Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

## Supporting information for

2-Substituted 2'-Deoxyinosine 5'-Triphosphates as Substrates for Polymerase Synthesis of Minor-Groove-Modified DNA and Effects on Restriction Endonuclease Cleavage

Ján Matyašovský and Michal Hocek\*

#### **Contents:**

| Additional results, schemes, tables and figures          | <b>S</b> 2  |
|----------------------------------------------------------|-------------|
| Chemical synthesis                                       | S10         |
| Enzymatic synthesis and characterization of modified DNA | S20         |
| Post-synthetic modification of DNA                       | S27         |
| Thermal denaturation studies                             | S29         |
| References                                               | <b>S</b> 30 |
| Copies of MALDI spectra                                  | <b>S</b> 31 |
| Copies of NMR spectra                                    | S39         |

# Additional results, schemes, tables and figures



**Figure S1.** Structures of modified dNTPs used to study the effect of minor-groove modification on cleavage of DNA by restriction endonucleases

 Table S1. List of oligonucleotides

| Oligonucleotide            | Sequence $5' \rightarrow 3'$                                                            | Length |
|----------------------------|-----------------------------------------------------------------------------------------|--------|
| Prim15                     | CATGGGCGGCATGGG                                                                         | 15-mer |
| Prim15-FAM <sup>(a)</sup>  | CATGGGCGGCATGGG                                                                         | 15-mer |
| Prim_KpG-FAM               | CATGGGCGGCATGGGG                                                                        | 16-mer |
| Prim16-FAM                 | GGAGAAGTGAAAGTGG                                                                        | 16-mer |
| Temp19 <sup>(b)</sup>      | AAAC CCCATGCCGCCCATG                                                                    | 19-mer |
| Temp19-bio <sup>(c)</sup>  | AAAC CCCATGCCGCCCATG                                                                    | 19-mer |
| Temp31-TINA <sup>(d)</sup> | CTAGCATGAGCTCAGT CCCATGCCGCCCATG                                                        | 31-mer |
| Temp31-(bio)TINA (e)       | CTAGCATGAGCTCAGT CCCATGCCGCCCATG                                                        | 31-mer |
| Temp16                     | C CCCATGCCGCCCATG                                                                       | 16-mer |
| Temp26-bio                 | GAGGAATTTC CCACTTTCACTTCTCC                                                             | 16-mer |
| Temp_AfA <sup>(f)</sup>    | AACGACGACAGCGC <u>T</u> CCCATGCCGCCCATG                                                 | 30-mer |
| Temp_AfG                   | AAGTAGTAG <b>AG<u>C</u>G<u>C</u>T</b> CCCATGCCGCCCATG                                   | 30-mer |
| Temp_EcA                   | AACGACGAC <b>GAA<u>TT</u>C</b> CCCATGCCGCCCATG                                          | 30-mer |
| Temp_EcG                   | AAGTAGTAG <b>GAATT<u>C</u> CCCATGCCGCCCATG</b>                                          | 30-mer |
| Temp_KpA                   | AACGACGACGGTACC CCCATGCCGCCCATG                                                         | 30-mer |
| Temp_KpG                   | AAGTAGTAG <b>GGTA<u>C</u> CCCCATGCCGCCCATG</b>                                          | 30-mer |
| Temp_PsA                   | AACGACGACC <u>T</u> GCAG CCCATGCCGCCCATG                                                | 30-mer |
| Temp_PsG                   | AAGTAGTAG <u>C</u> TG <u>C</u> AG CCCATGCCGCCCATG                                       | 30-mer |
| Temp_PvA                   | AACGACGACCAGC <u>T</u> G CCCATGCCGCCCATG                                                | 30-mer |
| Temp_PvG                   | AAGTAGTAG <u>C</u> AG <u>C</u> TG CCCATGCCGCCCATG                                       | 30-mer |
| Temp_RsA                   | AACGACGACGGTACG CCCATGCCGCCCATG                                                         | 30-mer |
| Temp_RsG                   | AAGTAGTAGT <b>GTA<u>C</u>A</b> <i>CCCATGCCGCCCATG</i>                                   | 30-mer |
| Temp_SaA                   | AACGACGACGAGC <u>T</u> C CCCATGCCGCCCATG                                                | 30-mer |
| Temp_SaG                   | AAGTAGTAG <b>GAG<u>C</u>T<u>C</u> CCCATGCCGCCCATG</b>                                   | 30-mer |
| Temp_ScA                   | AACGACGACAG <u>T</u> AC <u>T</u> CCCATGCCGCCCATG                                        | 30-mer |
| Temp_ScG                   | AAGTAGTAGAGTACT CCCATGCCGCCCATG                                                         | 30-mer |
| ON19_1 <sup>R</sup> H      | CATGGGCGGCATGGG <sup>R</sup> HTTT                                                       | 19-mer |
| ON31_4 <sup>R</sup> H      | CATGGGCGGCATGGGACT <sup>R</sup> HA <sup>R</sup> HCTCAT <sup>R</sup> HCTA <sup>R</sup> H | 31-mer |
| ON26_1 <sup>V</sup> H      | GGAGAAGTGAAAGTGG <sup>V</sup> HAAATTCCTC                                                | 26-mer |

