Supporting Information

Biomimetic total syntheses of baefrutones A-D, baeckenon B, and

frutescones A, D-F

Ji-Qin Hou, Jiang-Hong Yu, Heng Zhao, Ying-Ying Dong, Qiu-Shi Peng, Bao-Bao Zhang and Hao Wang*

State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China

TABLE OF CONTENTS

1. Experimental Procedures and Characterization Data

Figure S4-2. ¹³ C NMR of compound 16 (75 MHz, DMSO- d_6)S40
Figure S5-1. ¹ H NMR of Compound 17 (300 MHz, DMSO- d_6) ······S41
Figure S5-2. ¹³ C NMR of Compound 17 (75 MHz, DMSO- d_6)
Figure S6-1. ¹ H NMR of Compound 11 (300 MHz, CD ₃ OD)S42
Figure S6-2. ¹³ C NMR of Compound 11 (75 MHz, CD ₃ OD)
Figure S7-1. ¹ H NMR of compound 18 (400 MHz, CDCl ₃)S43
Figure S7-2. ¹³ C NMR of compound 18 (100 MHz, CDCl ₃)S43
Figure S8-1. ¹ H NMR of compound 19 (400 MHz, CDCl ₃)S44
Figure S8-2. ¹³ C NMR of compound 19 (100 MHz, CDCl ₃)S44
Figure S9-1. ¹ H NMR of synthetic 1 (500 MHz, $CDCl_3$)S45
Figure S9-2. ¹³ C NMR of synthetic 1 (125 MHz, CDCl ₃)
Figure S9-3. NOESY of synthetic 1 (500 MHz, CDCl ₃)
Figure S10-1. ¹ H NMR of natural 1 (500 MHz, CDCl ₃)S46
Figure S10-2. ¹³ C NMR of natural 1 (125 MHz, CDCl ₃)
Figure S11-1. ¹ H NMR of synthetic 2 (500 MHz, $CDCl_3$)S47
Figure S11-2. ¹³ C NMR of synthetic 2 (125 MHz, CDCl ₃)S48
Figure S11-3. NOESY of synthetic 2 (500 MHz, CDCl ₃)
Figure S12-1. ¹ H NMR of natural baefrutone B (500 MHz, CDCl ₃)S49
Figure S12-2. ¹³ C NMR of natural baefrutone B (125 MHz, CDCl ₃)S49
Figure S13-1. ¹ H NMR of synthetic 3 (300 MHz, CDCl ₃)
Figure S13-2. ¹³ C NMR of synthetic 3 (75 MHz, CDCl ₃)
Figure S13-3. NOESY of synthetic 3 (300 MHz, CDCl ₃)
Figure S14-1. ¹ H NMR of natural 3 (500 MHz, CDCl ₃)
Figure S14-2. ¹³ C NMR of natural 3 (125 MHz, CDCl ₃)
Figure S15-1. ¹ H NMR of synthetic 4 (300 MHz, CDCl ₃)
Figure S15-2. ¹³ C NMR of synthetic 4 (75 MHz, CDCl ₃)
Figure S15-3. NOESY of synthetic 4 (300 MHz, CDCl ₃)
Figure S16-1. ¹ H NMR of natural baefrutone D (500 MHz, CDCl ₃)S54
Figure S16-2. ¹³ C NMR of natural baefrutone D (125 MHz, CDCl ₃)S54
Figure S17-1. ¹ H NMR of synthetic 5 (300 MHz, CDCl ₃)

Figure S17-2. ¹³ C NMR of synthetic 5 (75 MHz, CDCl ₃)S55	
Figure S18-1. ¹ H NMR of natural 5 (400 MHz, CDCl ₃)S56	
Figure S18-2. ¹³ C NMR of synthetic 5 (100 MHz, CDCl ₃)S56	
Figure S18-3. ¹ H NMR of natural 5 (400 MHz, DMSO- d_6)	
Figure S18-4. HSQC of natural 5 (400 MHz, CDCl ₃)S57	
Figure S18-5. HMBC of natural 5 (400 MHz, CDCl ₃)S58	
Figure S18-6. NOESY of natural 5 (400 MHz, CDCl ₃)S58	
Figure S19-1. ¹ H NMR of synthetic 6 (278K, 600 MHz, CDCl ₃)S59	
Figure S19-2. ¹³ C NMR of synthetic 6 (278K, 150 MHz, CDCl ₃)S59	
Figure S20-1. ¹ H NMR of natural 6 (242K, 600 MHz, CDCl ₃)S60	
Figure S20-2. ¹³ C NMR of natural 6 (242K, 150 MHz, CDCl ₃)S60	
Figure S21-1. ¹ H NMR of synthetic 7 (278K, 600 MHz, $CDCl_3$)S61	
Figure S21-2. ¹³ C NMR of synthetic 7 (278K, 150 MHz, CDCl ₃)S61	
Figure S22-1. ¹ H NMR of natural 7 (242K, 600 MHz, CDCl ₃)S62	
Figure S22-2. ¹³ C NMR of natural 7 (242K, 150 MHz, CDCl ₃)S62	
Figure S23-1. ¹ H NMR of synthetic 8 (300 MHz, CDCl ₃)S63	
Figure S23-2. ¹³ C NMR of synthetic 8 (75 MHz, CDCl ₃)S63	
Figure S24-1. ¹ H NMR of natural 8 (300 MHz, CDCl ₃)S64	
Figure S24-2. ¹³ C NMR of natural 8 (75 MHz, CDCl ₃)S64	
Figure S25-1. ¹ H NMR of synthetic 9 (300 MHz, CDCl ₃)S65	
Figure S25-2. ¹³ C NMR of synthetic 9 (75 MHz, CDCl ₃)S65	
Figure S26-1. ¹ H NMR of natural 9 (500 MHz, CDCl ₃)S66	
Figure S26-2. ¹³ C NMR of natural 9 (125 MHz, CDCl ₃)S66	

Experimental

General experimental methods

Optical rotation was measured on a Rudolph Autopol IV polarimeter. The CD spectra were obtained on a JASCO J-810 spectropolarimeter. Diffraction data were collected on a Rigaku Oxford CCD diffractometer diffractometer ($\lambda = 1.54184$). NMR spectra were recorded on 600, 500, 400 and 300 MHz (¹H) NMR spectrometers in CDCl₃ (δ 7.26 for ¹H NMR and 77.2 for ¹³C NMR), CD₃OD (δ 4.87, 3.31 for ¹H NMR and 49.0 for ¹³C NMR), and DMSO-*d*₆ (δ 2.50 for ¹H NMR and 39.5 for ¹³C NMR). HRESIMS data were acquired on an Agilent 6520 Q/TOF mass spectrometer with an ESI source in negative mode. Column chromatography was performed using silica gel (100–200 and 200–300 mesh). Preparative HPLC was performed using YMC-pack C18 column (250 × 20 mm, 5 µm). Chiral HPLC separation was conducted on a semipreparative chiral OD-H column (250 × 10 mm, 5 µm) (Daicel Chiral Technologies Co., Ltd., China).

Isobutyrylphloroglucinol (13). Aluminium trichloride (42.2 g, 0.32 mol, 4 equiv) was added to a stirred suspension of phloroglucinol (12) (10.0 g, 0.079 mol, 1 equiv) in nitrobenzene (100 mL), and the mixture was stirred at room temperature. After 30 min, isobutyryl chloride (9.8 mL, 0.095 mol, 1.2 equiv) was added slowly and the resulting mixture was stirred at 65 $\$ for 18 h. Afterwards, the mixture was cooled down to room temperature and poured into ice-water and extracted with ethyl acetate (3 × 100 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. The crude residue was purified by silica gel column chromatography (petroleum ether-acetone, 100:0 \rightarrow 60:10, v/v) to afford isobutyrylphloroglucinol (13, 14.1 g, 91.0%) as yellowish oil.

 $R_f = 0.40$ (petroleum ether/acetone, 2:1).

¹H NMR (400 MHz, CD₃OD) δ: 5.81 (2H, s), 3.97 (1H, hept, J = 6.8 Hz), 1.12 (6H, d, J = 6.7 Hz).

¹³C NMR (100 MHz, CD₃OD) δ: 211.7, 165.8, 165.7, 104.6, 95.8, 39.9, 19.6. HRMS-ESI (*m*/*z*) $[M + H]^+$ calcd for C₁₀H₁₃O₄, 197.0814; found, 197.0804.

2-Isobutyryl-3,5-dihydroxy-4,6,6-trimethylcyclohexa-2,4-dienone (14). To a solution of tert-BuOK (21.1 g, 0.189 mol, 3.7 equiv.) and 13 (10 g, 0.051 mol, 1 equiv.) in anhydrous MeOH (150 mL), iodomethane (9.5 mL, 0.15 mol, 3 equiv.) was added and the resulting mixture was refluxed for 7 h. Then the mixture was cooled down to room temperature and concentrated under reduced pressure. The residue was dissolved in water and acidified with 2 M HCl before it was extracted with EtOAc (3×100 mL). The combined organic layers were washed with saturated aqueous sodium sulfite solution (2×200 mL), dried over Na₂SO₄, filtered and concentrated in vacuo. The crude residue was purified by silica gel column chromatography (petroleum ether-acetone, $100:0 \rightarrow 90:10$, v/v) to afford 14 (8.1 g, 67%).

