Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Dimers formed by mixed-type G-quadruplex binder pyridostatin

specifically recognize human telomere G-quadruplex dimers

Tian-Zhu Ma,^a Meng-Jia Zhang,^a Ting-Cong Liao,^a Jun-Hui Li,^a Min Zou,^a Zhou-Mo Wang ^b and Chun-

Qiong Zhou ^{a*}

^a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,

Southern Medical University, Guangzhou 510515, P. R. China

^b Medical School, Science and Technology College of Hubei University for Nationalities, Enshi 445000, P.

R. China

* Email: zcqlg@smu.edu.cn.

Electronic Supplementary Information

¹ H NMR, ¹³ C NMR and HR-ESI-MS	2
SPR	13
CD spectra	,
CD-melting	16
ITC	19
Fluorescence spectra	19
Telomerase inhibition	20

Figure S1 ¹H NMR (400 MHz) of compound 4 in DMSO-*d*₆.

Figure S2¹³C NMR (100 MHz) of compound 4 in DMSO-d₆.

Figure S3 HR-ESI-MS of compound 4.

Figure S4 ¹H NMR (400 MHz) of compound 6a in DMSO-d₆.

Figure S5¹³C NMR (100 MHz) of compound 6a in DMSO-*d*₆.

Figure S6 HR-ESI-MS of compound 6a.

Figure S7¹H NMR (400 MHz) of compound 6b in DMSO-*d*₆.

Figure S8¹³C NMR (100 MHz) of compound 6b in DMSO-*d*₆.

Figure S9 HR-ESI-MS of compound 6b.

Figure S10¹H NMR (400 MHz) of compound 6c in DMSO-d₆.

Figure S11 ¹³C NMR (100 MHz) of compound 6c in DMSO-d₆.

Figure S12 HR-ESI-MS of compound 6c.

Figure S13 ¹H NMR (400 MHz) of dimer 1a in DMSO-*d*₆.

Figure S14 ¹³C NMR (100 MHz) of dimer 1a in DMSO- d_6 .

Figure S16 ¹H NMR (400 MHz) of dimer 1b in DMSO-*d*₆.

Figure S17¹³C NMR (100 MHz) of dimer 1b in DMSO-d₆.

Figure S19 ¹H NMR (400 MHz) of dimer 1c in DMSO- d_6 .

Figure S20¹³C NMR (100 MHz) of dimer 1c in DMSO-d₆.

Figure S21 HR-ESI-MS of dimer 1c.

Figure S22 SPR of dimer 1a towards mixed-type G1 (a), mixed-type G2T1 (b), antiparallel

Figure S23 SPR of dimer **1b** towards mixed-type G1 (a), mixed-type G2T1 (b), antiparallel G1 (c) and antiparallel G2T1 (d).

Figure S24 SPR of dimer **1c** towards mixed-type G1 (a), mixed-type G2T1 (b), antiparallel G1 (c) and antiparallel G2T1 (d).

Figure S25 SPR of monomer **PDS** towards mixed-type G1 (a), mixed-type G2T1 (b), antiparallel G1 (c) and antiparallel G2T1 (d).

Figure S26 CD spectra of antiparallel G2T1 (5 μ M) in 10 mM Tris-HCl and 100 mM NaCl with varying equivalents of dimers **1a** (a), **1b** (b), **1c** (c) and monomer **PDS** (d), respectively.

Figure S27 CD spectra of mixed-type G2T1 (5 μ M) in 10 mM Tris-HCl and 60 mM KCl (pH 7.0) with varying equivalents of monomer **PDS** (a) and dimer **1b** (b), respectively.

Figure S28 (a) and (b) CD melting profiles at 295 nm for antiparallel G2T1 (10 μ M, a) and antiparallel G1 (20 μ M, b) in the presence of compounds **PDS** and **1a~c**. (c) CD spectra of antiparallel G1 (20 μ M) from 20 °C to 95 °C with monomer **PDS** (120 μ M). Buffer: 10 mM Tris-HCl and 100 mM NaCl (pH 7.0).

Figure S29 CD melting profiles at 295 nm for mixed-type G1 (20 μ M, a) and at 275 nm for ds DNA (20 μ M, b) in the presence of monomer **PDS** and dimers **1a**~c. [dimer]:[G1] = 3:1,

[**PDS**]:[G1] = 6:1, [dimer]:[ds DNA] = 3:1, [**PDS**]:[ds DNA] = 6:1.

Figure S30 CD melting profiles at 262 nm for c-kit 1 (20 μ M, a), c-kit 2 (20 μ M, b) and c-myc (20 μ M, c) in the presence of dimer **1c** (60 μ M).

Figure S31 CD melting profiles at 295 nm for antiparallel G2T2 (a), G2T4 (b) and G2T6 (c) in the presence of dimer **1b** in 10 mM Tris-HCl and 100 mM NaCl (pH 7.0).

Figure S32 CD melting profiles at 295 nm for mixed-type G2T2 (a), G2T4 (b) and G2T6 (c) in the presence of dimer **1c** in 10 mM Tris-HCl and 60 mM KCl (pH 7.0).

Figure S33 Upper panel shows the isothermal titration plot of dimer **1b** (in cell) with antiparallel G2T1 (a) or G1 (b) (in syrige), whereas the lower panel shows the integrated heat profile of the calorimetric titration plot shown in upper panel. Buffer: 10 mM Tris-HCl, 100 mM NaCl and pH 7.0.

Figure S34 (a) Plot of normalized fluorescence intensity at 370 nm of 2-Ap individually labelled antiparallel G2T1 (Ap7, Ap13, Ap19, Ap25, Ap31, Ap37 and Ap43, respectively) *versus* binding ratio of [**1b**]/[Ap-G2T1]. (b) Plot of normalized fluorescence intensity at 370 nm of Ap37 versus binding ratio of [**1b**]/[Ap37]. Buffer: 10 mM Tris-HCl, 100 mM NaCl

and pH 7.0.

Figure S35 Telomerase inhibition in the presence of monomer **PDS** by TRAP-LIG assay. Lane 1: (+) ve control (no dimer); lanes 2-7: 0.063, 0.125, 0.25, 0.5, 1.0 and 2.0 μ M, respectively; lane 8: (-) ve control (no enzyme and dimer).