<sup>a</sup> 6-carboxyfluorescein (6-FAM) used for oligonucleotide labeling at 5'-end <sup>b</sup> primer sequences in template are in italic <sup>c</sup> template labeled by *ortho*-TINA at 5'-end <sup>d</sup> template labeled by *ortho*-TINA at 5'-end and biotinylated at 3'-end

<sup>f</sup> target palindromic sequence for the restriction enzyme are in bold (position of the modification in the product is underlined)



Figure S2. Structure of *ortho*-twisted intercalating nucleic acid (*o*-TINA).

| ON                                     | M (calcd) / Da | $M$ (found) $[M+H]^+ / Da$ |  |  |  |
|----------------------------------------|----------------|----------------------------|--|--|--|
| ON19_1 <sup>Me</sup> H                 | 5914.9         | 5916.0                     |  |  |  |
| ON19_1 <sup>v</sup> H                  | 5926.9         | 5929.0                     |  |  |  |
| ON31_4 <sup>Me</sup> H                 | 9613.3         | 9614.6                     |  |  |  |
| ON31_4 <sup>v</sup> H                  | 9661.3         | 9662.8                     |  |  |  |
| ON19_1 <sup>CM</sup> H                 | 6134.9         | 6137.6                     |  |  |  |
| ON31_4 <sup>CM</sup> H <sup>(a)</sup>  | 11037.6        | 11038.3                    |  |  |  |
| ON19_1 <sup>Cys</sup> H                | 6049.0         | 6050.5                     |  |  |  |
| ON31_4 <sup>Cys</sup> H <sup>(b)</sup> | 10448.4        | 10448.7                    |  |  |  |
| ON26_1 <sup>v</sup> H                  | 9652.8         | 9650.6                     |  |  |  |
| ON26_1 <sup>pept_1</sup> H             | 10060.5        | 10058.4                    |  |  |  |

Table S2. MALDI data of modified ONs

(a) product of reaction of two vinyl groups

<sup>(b)</sup> product of reaction of one vinyl group, found as a  $[M+K]^+$ 

| Table S3. Denaturing ter | mperatures of | DNA | duplexes             |
|--------------------------|---------------|-----|----------------------|
| DIT                      | <b>T</b> /00  |     | $1 \circ \alpha$ (a) |

| DNA                     | T <sub>m</sub> / °C | $\Delta T_{ m m}$ / °C $^{ m (a)}$ |
|-------------------------|---------------------|------------------------------------|
| DNA19_1G                | $70.9\pm0.2$        | _                                  |
| DNA19_1 <sup>Me</sup> H | $67.7\pm0.1$        | -3.2                               |
| DNA19_1 <sup>v</sup> H  | $67.6\pm0.1$        | - 3.3                              |
| DNA31_4G                | $78.6\pm0.1$        | _                                  |
| DNA31_4 <sup>Me</sup> H | $70.0\pm0.2$        | -2.2                               |
| DNA31_4 <sup>V</sup> H  | $69.9\pm0.1$        | -2.2                               |

 $(a) \Delta T_m = (T_{m \ mod} - T_{m \ +})/n_{mod}$ 



Figure S3. Structures of thiols used for post-synthetic modification of DNA.