 $R_f = 0.43$ (petroleum ether/acetone, 4:1).

¹H NMR (400 MHz, CD₃OD) δ : 4.09 (1H, m, *J* = 7.1 Hz), 1.83 (3H, s), 1.34 (6H, s),

1.10 (6H, d, *J* = 7.1 Hz).

¹³C NMR (100 MHz, CD₃OD) δ: 209.3, 198.7, 190.8, 176.6, 105.1, 103.5, 61.5, 36.9, 24.9, 19.4, 7.2.

HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₃H₁₈O₄, 239.1283; found, 239.1286.

2-Isobutyryl-3-dihydroxy-5-methoxy-4,6,6-trimethylcyclohexa-2,4-dienone (**15**). To a solution of **14** (5.0 g, 0.021 mol, 1 equiv.) in a mixture of anhydrous MeOH (12 mL) and EtOAc (60 mL), TMSCHN₂ (73.5 mL, 0.147 mol, 2 M in diethyl ether) was added slowly at -78 °C under nitrogen atmosphere, and the resulting mixture was stirred for 3 h. Then acetic acid was added to destroy the excess TMSCHN₂. The mixture was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography (petroleum ether-EtOAc, 100:0 \rightarrow 97:3, v/v) to afford **15** (4.76 g, 90%).

 $R_f = 0.54$ (petroleum ether/EtOAc, 95:5).

2:1 mixture of tautomers in CDCl₃

Data for major tautomer 15:

¹H NMR (400 MHz, CDCl₃) δ : 4.10 (1H, hept, J = 6.8 Hz), 3.90 (3H, s), 1.93 (3H, s),

1.29 (6H, s), 1.10 (6H, d, *J* = 7.0 Hz).

¹³C NMR (100 MHz, CDCl₃) δ: 208.7, 197.1, 190.7, 176.6, 112.4, 105.9, 62.2, 50.6, 35.6, 24.4, 19.0, 9.70.

Data for major tautomer **15**:

¹H NMR (400 MHz, CDCl₃) δ : 3.95 (1H, hept, J = 6.8 Hz), 3.83 (3H, s), 1.87 (3H, s),

1.41 (3H, s), 1.12 (3H, d, *J* = 7.0 Hz).

¹³C NMR (100 MHz, CDCl₃) δ: 211.3, 198.1, 185.5, 170.3, 118.3, 108.4, 62.0, 45.2, 36.6, 29.8, 19.0, 10.1.

HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₄H₂₁O₄, 253.1440; found, 253.1438.

2, 4, 6-trihydroxybenzaldehyde (16). To a solution of phloroglucinol (10.0 g, 0.079 mol, 1 equiv) in anhydrous acetonitrile (200 ml) was added DMF (6.7 ml, 0.087 mol, 1.1 equiv) and POCl₃ (8.7 ml, 0.087 mol, 1.1 equiv) at 0 $^{\circ}$ C in an ice bath. Remove ice bath and the solution was stirred for 2 h. To the reaction mixture was added water and then refluxed for 30 min. When the solution cooled down, EtOAc (3 × 100 mL) was added to extract. The combined organic layers were washed with brine, dried over Na₂SO₄, filtration and then concentration in vacuo. The residue was purified by silica gel column chromatography (petroleum ether-acetone, 4:1, v/v) to yield **16** (11.0 g, 90%) as a white solid.

 $R_f = 0.36$ (petroleum ether/acetone, 2:1).

¹H NMR (300 MHz, DMSO-*d*₆) δ: 11.40 (1H, br s), 10.75 (1H, br s), 9.93 (1H, s), 5.79 (2H, s).

¹³C NMR (75 MHz, DMSO-*d*₆) δ: 190.9, 167.2, 164.0, 104.5, 94. 1.

HRMS-ESI (*m*/*z*) [M - H]⁻ calcd for C₇H₅O₄, 153.0188; found, 153.0197.

1,3,5-trihydroxy-2-methylbenzene (17). To a solution of **16** (10.0 g, 0.065 mol, 1 equiv) in THF (200 ml) was added sodium cyanoborohydride (12.3 g, 0.19 mol, 3 equiv) and methyl orange as PH indicator at 0 $^{\circ}$ C in an ice bath, and 3 M HCl was added to keep the reaction mixture red (acidic environment). Remove ice bath and the solution was stirred until consumption of the starting material. THF was removed under reduced pressure to give the residue, which was disolved in H₂O and extracted with EtOAc (3 × 100 mL). The combined organic layers were dried over Na₂SO₄, filtration and concentration in vacuo to gave a residue, which was purified by silica gel column chromatography (petroleum ether-acetone, 6:1, v/v) to yield **17** (5.0 g, 55%) as a white solid.

 $R_f = 0.26$ (petroleum ether/acetone, 2:1).

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.79 (2H, s), 8.66 (s, 1H), 5.77 (2H, s), 1.81 (3H,

s).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 156.4, 155.4, 100.7, 94.0, 7.9.

HRMS-ESI (*m*/*z*) [M - H]⁻ calcd for C₇H₇O₃, 139.0395; found, 139.0398.

2, 4, 6-trihydroxy-3-methylisobutyrophenone (11). To a stirred suspension of 17 (5.0 g, 0.036 mol, 1 equiv) in nitrobenzene (80 mL) was added aluminium trichloride (19.0 g, 0.143 mol, 4 equiv), and the mixture was stirred at room temperature for 30 min. Then isobutyryl chloride (4.4 mL, 0.043 mol, 1.2 equiv) was added slowly and the resulting mixture was stirred at 65 °C for 12 h. Afterwards, the mixture was cooled down to room temperature, poured into iced HCl solution, and extracted with ethyl acetate (3 \times 100 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. The crude residue was purified by silica gel column chromatography (petroleum 10:1, v/v) afford ether-acetone, to isobutyrylphloroglucinol (11, 6.2 g, 83.0%) as brown powder.

 $R_f = 0.23$ (petroleum ether/acetone, 4:1).

¹H NMR (300 MHz, CD₃OD) δ : 5.90 (1H, s), 4.00 (1H, hept, J = 6.7 Hz), 1.92 (3H, s), 1.13 (6H, d, J = 6.8 Hz).

¹³C NMR (75 MHz, CD₃OD) δ: 211.8, 165.2, 163.6, 160.9, 104.5, 103.7, 95.0, 39.9, 19.7, 7.3.

HRMS-ESI (m/z) [M – H]⁻ calcd for C₁₁H₁₃O₄, 209.0814; found, 209.0825.

Compound 10. To a solution of 15 (500 mg, 1.98 mmol, 1 equiv) in THF (10 mL) at -78 °C under nitrogen atmosphere, DIBAL-H (4.0 mL, 2 equiv, 1 M in hexane) was added dropwise, and the resulting solution was stirred at room temperature for 1 h. Then 2 M HCl (10 mL) was added to destroy the excess DIBAL-H. The mixture was diluted in water and extracted with EtOAc (3 × 20 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. The crude compound **4** was unstable and used immediately for the next step.

Baeckenon B (5). To a solution of **11** (2.0 g, 9.5 mmol, 1.0 equiv) in toluene (50 mL) was added *ter*-BuOK (2.13 g, 19.0 mmol, 2 equiv), and the resulting solution was stirred at room temperature for 15 min. Then a solution of Michael acceptor **10** (2.69 g, 11.4 mmol, 1.2 equiv,) was added to a suspension of **11**. The resulting mixture was stirred at -60 °C under nitrogen atmosphere until consumption of the starting material. The reaction was quenched with saturated aqueous NH₄Cl and extracted with EtOAc (3 × 100 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. The crude residue was purified by silica gel column chromatography (petroleum ether-acetone, 100:0→70:30, v/v) to afford baeckenon B (**5**, 3.5 g, 83%), which could be resolved into (+)-**5** (180 mg) and (-)-**5** (165 mg) on a semipreparative chiral OD-H column (250 × 10 mm, 5 µm).

 $R_f = 0.56$ (petroleum ether/EtOAc, 4:1).

 (\pm) -**5**: $[\alpha]_{D}^{20} = 0$ (*c* 0.1, MeOH)

(+)-*R*-**5**: $[\alpha]_{D}^{20} = +38.3$ (*c* 0.4, MeOH)

(-)-*S*-**5**: $[\alpha]_{D}^{20} = -49.8$ (*c* 0.3, MeOH)

¹H and ¹³ NMR see Table S1.

HRMS-ESI (m/z) [M + H]⁺ calcd for C₂₅H₃₅O₇, 447.2383; found, 447.2383.

Chiral HPLC chromatogram of (\pm) -5

[Chiral HPLC separation of (\pm)-5 was carried out on a Daicel Chiralcel OD-H (250 × 10 mm, 5 µm), using *n*-hexane:2-propanol (80:20, v/v) as mobile phase at a flow rate of 4 mL/min at room temperature with UV detection at 254 nm.]

