Supporting Information

Fluorinated Alcohol Mediated N, N^{\prime}-Dialkylation of Amino Acid Derivatives via Cascade [1,5]-Hydride Transfer/Cyclization for Concise Synthesis of Tetrahydroquinazoline
Hongjin Shi, ${ }^{\text {a }}$ Lubin Xu, ${ }^{\text {a }}$ Didi Ren,,${ }^{\text {a }}$ Liang Wang, *a, b Weisi Guo ${ }^{\text {b }}$ and Shuai-shuai $\mathrm{Li}^{*}{ }^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a. }}$ College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Rd. \#700, Qingdao 266109, P. R. China
${ }^{b}$. Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. \#53, Qingdao 266042, P. R. China

Table of Contents

1. General Procedure S2
2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S4
3. Determination of the Stereochemistry S37

1. General Procedure

1.1 Chiral induction with chiral amino acids Experiments

An oven-dried reaction tube was charged with 2 -aminobenzaldehyde $\mathbf{1 a}$ (1.0 equiv, 0.1 mmol), trifluoroethanol (TFE) (2 mL) and amino acid ester $\mathbf{6 c}$ (1.5 equiv., 0.15 mmol). The reaction mixture was stirred vigorously at $40{ }^{\circ} \mathrm{C}$ and monitored by TLC. After consumption of 1a, the reaction mixture was concentrated in vacuo and the residue was subjected to flash column chromatography for purification to afford product $7 \mathbf{c}$ in 91% yield with $\mathrm{dr}=5: 1$, and er $=74: 26$.

1.2 Gram-Scale Syntheses

An oven-dried reaction tube was charged with 2 -aminobenzaldehyde 1 a (1.0 equiv, 5 mmol), trifluoroethanol (TFE) (100 mL) and β-amino acids $\mathbf{2 a}$ (1.5 equiv., 6.5 mmol). The reaction mixture was stirred vigorously at room temperature and monitored by TLC. After consumption of 1a, the reaction mixture was concentrated in vacuo and the residue was subjected to flash column chromatography for purification to afford product $\mathbf{3 a}$ in 76% yield $(1.16 \mathrm{~g})$.

1.3 Control experiments

An oven-dried reaction tube was charged with 2 -aminobenzaldehyde $\mathbf{1 a}$ (1.0 equiv, 0.1 mmol), trifluoroethanol (TFE) (2 mL) and ethyl 2-((diphenylmethylene)amino) acetate 6b' (1.5 equiv., 0.15 $\mathrm{mmol})$. The reaction mixture was stirred vigorously at $40{ }^{\circ} \mathrm{C}$ and monitored by TLC. After consumption of $\mathbf{1 a}$, the reaction mixture was concentrated in vacuo and the residue was subjected to by flash column chromatography for purification to afford product $\mathbf{7 b}$ in 98% yield.

1) An oven-dried reaction tube was charged with 2 -aminobenzaldehyde $\mathbf{1 a}$ (1.0 equiv., 0.1 mmol), trifluoroethanol (TFE) (2 mL) and amino acid ester $\mathbf{6 c}$ (1.5 equiv., 0.15 mmol). The reaction mixture was stirred vigorously at $40{ }^{\circ} \mathrm{C}$ with 12 h . The reaction mixture was concentrated in vacuo and the residue was subjected to by flash column chromatography for purification to afford product 7 c in 80% yield.
2) An oven-dried reaction tube was charged with 2-aminobenzaldehyde $\mathbf{1 a}$ (1.0 equiv., 0.1 mmol), trifluoroethane (ol-D) (2 mL) and amino acid ester $\mathbf{6 c}(1.5$ equiv., 0.15 mmol$)$. The reaction mixture was stirred vigorously at $40^{\circ} \mathrm{C}$ with 12 h . The reaction mixture was concentrated in vacuo and the residue was subjected to by flash column chromatography for purification to afford product 7c in 67\% yield.

2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

3-(1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)propanoic acid (3a)

$\underbrace{}_{110}$

3-(8-(trifluoromethyl)-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)propanoic acid (3c)

춘 훙 웅

3-(8-bromo-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)propanoic acid (3d)

3-(6-fluoro-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)propanoic acid (3e)

वेशे

3-(6-bromo-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)propanoic acid (3f)
${ }_{5}^{5}$

3-(6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinazolin-6(5H)-yl)propanoic acid (3g)

3－（12，13－dihydro－6H－isoquinolino［2，1－a］quinazolin－5（4bH）－yl）propanoic acid（3h）

3 起送要

言

dr 3：1

碞	䴙		3	
Y	T 7	प行 Kiर行	i	4．47\％

dr 3：1

3-(1,2,3,3a-tetrahydronaphtho[1,8-ef]pyrrolo $[1,2-a][1,3]$ diazepin-4(5H)-yl)propanoic acid (3j)