Figure S4. Structures of peptides used for post-synthetic modification of DNA.



**Figure S5.** PAGE analysis of polymerase synthesis of DNA used for reaction with peptides. Lanes: 1, P: primer; 2, +: 26-mer ON synthesized using naturals dNTPs; 3, G-: negative control experiment, no dGTP used during PEX; 4, <sup>V</sup>H: 26-mer ON synthesized using **d<sup>V</sup>ITP** instead of dGTP.



Figure S6. Denaturing PAGE showing results of the optimization of the reaction between peptides containing cysteine and vinyl modified DNA ( $DNA26_1^VH$ ). Lanes: P: primer; st: starting  $DNA26_1^VH$ ; 1-6: products of reaction of vinyl modified DNA and corresponding peptide with increasing amount of the peptide.



Figure S7. Denaturing PAGE showing results of the optimization of the reaction between peptides containing cysteine and vinyl modified DNA ( $DNA26_1^VH$ ). Lanes: P: primer; 1: starting  $DNA26_1^VH$ ; 2-3: products of reaction of vinyl modified DNA and corresponding pept\_1-SH with increased reaction time.



**Figure S8.** PAGE analysis of DNAs with modified As ( $d^{R}ATPs$  used in PEX) inside the recognition site of restriction enzymes. Lanes: 1, P: primer; 2, A-: PEX in the presence of dCTP, dGTP and dTTP; 3, 5, 7, 9, 11, 13, 15, A+ or <sup>R</sup>A: PEX in the presence of dCTP, dGTP, dTTP and either dATP (A+) or corresponding modified  $d^{R}ATP$ ; 4, 6, 8, 10, 12, 14, 16, +RE: cleavage of DNAs by corresponding restriction enzymes.



**Figure S9.** PAGE analysis of DNAs with "modified Gs" (**d**<sup>R</sup>**ITPs** used in PEX) inside the recognition site of restriction enzymes. Lanes: 1, P: primer; 2, G-: PEX in the presence of dCTP, dATP and dTTP; 3, 5, 7, G+ or <sup>R</sup>H: PEX in the presence of dCTP, dATP, dTTP and either dGTP (G+) or corresponding modified **d**<sup>R</sup>**ITP**; 4, 6, 8, +RE: cleavage of DNAs by corresponding restriction enzymes.

| Enzyme |     | NH <sub>2</sub> A | Me<br>A | V<br>A | EA  | MAA | Me<br>H | v<br>H |
|--------|-----|-------------------|---------|--------|-----|-----|---------|--------|
| AfeI   | ++  | -                 | -       | -      | -   | -   | +++     | +      |
| EcoRI  | -   | -                 | -       | -      | -   | -   | +++     | ++     |
| KpnI   | +++ | +++               | +++     | +++    | +   | +   | +++     | +++    |
| PstI   | -   | -                 | -       | -      | -   | -   | -       | -      |
| PvuII  | -   | +++               | -       | -      | -   | -   | -       | -      |
| RsaI   | +++ | +++               | +++     | +++    | +++ | -   | ++      | +++    |
| SacI   | +++ | +++               | +++     | +++    | ++  | ++  | -       | -      |
| ScaI   | ++  | ++                | -       | +      | ++  | -   | -       | -      |

**Table S4**. Summary of the results of cleavage of minor-groove modified DNA by restriction endonucleases. <sup>(a)</sup>

(a) Approximate yields of cleavage: - = 0-25%; + = 25-50%; + + = 50-75%; ++ = 75-100%.