Quantum chemical ECD calculation for 5

The systematic random conformational analysis of the enantiomers of (7S)-5 was performed in the SYBYL 8.1 program by using the Monte Carlo protocol at the MMFF94s level. Considering a cutoff of 10 kcal/mol, 6 minimum energy conformers for (7S)-5 were inferred to the global minima. All the obtained conformers were optimized using DFT at the B3LYP/6-31+G(d) level in gas phase, and 3 conformers were selected. All of the optimized stable conformers were used for TDDFT computation of the excited stats at the same levels, with the consideration of the first 50 excitations. The overall ECD curves of (7S)-5 were weighted by Boltzmann distribution of each conformer (with a half-bandwidth of 0.3eV) derived from their relative free energy values. The ECD spectra were produced by SpecDis 1.6 software.

DFT-optimized structures for low-energy conformers of (7S)-5 at B3LYP/6-31+G(d) level in methanol (PCM), with zero-point corrected free energies calculated at the same level (and Boltzmann population at 298K estimated thereof).

TDDFT-calculated spectra at B3LYP/6-31+G(d) level in methanol (PCM) for the low energy structures of (7S)-5, and the weighted average using Boltzmann populations at 298K. Gaussian band-shape with 0.3 eV applied to generate the spectra.

(+)- α -thujene (19). To a solution of 18 (1000 mg, 7.35 mmol, 1.0 equiv) in DMSO (4 mL) was added *ter*-BuOK (823 mg, 7.35 mmol, 1 equiv), and the resulting solution was stirred at 90 °C for 6 h. Afterwards, the mixture was cooled down to room temperature and poured into ice-water and extracted with n-hexane (3 × 20 mL). The combined organic layers were washed with saturated aqueous sodium sulfite solution (3 × 20 mL) and concentrated in vacuo to afford the crude product 19 (900.7 mg, 90%) as light yellow oil.

Compound 18 (partially characterised)

 $[\alpha]_{\rm D}^{20} = -67.6 \ (c \ 1.0, \ {\rm MeOH})$

¹H NMR (400 MHz, CDCl₃) δ : 4.80 (1H, s), 4.62 (1H, s), 0.95 (3H, d, J = 6.8 Hz), 0.88 (3H, d, J = 6.9 Hz).

¹³C NMR (100 MHz, CDCl₃) δ: 154.7, 101.7, 37.8, 32.7, 30.2, 29.1, 27.6, 19.9, 19.8, 16.2.

Compound 19 (partially characterised)

 $[\alpha]_{D}^{20} = +40.3 (c \ 1.0, \text{MeOH})$

¹H NMR (400 MHz, CDCl₃) δ : 4.98 (1H, s), 0.97 (3H, d, J = 6.8 Hz), 0.92 (3H, d, J = 6.9 Hz).

¹³C NMR (100 MHz, CDCl₃) δ: 145.3, 121.1, 36.7, 34.2, 33.0, 31.5, 21.6, 20.3, 20.0, 16.5.

HRMS-ESI (m/z) [M + H]⁺ calcd for C₁₀H₁₇, 137.1330; found, 137.1333.

*Compounds***1**–**4**. To a solution of (+)-**5** or (–)-**5** (100 mg, 0.22 mmol, 1.0 equiv) and **19** (152 μ L, 0.67 mmol, 3 equiv) in THF (5 mL) at –78 °C was added Ag₂O (56.1 mg, 0.242 mmol, 1.1 equiv,) and TEMPO (41.2 mg, 0.264 mmol, 1.2 equiv). The resulting mixture was stirred at –78 °C for 1 h, then warmed to room temperature and stirred for another 2 h. The reaction solution was filtered and concentrated in vacuo. The crude residue was purified by silica gel column chromatography (petroleum ether-acetone, 90:10, v/v) to afford the meroterpenoids-rich fraction. This fraction was separated by recycled preparative HPLC (MeOH-H₂O, 92:8, v/v) to yield **1** (52 mg, 40%), and **4** (44 mg, 34%), or **2** (49 mg, 37%), and **3** (46 mg, 35%), respectively. Baefrutone A [**1**, yellowish crystals (MeOH)]:

 $R_f = 0.43$ (petroleum ether/EtOAc 95:5). $[\alpha]_D^{20} = -123.5$ (*c* 1.3, MeOH). ¹H and ¹³ NMR see Table S2. HRMS-ESI (*m*/*z*) [M + H]⁺ calcd for C₃₅H₄₉O₇, 581.3478; found, 581.3472.

(+)-Baefrutone B (2, light yellow oil):

 $R_f = 0.44$ (petroleum ether/EtOAc 95:5). $[\alpha]_D^{20} + 26.7$ (c 0.6, MeOH). ¹H and ¹³ NMR see Table S3. HRMS-ESI (*m/z*) $[M + H]^+$ calcd for $C_{35}H_{49}O_7$, 581.3478; found, 581.3473.

Baefrutone C (3, light yellow oil):

 $R_f = 0.41$ (petroleum ether/EtOAc 95:5). $[\alpha]_D^{20} - 16.7$ (c 0.1, MeOH). ¹H and ¹³ NMR see Table S4. HRMS-ESI (*m*/*z*) [M + H]⁺ calcd for C₃₅H₄₉O₇, 581.3478; found, 581.3478.

(+)-Baefrutone D (4, light yellow oil)

 $R_f = 0.42$ (petroleum ether/EtOAc 95:5). $[\alpha]_D^{20}$ +23.2 (c 0.4, MeOH). ¹H and ¹³ NMR see Table S5. HRMS-ESI (*m*/*z*) [M + H]⁺ calcd for C₃₅H₄₉O₇, 581.3478; found, 581.3479.

	$^{1}\mathrm{H}$					¹³ C				
no.	natu	ral ^a	synthe	etic ^b	error, $\Delta\delta$	nati	ural ^a	synth	etic ^b	error, $\Delta \delta$
	major	minor	major	minor	(natsyn.)	major	minor	major	minor	(natsyn.)
1	_	_	-	_	_	191.8	192.4	191.8	192.4	0/0
2	_	_	-	_	_	116.7	116.2	116.7	116.1	0/0.1
3	_	_	-	_	_	174.4	174.5	174.3	174.4	0.1/0.1
4	_	_	-	_	_	44.0	44.2	44.1	44.2	-0.1/0
5	_	_	-	_	_	175.8	174.5	175.8	174.5	0/0
6	_	_	-	_	_	113.9	114.1	114.0	114.1	-0.1/0
7	3.77, d (10.9)	3.95, m	3.78 , d (11.0)	3.95, m	-0.01/0	39.2	40.3	39.3	40.3	-0.1/0
8	3.13, m	3.13, m	3.13, m	3.13, m	0/0	26.2	26.5	26.3	26.5	-0.1/0
9	0.79, d (6.4)	0.75, d (6.4)	0.80, d (6.4)	0.75, d (6.4)	-0.1/0	22.2	22.1	22.2	22.0	0/0.1
10	0.85, d (6.4)	0.83, d (6.4)	0.84, d (6.4)	0.83, d (6.4)	0.1/0	22.0	22.0	22.1	22.0	-0.1/0
11	1.90, s	1.91, s	1.90, s	1.91, s	0/0	10.0	10.4	10.0	10.4	0/0
1'	_	_	_	_	_	109.3	109.4	109.4	109.5	-0.1/-0.1
2'	_	_	_	_	_	161.3	161.2	161.4	161.3	-0.1/-0.1
3'	-	_	-	-	_	102.8	102.9	102.8	102.9	0/0
4'	_	_	_	_	_	155.6	155.5	155.6	155.5	0/0
5'	_	_	_	_	_	102.6	102.7	102.7	102.8	-0.1/-0.1
6'	_	_	_	_	_	162.2	162.5	162.2	162.5	0/0
7'	_	_	_	_	_	211.0	211.6	211.0	211.6	0/0
8'	4.00-3.91, m	4.00-3.91, m	4.00-3.91, m	4.00-3.91, m	0/0	39.1	39.2	39.1	39.2	0/0
9'	1.21, d (6.7)	1.21, d (6.7)	1.21, d (7.0)	1.21, d (7.0)	0/0	19.6	19.5	19.7	19.5	0.1/0
10'	1.18, d (6.7)	1.18, d (6.7)	1.18, d (7.0)	1.18, d (7.0)	0/0	19.5	19.6	19.5	19.6	0/0

Table S1. Comparison of ¹H, ¹³C NMR data for the synthetic and isolated natural backenon B (**5**).

3-OMe	3.87, s	3.86, s	3.87, s	3.87, s	0/-0.1	62.1	62.0	62.1	62.0	0/0
5-OH	9.69	9.69	9.67	9.67	0.02/0.02	_	-	-	-	_
2'-OH	10.50	10.50	10.49	10.49	0.01/0.01	_	-	-	-	_
4'-OH	11.31	11.31	11.29	11.29	0.02/0.02	_	_	-	-	_
6'-OH	12.38	12.38	12.37	12.37	0.01/0.01	_	_	-	-	_

^{*a*}Recorded at 400 (¹H) and 100 (¹³C) MHz. ^{*b*}Recorded at 300 (¹H) and 75 (¹³C) MHz.

