ¹H and ¹³C NMR spectra of compound 6a

Figure S35. ¹H and ¹³C NMR spectra of compound 6b

Figure S36. ¹H and ¹³C NMR spectra of compound 6c

Figure S37. ¹H, ¹³C and ¹⁹F NMR spectra of compound 6d

Figure S38. ¹H and ¹³C NMR spectra of compound 6e

Figure S39. ¹H and ¹³C NMR spectra of compound 6f

Figure S40. ¹H, ¹³C and ¹⁹F NMR spectra of compound 6g

Figure S41. ¹H and ¹³C NMR spectra of compound 6h

Figure S42. ¹H and ¹³C NMR spectra of compound 6i

Figure S43. ¹H and ¹³C NMR spectra of compound 6j

Figure S44. ¹H and ¹³C NMR spectra of intermediate I

Figure S45. ¹H and ¹³C NMR spectra of intermediate II

Figure S46. ¹H and ¹³C NMR spectra of intermediate III

Figure S47. ¹H and ¹³C NMR spectra of intermediate IV

Figure S48. 1 H and 13 C NMR spectra of intermediate 7