#### **Experimental part**

#### **Chemical synthesis**

#### **Materials and methods**

Reagents and solvents were purchased from Sigma-Aldrich and AlfaAesar. 2'-Deoxyguanosine was purchased from Berry&Associates, 2,6-dichloropurine from Sumika Fine Chemicals. 2-Amino-6-chloro-9-(3',5'-di-O-acetyl-2'-deoxy-β-Dribofuranosyl)purine 1 and 2,6-dichloro-9-[3',5'-di-O-(4-methylbenzoyl)-2'-deoxy-β-Dribofuranosyl]purine 6 were prepared as described previously.<sup>\$1,\$2</sup> The reactions were monitored by thin-layer chromatography using Merck silica gel 60 F254 plates and visualized by UV (254 nm). Column chromatography was performed using silica gel (40–63 µm). Reversed-phase high-performance flash chromatography (FPLC) purifications were done on an ISCO CombiFlash Rf+ apparatus with C-18 columns. Purification of nucleoside triphosphates was performed using HPLC (Waters modular HPLC system) on a column packed with 10 µm C18 reversed phase (Phenomenex, Luna C18 (2) 100 Å) or using a POROS HQ 50 µm packed column. NMR spectra were measured on a Bruker AVANCE 400 (<sup>1</sup>H at 401.0 MHz, <sup>13</sup>C at 100.8 MHz and <sup>31</sup>P at 162.0 MHz) and Bruker AVANCE 600 (<sup>1</sup>H at 600.1 MHz, <sup>13</sup>C at 150.9 MHz and <sup>31</sup>P at 202.4 MHz) NMR spectrometers in CDCl<sub>3</sub>, DMSO-d<sub>6</sub> or D<sub>2</sub>O solutions at 25 °C. Chemical shifts (in ppm,  $\delta$  scale) were referenced to the residual solvent signal in <sup>1</sup>H spectra ( $\delta$ (CHCl<sub>3</sub>) = 7.26 ppm,  $\delta$ ((CHD<sub>2</sub>)SO(CD<sub>3</sub>)) = 2.5 ppm) or to the solvent signal in <sup>13</sup>C spectra ( $\delta(CDCl_3) = 77.0$  ppm,  $\delta((CD_3)_2SO) = 39.7$  ppm). 1,4-Dioxane was used as an internal standard for D<sub>2</sub>O solutions (3.75 ppm for <sup>1</sup>H and 69.3 ppm for <sup>13</sup>C). Coupling constants (J) are given in Hz. The complete assignment of <sup>1</sup>H and <sup>13</sup>C signals was performed by an analysis of the correlated homonuclear H,H-COSY, and heteronuclear H,C-HSOC and H,C-HMBC spectra. Mass spectra were measured with a LCQ classic (Thermo-Finnigan) spectrometer using ESI or a Q-Tof Micro spectrometer (Waters, ESI source, internal calibration with lockspray). High resolution mass spectra were measured on a LTQ Orbitrap XL spectrometer (Thermo Fisher Scientific).

#### 6-Chloro-2-iodo-9-(3',5'-di-0-acetyl-2'-deoxy-β-D-ribofuranosyl)purine (2)



Starting protected nucleoside 1 (3.30 g, 9.0 mmol),  $I_2$  (2.27 g, 9.0 mmol), CuI (1.80 g, 9.4 mmol) and CH<sub>2</sub>I<sub>2</sub> (7.4 ml, 92.0 mmol) were suspended in dry THF (90 ml) and isopentyl nitrite (3.7 ml, 27.5 mmol) was added. The resulting mixture was refluxed for 45 min. After cooling it was filtered and most of volatiles were evaporated under reduced pressure. Residue was redissolved in CHCl<sub>3</sub> (150 ml) and poured into saturated Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution (100 ml). Mixture was stirred until change of color and then phases were separated. Water phase was extracted with CHCl<sub>3</sub> (2 x 100 ml),

collected organic phases were washed with brine (100 ml), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated. The title compound was isolated, after column chromatography ( $0 \rightarrow 50\%$  EtOAc in CH<sub>2</sub>Cl<sub>2</sub>), as a brown solid (2.86 g, 67%).