	$^{1}\mathrm{H}$					¹³ C				
no.	natu	ıral ^a	synth	netic ^a	error, $\Delta\delta$	natu	ral ^a	synthe	etic ^a	error, $\Delta \delta$
	major	minor	major	minor	(natsyn.)	major	minor	major	minor	(natsyn.)
1	_	-	-	-	_	191.4	192.6	191.4	192.5	0/0.1
2	_	_	_	_	_	117.0	116.3	116.9	116.2	0.1/0.1
3	_	_	_	_	_	174.3	174.1	174.3	174.1	0/0
4	_	_	_	_	_	43.7	44.0	43.7	43.9	0/0.1
5	_	-	-	_	_	174.3	173.6	174.3	173.6	0/0
6	_	_	_	_	_	114.5	114.3	114.4	114.2	0.1/0.1
7	3.58, d (10.7)	3.99, d (11.2)	3.58, d (10.8)	3.98, d (11.4)	0/0.01	40.2	40.0	40.1	39.9	0.1/0.1
8	3.15, m	3.05, m	3.14, m	3.05, m	0.01/0	26.4	27.4	26.4	27.3	0/0.1
9	0.79, d (6.2)	0.87, d (6.4)	0.79, d (6.2)	0.86, d (6.4)	0/0.01	22.4	22.3	22.4	22.3	0/0
10	0.75, d (6.2)	0.74, d (6.4)	0.74, d (6.2)	0.74, d (6.4)	0.01/0	21.7	21.7	21.7	21.7	0/0
11	1.91, s	1.93, s	1.90, s	1.92, s	0.01/0.01	10.1	10.5	10.1	10.5	0/0
12	1.45, s	1.40, s	1.44, s	1.40, s	0.01/0	23.9	24.0	23.9	24.0	0/0
13	1.36, s	1.30, s	1.35, s	1.29, s	0.01/0.01	24.0	23.7	24.0	23.7	0/0
1'	_	-	-	_	_	106.8	107.0	106.7	107.0	0.1/0
2'	_	-	-	_	_	158.4	158.5	158.4	158.5	0/0
3'	_	-	-	_	_	106.0	106.3	105.9	106.2	0/0
4'	_	-	-	_	_	163.2	162.9	163.1	162.9	0.1/0
5'	_	-	-	_	_	98.5	99.5	98.4	99.4	0.1/0.1
6'	_	-	—	_	_	155.3	155.1	155.3	155.0	0/0.1
7'	_	_	—	_	_	212.4	212.5	212.3	212.5	0.1/0
8'	4.20, m ^b	4.16, m^{b}	4.20, m ^b	4.15, m ^b	0/0.01	39.6	39.6	39.6	39.6	0/0

Table S2. Comparison of ¹H, ¹³C NMR data for the synthetic and isolated natural baefrutone A (1) in CDCl₃.

					0.01/0.01	20.0	20.1	20.0	201	0.10
9'	1.22, d (6.8)	1.21, d (6.9)	1.21, d (6.8)	1.20, d (6.9)	0.01/0.01	20.0	20.1	20.0	20.1	0/0
10'	1.16, d (6.8)	1.15, d (6.9)	1.15, d (6.8)	1.14, d (6.9)	0.01/0.01	19.1	19.3	19.1	19.3	0/0
11'a	2.71, d (17.2)	2.66–2.58, m	2.70, d (17.2)	2.66–2.58, m	0.01/0	17.4	17.5	17.3	17.4	0.1/0.1
11'b	2.47, dd (17.2, 6.8)		2.46, dd (17.2, 6.8)		0.01					
1"	-	_	_	_	_	89.1	89.1	89.0	89.0	0.1/0.1
2"	$1.91 - 1.85, m^b$	1.91–1.85, m ^b	1.91–1.85, m ^b	1.91–1.85, m ^b	0/0	34.8	34.4	34.7	34.3	0.1/0.1
3"a	1.72, dd (12.3, 7.2)	1.93, m ^b	_ ^c			31.3	36.1	31.1	36.0	0.2/0.1
3"b	1.53, m ^b	1.42, m^b								
4"	-	_	-	_	_	32.7	32.7	32.7	32.7	0/0
5"a	$0.65, m^b$	0.63, m ^b	0.65, m ^b	0.63, m ^b	0/0	14.1	8.6	14.1	10.1	0/-1.5
5''b	0.59, dd (8.3, 5.7)	0.48, dd (5.8, 3.3)	0.58, dd (8.3, 5.7)	0.47, dd (5.8, 3.3)	0.01/0.01					
6"	1.48, dd (8.3, 3.2)	1.66, dd (8.6, 3.2)	1.48, dd (8.3, 3.2)	1.65, dd (8.6, 3.2)	0/0.01	33.5	31.7	33.4	31.5	0.1/0.2
7"	1.32, s	1.42, s	1.32, s	1.41, s	0/0.01	21.1	21.4	21.1	21.4	0/0
8"	1.40, m^b	1.82, m ^b	_ ^c			32.6	30.5	32.6	30.4	0/0.1
9"	0.95, d (7.0)	0.93, d (7.6)	0.95, d (7.0)	0.94, d (7.6)	0/-0.01	20.2	21.3	20.2	21.3	0/0
10"	0.92, d (7.0)	0.79, d (7.6)	0.92, d (7.0)	0.78, d (7.6)	0/0.01	20.1	18.6	20.1	18.5	0/0.1
3-OMe	3.89, s	3.88, s	3.88, s	3.87, s	0.01/0.01	62.1	62.1	62.1	62.0	0/0.1
5-OH	9.05, s	9.82, s	9.06, s	9.83, s	-0.01/-0.01	_	_	_	_	_
2'-OH	12.11, s	12.11, s	12.14, s	11.13, s	-0.03/0.98	_	_	_	_	_
4'-OH	14.21, s	14.10, s	14.24, s	14.13, s	-0.03/-0.03	_	_	_	_	_

^{*a*}Recorded at 500 (¹H) and 125 (¹³C) MHz. ^{*b*}Overlapped signals without designating multiplicity. ^{*c*}Unassigned signals.

	$^{1}\mathrm{H}$					¹³ C				
no.	natu	ıral ^a	syntl	netic ^a	error, $\Delta \delta$	natu	ral ^a	synth	etic ^a	error, $\Delta\delta$
	major	minor	major	minor	(natsyn.)	major	minor	major	minor	(natsyn.)
1	_	_	_	-	-	192.0	192.4	191.9	192.4	0.1/0
2	_	-	-	_	_	116.8	116.5	116.7	116.5	0.1/0
3	_	-	-	_	_	174.2	174.3	174.2	174.3	0/0
4	_	_	_	_	_	43.9	43.8	43.9	43.8	0/0
5	_	-	-	_	_	175.1	173.2	175.1	173.1	0/0.1
6	_	-	-	_	_	113.9	114.0	113.9	114.0	0/0
7	3.99, m	3.73, d (10.8)	3.98, m	3.73, d (10.8)	0.01/0	40.1	39.8	40.1	39.7	0/0.1
8	2.95, dp (12.6, 6.4)	3.18, dp (10.8, 6.4)	2.95, dp (12.6, 6.4)	3.18, dp (10.8, 6.4)	0/0	27.6	26.3	27.6	26.3	0/0
9	0.74, d (6.2)	0.71, d (6.3)	0.74, d (6.2)	0.71, d (6.3)	0/0	21.9	22.2	21.8	22.2	0.1/0
10	0.85, d (5.8)	0.79, d (6.4)	0.85, d (5.8)	0.79, d (6.4)	0/0	19.6	22.2	19.5	22.2	0.1/0
11	1.92, s	1.91, s	1.92, s	1.91, s	0/0	10.1	10.5	10.1	10.5	0/0
12	1.39, s	1.45, s	1.39, s	1.45, s	0/0	23.9	23.6	23.9	23.6	0/0
13	1.29, s	1.36, s	1.29, s	1.36, s	0/0	22.8	24.3	22.8	24.3	0/0
1'	_	_	_	_	_	107.3	107.9	107.3	107.9	0/0
2'	_	_	_	_	_	158.4	157.9	158.3	157.8	0.1/0.1
3'	_	-	-	_	_	106.0	106.1	106.0	106.1	0/0
4'	_	_	_	_	_	163.0	163.0	163.0	162.9	0/0.1
5'	_	-	-	_	_	99.1	99.3	99.1	99.3	0/0
6'	_	_	_	_	_	154.8	155.1	154.8	155.1	0/0
7'	_	_	_	_	_	212.6	212.4	212.5	212.3	0.1/0.1
8'	4.17, m ^b	4.17, m ^b	4.17, m ^b	4.17, m^{b}	0/0	39.7	39.6	39.7	39.7	0/-0.1

Table S3. Comparison of ¹H, ¹³C NMR data for the synthetic **2** and isolated natural baefrutone B in CDCl₃.