3-methyl-2-(1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)butanoic acid (5a)

3-methyl-2-(1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)pentanoic acid (5b)

$\xrightarrow[8]{8}$	$\stackrel{\text { \% }}{3}$			$\stackrel{\square}{1}$	¢	$\begin{aligned} & y_{2}^{7} 7 \\ & \stackrel{\omega}{\top} \end{aligned}$	लेन	119	$\stackrel{\text { F }}{\substack{\text { ¢ }}}$	5

3-hydroxy-2-(1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)propanoic acid (5c)

dr 4:1

dr 4:1

[^0]
2-(1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)propanoic acid (5d)

dr 3:1

dr 3:1

dr 5:1

$\frac{8}{1}$

dr 5:1

3-phenyl-2-(1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)propanoic acid (5f)

$\underset{9.0}{8.5}$

2-phenyl-2-(1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)acetic acid (5g)

dr 2:1

\qquad

2-(1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)acetic acid (5h)

methyl 2-(1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)acetate (7a)

$\stackrel{\infty}{\stackrel{\infty}{\leftrightarrows}}$	$\underset{\frac{\tilde{G}}{1}}{\underset{\sim}{3}}$			$\begin{aligned} & \text { नें } \\ & \text { in } \end{aligned}$		$\stackrel{\text { O}}{\text { O }}$

ethyl2-(1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)acetate (7b)

dr 5:1

tert-butyl 2-(1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)acetate (7d)

ethyl 2-(8-(trifluoromethyl)-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)acetate (7e)
본를

(2,

ethyl 2-(8-methyl-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)acetate (7f)

ethyl 2-(7-cyano-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)acetate (7g)
露 解

NC

ethyl 2-(7-nitro-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)acetate (7h)

ethyl 2-(6-fluoro-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)acetate (7i)

ethyl 2-(6-chloro-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)acetate (7j)

ethyl 2-(6-bromo-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)acetate (7k)

dr 7:1

dr 7:1

ethyl 2-(7,11b,12,13-tetrahydro-6H-isoquinolino[2,1-a]quinolin-12-yl)acetate (7m)

ethyl 2-(6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinazolin-6(5H)-yl)acetate (7n)

3．Determination of the Stereochemistry

Chromaster 系统管理器报告

分析时间与日期：2018／11／16 00：56：37处理日期与时间：2019／08／21 20：56：57数据路径：E：\本帅帅 $\backslash 4 \backslash$ DATA $0063 \backslash$数据处理用方法文件：200－300元灯棋式－60／40
至统（数据采牮）：Clromaster
应用程序（数据）：4－羟基吲噪
样品名：CCQ－7088
进样次数： 1 of 1样品注释：

报告日期与时间： $2019 / 08 / 21 \quad 21: 17: 46$

至列：0063
样品瓶编号：1
样品瓶挚型：UNK
进样量：10．0 ul

色橧劵型：固定波长色橧， 254 nm

保田时间（nin）
数据处理用方法文件：200－300気灯棋式－60／40
方法文件的创注者：
泉1：5110十活春清洗
泵1沱剂A：正已烷
泉1浴剂B：异丙醉
票1湥剂C：
票1洛剂D：
方法文件的注霍：
色橧贽型：固定波长色谱， 254 m
峈的定量：面积
计算方法：面积\％

No．	RT	面积	面积\％
1	6.660	171672	46.430
2	7.233	198071	53.570
		369743	100.000

[^1]
Chromaster 系统管理器报告

分析时间与日期：2018／11／16 00：43：13处理日期与时间：2019／08／21 21：00：26数据路径：E：\李帅帅 $\backslash 4$ DATA $0062 \backslash$数据处理用方法文件：200－300気灯模式－60／40
系统（数据采集）：Chromaster
应用程序（数据）：4－羟基吲哚样品名：CCQ－7088进样次数： 1 of 1样品注释：

报告日期与时间：2019／08／21
21：24：18

色谱焱型：固定波长色谱， 254 nm

数据处理用方法文件：200－300気灯模式－60／40
方法文件的创廷者：
泉1：5110－活塞清洗
泵1溶剂A: 正己烷

栤1溶剂C：
泵1溶剂B：异丙醇泶1溶剂D：
方法文件的注释：
色谱㥪型：固定波长色谱， 254 nm
峰的定量：面积
计算方法：面积\％

No．	RT	面积	面积\％
1	6.667	360717	75.719
2	7.240	115674	24.281
		476391	100.000

判定峰的基准：0

[^0]:

[^1]: 判定峈的基准：0