 $R_f = 0.32$  (50% EtOAc in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400.1 MHz, CDCl<sub>3</sub>): 2.09, 2.14 ( $2 \times s$ ,  $2 \times 3H$ , CH<sub>3</sub>CO); 2.70 (ddd, 1H, J = 14.2, J = 6.0, J = 2.7, H-2'b); 2.83 (ddd, 1H, J = 14.2, J = 7.8, J = 6.3, H-2'a); 4.36 – 4.39 (m, 3H, H-4', 5'); 5.38 – 5.43 (m, 1H, H-3'); 6.45 (dd, 1H, J = 7.8, J = 6.0, H-1'); 8.24 (s, 1H, H-8).

<sup>13</sup>C NMR (100.8 MHz, CDCl<sub>3</sub>): 20.96, 21.04 (CH<sub>3</sub>CO); 38.17 (CH<sub>2</sub>-2'); 63.65 (CH<sub>2</sub>-5'); 74.24 (CH-3'); 83.12 (CH-4'); 85.17 (CH-1'); 116.91 (C-2); 132.29 (C-5); 143.23 (CH-8); 150.89 (C-6); 151.88 (C-4); 170.36, 170.39 (CH<sub>3</sub>CO).

MS (ESI<sup>+</sup>): m/z (%): 503.0 (100) [(<sup>35</sup>Cl)M+Na]<sup>+</sup>, 505.0 (27) [(<sup>37</sup>Cl)M+Na]<sup>+</sup>. HRMS (ESI<sup>+</sup>): calculated for C<sub>14</sub>H<sub>14</sub>O<sub>5</sub>N<sub>4</sub>(<sup>35</sup>Cl)INa: 502.9590 found: 502.9586.

## 2-Iodo-3',5'-di-O-acetyl-2'-deoxyinosine (3)



To starting nucleoside **2** (2.78 g, 5.8 mmol) and CsOAc (3.33 g, 17.4 mmol) in dry DMF (45 ml), DABCO (0.07 g, 0.6 mmol) and Et<sub>3</sub>N (2.4 ml, 17.4 mmol) were added. This mixture was stirred at room temperature (25 °C) overnight, then H<sub>2</sub>O (30 ml) was added and stirring continued for another 30 min. Volatiles were evaporated, residue was dissolved in MeOH and coevaporated with silica gel. Purification by column chromatography (0  $\rightarrow$  10% MeOH in CH<sub>2</sub>Cl<sub>2</sub>) afforded the desired product (1.85 g, 69%).

 $R_{\rm f} = 0.26$  (10% MeOH in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (400.1 MHz, CDCl<sub>3</sub>): 2.11, 2.15 (2 × s, 2 × 3H, C**H**<sub>3</sub>CO); 2.65 (ddd, 1H, J = 14.2, J = 6.1, J = 2.6, H-2'b); 2.79 (ddd, 1H, J = 14.2, J = 7.7, J = 6.4, H-2'a); 4.32 – 4.41 (m, 3H, H-4',5'); 5.39 (dt, 1H, J = 6.4, J = 2.6, H-3'); 6.36 (dd, 1H, J = 7.7, J = 6.1, H-1'); 7.93 (s, 1H, H-8); 12.06 (bs, 1H, H-1).

<sup>13</sup>C NMR (100.8 MHz, CDCl<sub>3</sub>): 20.86, 20.96 (CH<sub>3</sub>CO); 38.23 (CH<sub>2</sub>-2'); 63.64 (CH<sub>2</sub>-5'); 74.30 (CH-3'); 82.81 (CH-4'); 84.69 (CH-1'); 104.99 (C-2); 124.77 (C-5); 137.74 (CH-8); 148.33 (C-4); 158.48 (C-6); 170.28, 170.37 (CH<sub>3</sub>CO).