9'	1.14, d (6.7)	1.15, d (6.6)	1.14, d (6.7)	1.15, d (6.6)	0/0	19.1	18.3	19.1	18.8	0/-0.5
10'	1.20, d (6.7)	1.21, d (6.8)	1.20, d (6.7)	1.21, d (6.8)	0/0	20.1	19.9	20.1	19.9	0/0
11'a	2.58, m^{b}	2.68, d (17.5)	2.58, m^{b}	2.68, d (17.5)	0/0	17.9	17.2	17.8	17.2	0.1/0
11'b		2.49, dd (17.5, 4.9)		2.49, dd (17.5, 4.9)	0/0					
1"	_	-	-	_	_	88.6	89.1	88.6	89.1	0/0
2"	1.96–1.88, m ^b	1.88–1.80, m ^b	1.96–1.88, m ^b	1.88–1.80, m ^b	0/0	34.3	34.6	34.3	34.6	0/0
3"a	1.90, m^{b}	1.85, m ^b				35.5	33.4	35.5	33.3	0/0.1
3"b	$1.45, m^b$	1.55, m ^b								
4"	_	-	-	_	_	32.8	32.8	32.8	32.8	0/0
5"a	0.61, dd (8.4, 5.8)	0.57, d (5.8)	0.61, dd (8.4, 5.8)	0.57, d (5.8)	0/0	9.4	11.8	9.3	11.7	0.1/0.1
5''b	0.52, dd (5.8, 3.3)		0.52, dd (5.8, 3.3)		0/0					
б"	1.57, m	1.63, dd (8.5, 3.2)	1.57, m	1.63, dd (8.5, 3.2)	0/0	32.5	31.8	32.5	31.7	0/0.1
7"	1.36, s	1.32, s	1.36, s	1.32, s	0/0	21.0	23.8	21.0	23.8	0/0
8"	$1.57, m^b$	1.72, m^b				31.9	31.0	31.9	31.0	0/0
9"	0.93, d (6.4)	0.94, d (6.4)	0.92, d (6.4)	0.94, d (6.4)	0.01/0	20.9	20.3	20.9	20.3	0/0
10"	0.83, d (6.9)	0.81, d (6.9)	0.83, d (6.9)	0.81, d (6.9)	0/0	19.3	21.3	19.3	21.3	0/0
3-OMe	3.88, s	3.87, s	3.88, s	3.87, s	0/0	62.1	62.0	62.1	62.0	0/0
5-OH	9.64, s	9.13, s	9.65, s	9.13, s	-0.01/0	-	_	-	_	_
2'-OH	11.18, s	12.14, s	11.20, s	12.16, s	-0.02/-0.02	-	_	_	_	_
4'-OH	14.14, s	14.11, s	14.16, s	14.15, s	-0.02/-0.04	-	_	_	_	_

^{*a*}Recorded at 500 (¹H) and 125 (¹³C) MHz. ^{*b*}Overlapped signals without designating multiplicity. ^{*c*}Unassigned signals.

	${}^{1}\mathrm{H}$					¹³ C				
no.	natu	ıral ^a	synth	netic ^b	error, $\Delta\delta$	natur	al ^a	synthe	etic ^b	error, $\Delta \delta$
	major	minor	major	minor	(natsyn.)	major	minor	major	minor	(natsyn.)
1	_	-	-	_	_	191.8	192.4	191.8	192.4	0/0
2	_	-	_	_	_	116.8	116.2	116.8	116.3	0/-0.1
3	_	-	_	_	_	174.4	174.2	174.4	174.2	0/0
4	_	-	_	_	_	44.0	44.1	44.0	44.1	0/0
5	_	-	_	_	_	174.4	175.6	174.4	175.6	0/0
6	_	-	_	_	_	114.0	114.2	114.1	114.3	-0.1/-0.1
7	3.76, d (10.9)	3.85, m ^{<i>c</i>}	3.77, m	3.85, m ^c	-0.1/0	40.0	38.9	40.1	38.9	-0.1/0
8	3.16–3.10, m ^c	3.16–3.10, m ^c	3.16–3.10, m ^c	3.16–3.10, m ^c	0/0	26.3	26.5	26.3	26.5	0/0
9	0.85, d (6.5)	0.83, d (6.7)	0.85, d (6.5)	0.83, d (6.7)	0/0	22.2	22.1	22.2	22.1	0/0
10	0.78, d (6.5)	0.77, d (6.7)	0.78, d (6.5)	0.77, d (6.7)	0/0	22.2	22.3	22.1	22.3	0.1/0
11	1.90, s	1.92, s	1.90, s	1.92, s	0/0	10.0	10.4	9.9	10.4	0.1/0
12	1.40, s	1.41, s	1.40, s	1.41, s	0/0	23.9	24.0	23.9	24.0	0/0
13	1.30, s	1.32, s	1.31, s	1.32, s	-0.01/0	24.2	23.8	24.2	23.9	0/-0.1
1'	_	-	_	_	_	108.1	108.0	108.2	108.0	-0.1/0
2'	_	-	-	_	_	162.0	161.9	162.0	162.1	0/-0.2
3'	_	-	_	_	_	103.5	103.6	103.6	103.7	-0.1/-0.1
4'	_	-	_	_	_	154.8	154.7	154.9	154.7	-0.1/0
5'	_	-	_	_	_	100.6	100.3	100.7	100.4	-0.1/-0.1
6'	_	-	_	_	_	162.6	163.0	162.7	163.1	-0.1/-0.1
7'	_	-	_	_	_	211.1	210.7	211.1	210.7	0/0
8'	4.02, p (6.9)	4.02, p (6.9)	4.02, p (6.9)	4.02, p (6.9)	0/0	39.0	38.8	39.1	38.8	-0.1/0

Table S4. Comparison of ¹H, ¹³C NMR data for the synthetic and isolated natural baefrutone C (3) in CDCl₃.

9'	0.88, d (6.8)	0.86, d (6.6)	0.87, d (6.8)	0.85, d (6.6)	0.1/0.1	19.9	20.1	19.9	20.1	0/0
10'	0.81, d (6.8)	0.79, d (6.6)	0.80, d (6.8)	0.79, d (6.6)	0.1/0	20.0	20.0	20.0	20.0	0/0
11'a	2.70, dd (17.2)	2.69, d (17.5)	2.71, m	2.67, m	-0.1/0.2	18.0	18.1	18.0	18.2	0/-0.1
11'b	2.46, dd (17.2, 6.8)	2.53, dd (17.5, 7.3)	2.46, dd (17.2, 6.8)	2.53, dd (17.5, 7.3)	0/0					
1"	_	_	_	_	_	86.5	86.2	86.6	86.2	-0.1/0
2"	1.87–1.79, m ^c	1.87–1.79, m ^c	$_^d$	d	d	33.8	35.0	33.9	35.1	-0.1/-0.1
3"a	1.80, m ^{<i>c</i>}	1.80, m ^{<i>c</i>}	$_^d$	$_^d$	$_^d$	32.5	32.4	32.6	32.2	-0.1/0.2
З'"b	$1.45, m^c$	1.45, m ^c	$-^d$	$_^d$	$_^d$					
4"	_	_	_	_	_	32.1	32.7	32.1	32.9	0/-0.2
5"	0.50, m ^c	0.89, m ^{<i>c</i>}	0.49, m ^c	0.89, m ^c	0.1/0	12.9	14.3	12.9	14.3	0/0
б"	1.50–1.25, m ^c	1.50–1.25, m ^c	$-^d$	$_^d$	$_^d$	32.2	32.1	32.2	32.1	0/0
7"	1.33, s	1.34, s	1.33, s	1.34, s	0/0	22.8	21.6	22.8	21.6	0/0
8"	1.50–1.25, m ^c	1.50–1.25, m ^c	$_^d$	$_^d$	d	34.0	33.4	34.2	33.5	-0.2/-0.1
9"	0.88, d (6.8)	0.86, d (6.6)	0.87, d (6.8)	0.86, d (6.6)	0.1/0	19.9	20.1	19.9	20.1	0/0
10"	0.81, d (6.8)	0.79, d (6.6)	0.80, d (6.8)	0.79, d (6.6)	0.1/0	20.0	20.0	20.0	20.0	0/0
3-OMe	3.86, s	3.86, s	3.86, s	3.86, s	0/0	62.1	62.0	62.0	61.9	0.1/0.1
5-OH	10.62, s	9.76, s	10.62, s	9.74, s	0/0.02	_	-	-	_	_
2'-OH	16.35, s	16.58, s	16.35, s	16.55, s	0/0.03	—	-	-	_	_
6'-OH	12.23, s	12.23, s	12.21, s	11.08, s	0.02/1.15	_	_	-	_	_

^{*a*}Recorded at 500 (¹H) and 125 (¹³C) MHz. ^{*b*}Recorded at 300 (¹H) and 75 (¹³C) MHz. ^{*c*}Overlapped signals without designating multiplicity. ^{*d*}Unassigned signals.

