Supporting Information

Diketopyrrolopyrrole–fullerene C₆₀ architectures as highly efficient heavy atom-free photosensitizers: synthesis, photophysical properties and photodynamic activity

Maximiliano L. Agazzi^a, Vitor A. S. Almodovar^b, Natalia S. Gsponer^a, Sonia Bertolotti^a, Augusto C. Tomé^{b,*}, Edgardo N. Durantini^{a, *}

^a IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina.

^b QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal

Contents

Figure S1. Absorption spectra of (A) DPP-C₆₀ and (B) C₆₀-DPP-C₆₀ in different solvents.

Figure S2. (A) Transient absorption spectrum of **DPP4** determined at different times after laser flash excitation at 532 nm in argon-saturated solution and (B) absorption decay monitored at 390 nm and 540 nm in toluene.

Figure S3. (A) Transient absorption spectrum of **DPP5** determined at different times after laser flash excitation at 532 nm in argon-saturated solution and (B) absorption decay monitored at 400 nm and 550 nm in toluene.

Figure S4. Absorption spectra changes for the photooxidation of DMA photosensitized by (A) **DPP4** and (B) **DPP5** after different irradiation times ($\Delta t = 3 \text{ min}$) in toluene and (C) **DPP4** and (D) **DPP5** after different irradiation times ($\Delta t = 5 \text{ min}$) in DMF.

Figure S5. Absorption spectra changes for the photooxidation of DMA photosensitized by (A) DPP-C₆₀ and (B) C₆₀-DPP-C₆₀ after different irradiation times ($\Delta t = 3 \text{ min}$) in toluene and (C) DPP-C₆₀ and (D) C₆₀-DPP-C₆₀ after different irradiation times ($\Delta t = 5 \text{ min}$) in DMF. Figure S6. NMR and MS spectroscopic data.

Scheme S1. Molecular structure of MC₆₀.

Figure S1. Absorption spectra of (A) DPP-C₆₀ and (B) C₆₀-DPP-C₆₀ in different solvents.

Figure S2. (A) Transient absorption spectrum of **DPP4** determined at different times after laser flash excitation at 532 nm in argon-saturated solution and (B) absorption decay monitored at 390 nm and 540 nm in toluene.

Figure S3. (A) Transient absorption spectrum of **DPP5** determined at different times after laser flash excitation at 532 nm in argon-saturated solution and (B) absorption decay monitored at 400 nm and 550 nm in toluene.

Figure S4. Absorption spectra changes for the photooxidation of DMA photosensitized by (A) **DPP4** and (B) **DPP5** after different irradiation times ($\Delta t = 3 \text{ min}$) in toluene and (C) **DPP4** and (D) **DPP5** after different irradiation times ($\Delta t = 5 \text{ min}$) in DMF.

Figure S5. Absorption spectra changes for the photooxidation of DMA photosensitized by (A) **DPP-C**₆₀ and (B) **C**₆₀-**DPP-C**₆₀ after different irradiation times ($\Delta t = 3 \text{ min}$) in toluene and (C) **DPP-C**₆₀ and (D) **C**₆₀-**DPP-C**₆₀ after different irradiation times ($\Delta t = 5 \text{ min}$) in DMF.

Scheme S1. Molecular structure of MC60.

DPP1

DPP5

DPP-C₆₀

C60-DPP-C60

Figure S6. NMR and MS spectroscopic data.