MS (ESI<sup>+</sup>): m/z (%): 263.1 (64) [nucleobase+H]<sup>+</sup>, 485.4 (100) [M+Na]<sup>+</sup>. HRMS (ESI<sup>+</sup>): calculated for C<sub>14</sub>H<sub>15</sub>O<sub>6</sub>N<sub>4</sub>INa: 484.9929; found: 484.9922.

#### 2-Methyl-2'-deoxyinosine (4b, d<sup>Me</sup>I)



2-Iodo-3',5'-di-*O*-acetyl-2'-deoxyinosine **3** (250 mg, 0.54 mmol) and Pd(PPh<sub>3</sub>)<sub>4</sub> (63 mg, 0.05 mmol) were dissolved in anhydrous THF (4.2 ml). Me<sub>3</sub>Al (1.1 ml, 2.17 mmol, 2 M in toluene) was then added dropwise and this mixture was stirred at 60 °C for 3.5 h. Reaction was carefully stopped by dropwise addition of MeOH (2 ml) and evaporated to dryness. Residue was dissolved in MeOH (5 ml) and MeONa (0.5 ml, 2.19 mmol, 25 wt.% in MeOH) was added. Mixture was stirred at rt (25°C) overnight. Silica gel was added and volatiles were evaporated. Desired product was isolated after RP-FPLC on a C-18 column (0  $\rightarrow$  100% MeOH in H<sub>2</sub>O) as a white solid (140 mg, 97% over two steps).

 $R_{f} = 0.14$  (10% MeOH in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (401.0 MHz, DMSO- $d_6$ ): 2.17 (ddd, 1H, J = 13.0, J = 5.9, J = 2.2, H-2'b); 2.26 (s, 3H, CH<sub>3</sub>); 2.69 (ddd, 1H, J = 13.0, J = 8.5, J = 5.4, H-2'a); 3.52 (dd, 1H, J = 12.1, J = 3.3, H-5'a); 3.62 (dd, 1H, J = 12.1, J = 3.3, H-5'b); 3.90 (td, 1H, J = 3.3, J = 2.2, H-4'); 4.39 (td, 1H, J = 5.4, J = 2.2, H-3'); 6.23 (dd, 1H, J = 8.5, J = 5.9, H-1'); 7.97 (s, 1H, H-8).

<sup>13</sup>C NMR (100.8 MHz, DMSO-*d*<sub>6</sub>): 23.33 (CH<sub>3</sub>); 39.62 (CH<sub>2</sub>-2'); 62.30 (CH<sub>2</sub>-5'); 71.40 (CH-3'); 84.66 (CH-1'); 88.35 (CH-4'); 122.78 (C-5); 136.88 (CH-8); 148.70 (C-4); 158.64 (C-2); 162.93 (C-6).

MS (ESI<sup>+</sup>): *m*/*z* (%): 289.1 (100) [M+Na]<sup>+</sup>, 555.3 (54) [2M+Na]<sup>+</sup>.

HRMS (ESI<sup>+</sup>): calculated for C<sub>11</sub>H<sub>14</sub>O<sub>4</sub>N<sub>4</sub>Na: 289.0907; found: 289.0905.

#### 2-Vinyl-2'-deoxyinosine (4c, d<sup>v</sup>I)



A flask containing 2-Iodo-3',5'-di-*O*-acetyl-2'-deoxyinosine **3** (180 mg, 0.39 mmol), potassium vinyltrifluoroborate (78 mg, 0.58 mmol),  $Cs_2CO_3$  (380 mg, 1.17 mmol),  $Pd(OAc)_2$  (4 mg, 0.05 mmol) and TPPTS [3,3',3"-Phosphanetriyltris(benzenesulfonic acid) trisodium salt, 28 mg, 0.125 mmol] was put under argon and a mixture of CH<sub>3</sub>CN/H<sub>2</sub>O (2/1, 5 ml) was added. Mixture was stirred at 80°C for 2.5 h. After cooling, volatiles were evaporated and residue was dissolved in MeOH (5 ml) and MeONa (0.3 ml, 1.31 mmol, 25 wt.% in MeOH) was added. Resulting solution was stirred at rt (25°C) overnight. Silica gel was added and after evaporation the product was

purified by RP-FPLC on a C-18 column (0  $\rightarrow$  100% MeOH in H<sub>2</sub>O). Product was isolated as a white solid (80 mg, 74% over two steps).