	$^{1}\mathrm{H}$					¹³ C				
no.	natu	ural ^a	synth	etic ^b	error, $\Delta\delta$	nat	ural ^a	synth	etic ^b	error, $\Delta \delta$
	major	minor	major	minor	(natsyn.)	major	minor	major	minor	(natsyn.)
1	_	_	_	_	_	191.8	192.3	191.7	192.3	0.1/0
2	_	_	—	_	_	116.8	116.3	116.8	116.3	0/0
3	_	_	_	_	_	174.2	174.3	174.2	174.4	0/-0.1
4	_	_	_	_	_	44.0	44.1	44.0	44.1	0/0
5	_	-	-	_	_	175.6	174.4	175.6	174.4	0/0
6	_	-	-	_	_	114.1	114.3	114.1	114.3	0/0
7	3.75, d (10.8)	3.87, d (10.8)	3.75, d (10.8)	3.87, m	0/0	39.2	40.0	39.2	40.0	0/0
8	3.11, m ^c	3.11, m ^c	3.11, m ^c	3.11, m ^c	0/0	26.3	26.6	26.3	26.6	0/0
9	0.84, d (6.5)	0.80, d (6.5)	0.84, d (6.5)	0.80, d (6.5)	0/0	22.2	22.1	22.2	22.1	0/0
10	0.78, d (6.5)	0.75, d (6.5)	0.78, d (6.5)	0.75, d (6.5)	0/0	22.1	22.0	22.1	22.0	0/0
11	1.91, s	1.91, s	1.91, s	1.91, s	0/0	10.0	10.4	10.0	10.4	0/0
12	1.41, s	1.33, s	1.41, s	1.33, s	0/0	24.3	24.0	24.3	23.9	0/0.1
13	1.32, s	1.31, s	1.33, s	1.31, s	-0.1/0	24.0	23.9	23.9	23.9	0.1/0
1'	_	_	_	_	_	108.1	108.2	108.0	108.2	0.1/0
2'	_	_	_	_	_	162.0	162.2	162.0	162.2	0/0
3'	_	_	_	_	_	103.6	103.7	103.6	103.7	0/0
4'	_	_	_	_	_	154.7	154.8	154.8	154.7	-0.1/0.1
5'	_	_	_	_	_	100.4	100.8	100.4	100.8	0/0
6'	_	-	—	_	_	162.7	163.0	162.7	163.0	0/0
7'	_	_	_	_	_	210.7	211.2	210.7	211.2	0/0
8'	4.03, p (6.7)	4.03, p (6.7)	4.03, p (6.7)	4.03, p (6.7)	0/0	38.8	38.9	38.8	38.9	0/0

Table S5. Comparison of ¹H, ¹³C NMR data for the synthetic **4** and isolated natural baefrutone D in CDCl₃.

9'	0.85, d (6.6)	0.85, d (6.5)	0.85, d (6.6)	0.85, d (6.5)	0/0	20.1	20.1	20.0	20.0	0.1/0.1
10'	0.81, d (6.6)	0.84, d (6.5)	0.81, d (6.6)	0.84, d (6.5)	0/0	19.8	19.9	19.9	19.9	-0.1/0
11'a	2.69, d (17.4)	2.70, d (17.4)	2.67, m	2.73, m	0.02/-0.03	17.9	18.3	17.8	18.3	0.1/0
11'b	2.52, dd (17.4, 7.3)	2.50–2.43, m ^c	2.52, dd (17.4, 7.3)	2.50–2.43, m ^c	0/0					
1"	_	_	-	_	_	86.1	86.8	86.1	86.8	0/0
2"	1.85–1.77, m ^c	1.86–1.81, m ^c	$-^d$	$_^d$	d	34.2	35.5	34.2	35.1	0/0.4
3"a	$1.72, m^{c}$	$1.74, m^c$	$-^d$	$_^d$	$_^d$	32.8	32.5	32.8	32.5	0/0
3''b	$1.45, m^{c}$	1.50, m^c	$-^d$	$_^d$	$_^d$					
4"	_	_	-	_	_	32.6	32.6	32.6	32.6	0/0
5"	$0.54-0.46, m^c$	$0.51, m^c$	$0.54-0.46, m^c$	$0.51, m^c$	0/0	12.3	13.0	12.3	13.0	0/0
6"	1.47 - 1.39, m ^c	1.47–1.39, m ^c	$-^d$	$_^d$	$_^d$	32.1	32.2	32.2	32.2	-0.1/0
7"	1.34, s	1.33, s	1.34, s	1.33, s	0/0	21.6	22.1	21.6	22.1	0/0
8"	$1.43-1.39, m^c$	$1.44-1.40, m^c$	$-^d$	$_^d$	$_^d$	33.6	33.9	33.5	33.9	0.1/0
9"	0.85, d (6.6)	0.85, d (6.5)	0.85, d (6.6)	0.85, d (6.5)	0/0	20.0	19.9	20.0	19.9	0/0
10"	0.81, d (6.6)	0.84, d, (6.5)	0.81, d (6.6)	0.84, d, (6.5)	0/0	19.8	20.0	19.5	19.6	0.2/0.4
3-OMe	3.87, s	3.86, s	3.87, s	3.86, s	0/0	62.0	61.9	62.0	61.9	0/0
5-OH	9.74, s	10.57, s	9.75, s	10.58, s	-0.01/-0.01	—	_	-	-	_
2'-OH	16.31, s	16.53, s	16.33, s	16.54, s	-0.02/-0.01	—	-	-	_	_
6'-OH	12.17, s	12.17, s	12.18, s	11.11, s	-0.01/1.06	_	_	_	_	_

^{*a*}Recorded at 500 (¹H) and 125 (¹³C) MHz. ^{*b*}Recorded at 300 (¹H) and 75 (¹³C) MHz. ^{*c*}Overlapped signals without designating multiplicity. ^{*d*}Unassigned signals.

Frutescones A,D–F (**6–9**). A solution of **10** (200 mg, 0.84 mmol, 1.0 equiv) and **20** (573 μ L, 2.54 mmol, 3 equiv) in mixture of toluene (6 mL) and H₂O (3 mL) was refluxed at 110 °C for 4 h until consumption of the starting material. Then the mixture was cooled down to room temperature and extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. The crude residue was purified by silica gel column chromatography (petroleum ether-acetone, 90:10, v/v) to afford the meroterpenoids-rich fraction. This fraction was separated by recycled preparative HPLC (CH₃CN-H₂O, 75:25, v/v) to yield **6** (27 mg, 7%), **7** (70 mg, 19%), **8** (62 mg, 17%), and **9** (81 mg, 22%), respectively.

Due to the flexible nine-membered ring of the caryophyllene unit, the ¹H and ¹³C NMR spectra of compounds **6** and **7** exhibited broad signals and incomplete signals at room temperature (298K), as can be found in some other caryophyllene-based meroterpenoids with oxa-spiro[5.8] tetradecadiene ring (Liu, C. et al. *Org. Lett.*, 2016, 18, 4004-4007; Liu, H. X. et al. *Org. Biomol. Chem.*, 2016, 14,7354–7360). Thus, the NMR spectra of synthetic compounds **6** and **7** were tested at a lower temperature 278K (600 MHz, CDCl₃), which displayed two sets of NMR signals, revealling two major equilibrating conformers ($\beta \alpha$ and $\beta \beta$), and they proved to be in accordance with those of natural compounds **6** and **7** recorded at 242K (600 MHz, CDCl₃).

Synthetic frutescone A (6, light yellow oil):

 $R_f = 0.32$ (petroleum ether/EtOAc 95:5). $[\alpha]_D^{20} = -86.6$ (*c* 0.2, MeOH). ¹H and ¹³ NMR see Table S6. HRMS-ESI (*m*/*z*) [M + H]⁺ calcd for C₂₉H₄₅O₃, 441.3363; found, 441.3367.

Synthetic frutescone D (7, light yellow oil):

 $R_f = 0.30$ (petroleum ether/EtOAc 95:5). $[\alpha]_D^{20} = +76.7$ (c 0.1, MeOH). ¹H and ¹³ NMR see Table S7. HRMS-ESI (*m*/*z*) [M + H]⁺ calcd for C₂₉H₄₅O₃, 441.3363; found, 441.3358.

Synthetic frutescone E (8, light yellow oil):

 $R_f = 0.22$ (petroleum ether/EtOAc 95:5). $[\alpha]_D^{20} = +114.8$ (c 0.1, MeOH). ¹H and ¹³ NMR see Table S8. HRMS-ESI (*m*/*z*) [M + H]⁺ calcd for C₂₉H₄₅O₃, 441.3363; found, 441.3366.

Synthetic frutescone F (9, light yellow oil):

 $R_f = 0.32$ (petroleum ether/EtOAc 95:5). $[\alpha]_D^{20} = -52.9$ (c 0.2, MeOH). ¹H and ¹³ NMR see Table S9. HRMS-ESI (*m*/*z*) [M + H]⁺ calcd for C₂₉H₄₅O₃, 441.3363; found, 441.3359.

HPLC spectrum of synthetic compound 6

HPLC spectrum of synthetic compound 7

[The HPLC spectra of synthetic compounds **6** and **7** were carried out on a Shim-pack VP-ODS column (150×4.6 mm, 5 μ m), using MeOH-H₂O (92:8, v/v) as mobile phase at a flow rate of 1 mL/min with UV detection at 254 nm.]

	$^{1}\mathrm{H}$					¹³ C				
no.	nat	ural ^a	synth	netic ^b	error, $\Delta \delta$	nat	ural ^a	synth	netic ^b	error, $\Delta\delta$
_	major	minor	major	minor	(natsyn.)	major	minor	major	minor	(natsyn.)
1	-	-	_	-	_	106.8	107.3	107.0	107.5	-0.2/-0.2
2	_	-	_	-	_	200.5	200.4	200.3	200.3	0.2/0.1
3	_	-	_	_	_	48.8	48.7	49.0	48.9	-0.2/-0.2
4	_	-	_	_	_	167.2	167.5	167.4	167.7	-0.2/-0.2
5	_	-	_	_	_	112.1	111.9	111.9	111.8	0.2/0.1
6	_	-	_	_	_	166.4	166.4	166.3	166.3	0.1/0.1
7	1.24, s	1.23, s	1.23, s	1.23, s	0.01/0	25.7	25.9	25.6	25.9	0.1/0
8	1.21, s	1.22, s	1.22, s	1.22, s	-0.01/0	22.8	22.7	22.8	22.6	0/0.1
9	1.74, s	1.71, s	1.74, s	1.72, s	0/-0.01	10.1	10.0	9.9	9.8	0.2/0.2
10	2.64, dt (9.0, 4.2)	2.70, dd (10.4, 6.7)	2.66, m	2.72, m	-0.02/-0.02	32.3	32.2	32.5	32.2	-0.2/0
11	2.05	1.60				32.2	32.4	32.4	32.5	-0.2/-0.1
12	1.00, d (6.4)	1.13, d (6.4)	0.98, d (6.5)	1.12, d (6.3)	0.02/0.01	20.8	22.5	20.8	22.5	0/0
13	0.80, d (6.9)	0.75, d (6.9)	0.89, d (6.7)	0.76, d (6.7)	-0.09/-0.01	20.9	21.0	20.9	21.0	0/0
1′	2.50	2.17				54.9	53.3	55.1	53.6	-0.2/-0.3
2′a	1.60	1.95				29.6	30.3	29.7	30.5	-0.1/-0.2
2′b	1.47	1.51								
3'a	2.46	2.07	2.47		-0.01/- ^c	36.8	39.9	37.0	40.0	-0.2/-0.1
З′Ъ	1.70	1.95	1.70	1.95	0/0					
4′	-	-	_	-	_	133.2	137.8	133.0	137.5	0.2/0.3
5'	5.07, d (12.1)	5.35, t (7.2)	5.08, d (12.0)	5.34, t (7.2)	-0.01/0.01	125.6	120.0	125.8	120.3	-0.2/-0.3
6'	2.30	2.40	C	C	C	23.7	22.3	23.3	22.4	0.4/-0.1
7'a	2.05	2.01	C			40.9	43.2	41.1	43.6	-0.2/-0.4

Table S6. Comparison of ¹H, ¹³C NMR data for the synthetic and isolated natural frutescone A ($\mathbf{6}$) in CDCl₃.

7′b	1.72	1.90								
8'	_	_	-	_	_	85.8	87.9	85.7	87.8	0.1/0.1
9′	1.35	1.57		C	C	47.8	46.4	48.1	46.8	-0.3/-0.4
10'	1.28	2.50				35.9	35.1	36.2	35.3	-0.3/-0.2
11'	_	_	_	_	_	31.1	31.1	31.2	31.2	-0.1/-0.1
12'	0.84, s	0.80, s	0.85, s	0.81, s	-0.01/-0.01	29.9	29.7	29.9	29.7	0/0
13'	0.88, s	0.89, s	0.89, s	0.90, s	-0.01/-0.01	24.7	23.1	24.7	23.1	0/0
14'	1.70, s	1.69, s		C	C	16.2	16.2	16.1	16.1	0.1/0.1
15'	1.71	1.90				24.6	23.9	24.6	24.1	0/-0.2
OMe	3.74, s	3.74, s	3.73, s	3.73, s	0.01/0.01	62.1	62.1	61.9	61.9	0.2/0.2

^{*a*}Recorded at 242K, 600 (¹H) and 150 (¹³C) MHz. ^{*b*}Recorded at 278K, 600 (¹H) and 150 (¹³C) MHz. ^{*c*}Unassigned signals.

	$^{1}\mathrm{H}$					¹³ C				
no.	nati	ural ^a	synth	etic ^b	error, $\Delta\delta$	n	atural ^a	synth	netic ^b	error, $\Delta\delta$
	major	minor	major	minor	(natsyn.)	major	minor	major	minor	(natsyn.)
1	_	-	-	_	-	108.1	108.1	108.4	108.4	-0.3/-0.3
2	_	_	-	_	_	188.7	188.8	188.6	188.6	0.1/0.2
3	_	-	-	_	_	117.2	117.2	117.4	117.2	-0.2/0
4	_	-	_	_	_	171.3	171.2	171.4	171.2	-0.1/0
5	_	-	-	_	_	42.9	42.9	43.0	43.2	-0.1/-0.3
6	_	-	_	_	_	169.4	168.7	169.4	168.7	0/0
7	1.84, s	1.85, s	1.86, s	1.86, s	-0.02/-0.01	10.3	10.2	10.3	10.2	0/0
8	1.25, s	1.23, s	1.27, s	1.24, s	-0.02/-0.01	24.7	24.8	24.8	25.0	-0.1/-0.2
9	1.18, s	1.15, s	1.20, s	1.17, s	-0.02/-0.02	23.0	23.1	22.9	23.2	0.1/-0.1
10	2.64, dq (7.6, 4.2)	2.70, dd (10.4, 6.2)	2.67, m	2.74, m	-0.03/-0.04	31.8	31.7	32.2	32.2	-0.4/-0.5
11	2.05, m	1.59, m				31.8	32.6	32.1	32.5	-0.3/0.1
12	0.81, d (6.4)	1.12, d (6.4)	0.80, d (6.5)	1.11, d (6.3)	0.01/0.01	20.8	21.4	20.8	21.3	0/0.1
13	0.97, d (6.8)	0.77, d (6.8)	0.97, d (6.6)	0.79, d (6.7)	0/-0.02	20.9	22.3	20.9	22.1	0/0.2
1'	2.45	2.13	2.45	2.13	0/0	54.5	52.4	54.7	52.7	-0.2/-0.3
2′a	2.01	1.71				30.5	29.7	30.7	29.8	-0.2/-0.1
2′b	1.52	1.43								
3'a	2.45	2.05	2.45	2.05	0/0	39.8	37.3	40.0	37.7	-0.2/-0.4
3′b	1.60	1.95								
4'	_	-	_	_	_	133.2	137.7	133.1	137.5	0.1/0.2
5'	5.06, d (12.1)	5.34, t (8.1)	5.09, d (12.0)	5.35, t (7.2)	-0.03/-0.01	125.6	119.9	125.9	120.2	-0.3/-0.3
6'	2.26	2.32	2.26	2.32	0/0	23.7	22.4	23.3	22.6	0.4/-0.2
7′a	2.05	1.93	2.05	1.93	0/0	40.3	42.8	40.5	43.0	-0.2/-0.2

Table S7. Comparison of ¹H, ¹³C NMR data for the synthetic and isolated natural frutescone D (7) in CDCl₃.

7′b	1.75	1.75			C					
8′	_	_	-	_	_	83.7	85.3	83.8	85.3	-0.1/0
9′	1.37, t (9.4)	1.61	1.41, t (9.6)		-0.04/- ^c	47.7	46.2	48.1	46.6	-0.4/-0.4
10'	1.22	2.45	_ ^c		<i>c</i>	36.6	35.2	37.0	35.5	-0.4/-0.3
11′	-	_	-	_	_	30.9	32.1	31.1	32.1	-0.2/0
12'	0.85, s	0.80, s	0.85, s	0.81, s	0/-0.01	29.9	29.7	30.0	29.9	-0.1/-0.2
13'	0.87, s	0.88, s	0.89, s	0.90, s	-0.02/-0.02	24.9	22.8	25.0	22.9	-0.1/-0.1
14'	1.68, s	1.69, s	_ ^c		<i>c</i>	16.2	16.2	16.1	16.1	0.1/0.1
15'	1.71	1.89	1.70	1.86	0.01/0.03	24.7	23.9	24.3	24.0	0.4/-0.1
OMe	3.79, s	3.79, s	3.80, s	3.80, s	-0.01/-0.01	62.0	62.0	61.9	61.9	0.1/0.1

^{*a*}Recorded at 242K, 600 (¹H) and 150 (¹³C) MHz. ^{*b*}Recorded at 278K, 600 (¹H) and 150 (¹³C) MHz. ^{*c*}Unassigned signals.

	$^{1}\mathrm{H}$			¹³ C		
No.	natural ^a	synthetic ^a	error, $\Delta \delta$ (natsyn.)	natural ^a	synthetic ^a	error, $\Delta \delta$ (natsyn.)
1	_	_	_	114.8	114.8	0
2	_	_	_	187.8	187.7	0.1
3	_	_	_	118.0	117.9	0.1
4	_	_	_	172.1	172.0	0.1
5	_	_	_	42.5	42.5	0
6	_	_	_	169.7	169.6	0.1
7	1.88, s	1.87, s	0.01	10.0	10.0	0
8	1.32, s	1.31, s	0.01	23.6	23.6	0
9	1.23, s	1.22, s	0.01	23.9	23.9	0
10	2.35, d (7.1)	2.34, dd (7.0, 2.6)	0.01	40.4	40.5	-0.1
11	2.05, m ^b	2.05, m^{b}	0	31.9	31.9	0
12	0.89, d (7.2)	0.89, d (7.1)	0	20.8	20.8	0
13	0.75, d (7.2)	0.74, d (7.0)	0.01	19.3	19.3	0
1′	2.10, m^{b}	2.10, m^{b}	0	54.2	54.2	
2′a	2.10, m ^b	2.10, m^{b}	0	21.8	21.9	-0.1
2′b	1.42, m^b	1.42, m^b	0			
3′a	2.05, m ^b	2.05, m^{b}	0	39.2	39.2	0
3Ъ	1.90, m^{b}	1.90, m ^b	0			
4'	_	-	_	82.7	82.6	0.1
5'	2.14, m ^b	2.14, m^{b}	0	38.4	38.5	-0.1
6'	1.56, m	1.56, m	0	36.2	36.2	0
7′a	2.45, m ^b	2.45, m ^b	0	35.5	35.5	0
7′b	2.03, m ^b	2.03, m ^b	0			
8'	_	_	_	152.8	152.8	0
9'	2.40, m^{b}	2.40, m^{b}		42.2	42.2	0
10'a	1.76, t (10.2)	1.75, t (10.5)	0.01	36.0	36.0	0
10′b						
11'	_	_	_	33.7	33.7	0
12'	1.02, s	1.01, s	0.01	30.7	30.7	0
13'	0.99, s	0.98, s	0.01	22.6	22.6	0
14'	0.99, s	0.98, s	0.01	21.3	21.2	0.1
15'	4.94, brs	4.93, brs	0.01	111.2	111.2	0
	4.88, brs	4.87, brs	0.01			
OMe	3.83, s	3.83, s	0	61.8	61.7	0

Table S8. Comparison of ¹H, ¹³C NMR data for the synthetic and isolated natural frutescone E (8) in CDCl₃.

^{*a*}Recorded at 300 (¹H) and 75 (¹³C) MHz. ^{*b*}Overlapped signals without designating multiplicity.

	${}^{1}\mathrm{H}$			¹³ C		
No.	natural ^a	synthetic ^b	error, $\Delta \delta$ (natsyn.)	natural ^a	synthetic ^b	error, $\Delta \delta$ (natsyn.)
1	_	_	_	112.6	112.6	0
2	_	_	_	188.2	188.2	0
3	_	_	_	117.4	117.4	0
4	_	_	_	171.9	171.9	0
5	_	_	_	42.7	42.6	0.1
6	_	_	_	168.9	168.9	0
7	1.89, s	1.87, s	0.02	10.1	10.1	0
8	1.30, s	1.29, s	0.01	24.4	24.4	0
9	1.28, s	1.27, s	0.01	23.5	23.5	0
10	2.70, m	2.70, m	0	35.8	35.8	0
11	2.03, m ^c	2.03, m ^c	0	26.0	25.9	0.1
12	1.17, d (6.8)	1.15, d (6.8)	0.02	26.8	26.7	0.1
13	0.64, d (7.0)	0.62, d (6.9)	0.02	19.7	19.6	0.1
1′	1.56, m ^c	1.56, m ^c	0	57.1	57.1	0
2′a	1.59, m ^c	1.59, m ^c	0	23.7	23.7	0
2′Ъ	1.33, m ^{<i>c</i>}	1.33, m ^c	0			
3′a	2.03, m ^c	2.03, m ^c	0	44.5	44.4	0.1
3Ъ	1.47, m	1.47, m	0			
4'	-	-	_	84.2	84.2	0
5'	1.78, m ^c	1.78, m ^c	0	39.6	39.6	0
6'	$1.71 - 1.81, m^c$	$1.71 - 1.81, m^c$	0	25.1	25.1	0
7′a	2.41, m	2.41, m	0	35.7	35.7	0
7′b	2.16, m	2.16, m	0			
8'	_	_	_	151.3	151.3	0
9′	2.43, m ^c	2.43, m ^c	0	41.7	41.7	0
10'a	1.70, m	1.70, m	0	36.6	36.6	0
10′b	1.58, m ^c	1.58, m ^c	0			
11′	_	_	_	34.4	34.4	0
12'	0.93, s	0.91, s	0.02	29.9	29.9	0
13'	0.96, s	0.95, s	0.01	21.9	21.8	0.1
14′	1.29, s	1.28, s	0.01	23.1	23.1	0
15'	4.88, brs	4.87, brs	0.01	110.9	110.8	0.1
OMe	3.83, s	3.82, s	0.01	61.8	61.7	0.1

Table S9. Comparison of ¹H, ¹³C NMR data for the synthetic and isolated natural frutescone E (9) in CDCl₃.

^{*a*}Recorded at 500 (¹H) and 125 (¹³C) MHz. ^{*b*}Recorded at 300 (¹H) and 75 (¹³C) MHz. ^{*c*}Overlapped signals without designating multiplicity.

Antimicrobial activity assay

Determination of the MIC values were conducted by the conventional broth microdilution method. Four pathogenic strains, *Pseudomonas aeruginosa* PA01, *Staphylococcus aureus* Newman, *Samonella paratyphi* ATCC 27853, and *Candida albicans* ATCC 10231, were grown on potato dextrose agar. The inoculum was standardized to approximately 5×10^5 CFU/mL, and the test compounds (100 µg/mL as stock solution in DMSO and serial dilutions) were transferred to a 96-well plate in triplicate, achieving a final volume of 200 µL. The plates were incubated at 37 ° C for 16 h, and MIC values were recorded as the lowest concentration of antibiotic at which no visible growth of bacteria and fungal was observed. Tetracycline, vancomycin, and fluconazole were used as the positive control.

NMR Spectra

²⁸⁰ 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 **Figure S1-2.** ¹³C NMR of compound **13** (100 MHz, CD₃OD)

Figure S2-2. ¹³C NMR of compound 14 (100 MHz, CD₃OD)

Figure S3-1. ¹H NMR of compound 15 (400 MHz, CDCl₃)

Figure S3-2. ¹³C NMR of compound 15 (100 MHz, CDCl₃)

Figure S4-2. ¹³C NMR of compound 16 (75 MHz, DMSO-*d*₆)

Figure S5-2. ¹³C NMR of compound 17 (75 MHz, DMSO-*d*₆)

Figure S6-2. ¹³C NMR of compound 11 (75 MHz, CD₃OD)

5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 f1 (ppm)

Figure S7-2. ¹³C NMR of compound 18 (100 MHz, CDCl₃)

Figure S8-2. ¹³C NMR of compound 19 (100 MHz, CDCl₃)

Figure S9-2. ¹³C NMR of synthetic 1 (125 MHz, CDCl₃)

14.21 14.10 12.11 9.82 9.05 9.05 9.05 9.05 9.05 3.88 3.59 3.59 3.57 2.73 2.73 .93 1.14 .87 .16 .⊎

Figure S10-1. ¹H NMR of natural 1 (500 MHz, CDCl₃)

$\begin{array}{c} 14.16\\ 14.15\\ 11216\\ 2.18\\ 2.28\\ 2.387\\ 2.28\\ 2.387\\ 2.28\\ 2.387\\ 2.28\\ 2.387\\ 2.28\\ 2.387\\ 2$

Figure S11-1. ¹H NMR of synthetic 2 (500 MHz, CDCl₃)

ő

HO

[] O

Figure S12-2. ¹³C NMR of natural baefrutone B (125 MHz, CDCl₃)

Figure S13-1. ¹H NMR of synthetic 3 (300 MHz, CDCl₃)

. . 22.5 32.6 32...

Figure S13-2. ¹³C NMR of synthetic 3 (75 MHz, CDCl₃)

Figure S13-3. NOESY of synthetic 3 (300 MHz, CDCl₃)

12.21 <t

Figure S14-1. ¹H NMR of natural 3 (500 MHz, CDCl₃)

Figure S14-2. ¹³C NMR of natural **3** (125 MHz, CDCl₃)

Figure S15-1. ¹H NMR of synthetic 4 (300 MHz, CDCl₃)

Figure S15-3. NOESY of synthetic 4 (300 MHz, CDCl₃)

Figure S16-2. ¹³C NMR of natural baefrutone D (125 MHz, CDCl₃)

Figure S17-2. ¹³C NMR of synthetic 5 (75 MHz, CDCl₃)

Figure S18-2. ¹³C NMR of synthetic 5 (100 MHz, CDCl₃)

Figure S18-4. HSQC of natural 5 (400 MHz, CDCl₃)

Figure S21-2. ¹³C NMR of synthetic 7 (278K, 150 MHz, CDCl₃)

Figure S22-1. ¹H NMR of natural 7 (242K, 600 MHz, CDCl₃)

Figure S22-2. ¹³C NMR of natural 7 (242K, 150 MHz, CDCl₃)

Figure S23-2. ¹³C NMR of synthetic 8 (75 MHz, CDCl₃)

Figure S24-2. ¹³C NMR of natural 8 (75 MHz, CDCl₃)

Figure S25-2. ¹³C NMR of synthetic 9 (75 MHz, CDCl₃)

Figure S26-2. ¹³C NMR of natural 9 (125 MHz, CDCl₃)