 $R_f = 0.12$  (10% MeOH in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (401.0 MHz, DMSO- $d_6$ ): 2.11 (ddd, 1H, J = 12.9, J = 5.8, J = 1.7, H-2'b); 2.78 (ddd, 1H, J = 12.9, J = 9.0, J = 5.3, H-2'a); 3.48 – 3.57 (bm, 1H, H-5'a); 3.64 (dd, 1H, J = 12.0, J = 2.9, H-5'b); 3.90 (td, 1H, J = 3.0, J = 1.4, H-4'); 4.40 (d, 1H, J = 5.2, H-3'); 5.24 (bs, 1H, OH-5'); 5.30 (dd, 1H, J = 10.4, J = 2.7, CH=CH<sub>a</sub>H<sub>b</sub>); 6.19 (dd, 1H, J = 17.3, J = 2.7, CH=CH<sub>a</sub>H<sub>b</sub>); 6.23 (dd, 1H, J = 9.0, J = 5.8, H-1'); 6.33 (bs, 1H, OH-3'); 6.44 (dd, 1H, J = 17.3, J = 10.4, CH=CH<sub>2</sub>); 7.83 (s, 1H, H-8).

<sup>13</sup>C NMR (100.8 MHz, DMSO-*d*<sub>6</sub>): 39.42 (CH<sub>2</sub>-2'); 62.62 (CH<sub>2</sub>-5'); 71.77 (CH-3'); 85.05 (CH-1'); 88.30 (CH-4'); 118.70 (CH=CH<sub>2</sub>); 124.50 (C-5); 136.49 (CH-8); 138.07 (CH=CH<sub>2</sub>); 149.04 (C-4); 155.84 (C-6); 158.13 (C-2).

MS (ESI<sup>+</sup>): *m*/*z* (%): 301.0 (100) [M+Na]<sup>+</sup>.

HRMS (ESI<sup>+</sup>): calculated for C<sub>12</sub>H<sub>14</sub>O<sub>4</sub>N<sub>4</sub>Na: 301.0907; found: 301.0902.

#### 2-Ethynyl-2'-deoxyinosine (4d, d<sup>E</sup>I)



2-Iodo-3',5'-di-*O*-acetyl-2'-deoxyinosine **3** (183 mg, 0.40 mmol), PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (42 mg, 0.06 mmol) and CuI (8 mg, 0.04 mmol) were placed in a flask and dry DMF (5.0 ml) was added. The flask was purge-and-refilled with argon six times, trimethylsilylacetylene (0.45 ml, 3.17 mmol) and Et<sub>3</sub>N (0.55 ml, 4.0 mmol) were added and the mixture was stirred at rt (25 °C) for 3 h. Volatiles were evaporated, residue was dissolved in MeOH and silica gel was added. After evaporation of MeOH, the 2-trimethylsilylethynyl-3',5'-di-*O*-acetyl-2'-deoxyinosine was partially purified by column chromatography (0  $\rightarrow$  10% MeOH in CH<sub>2</sub>Cl<sub>2</sub>). The crude product was dissolved in MeOH saturated (at 0 °C) with ammonia (5.0 ml) and this mixture was stirred at rt (25 °C) overnight. Silica gel was added and, after evaporation of all volatiles, the desired product was purified by RP-FPLC on a C-18 column (0  $\rightarrow$  100% MeOH in H<sub>2</sub>O). The title compound was isolated as a white solid (80 mg, 73% over two steps). The compound slowly decomposes on the bench, therefore long term storage at -20 °C is necessary.

 $R_{f} = 0.11$  (10% MeOH in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (600.1 MHz, DMSO- $d_6$ ): 2.13 (ddd, 1H, J = 12.9, J = 5.9, J = 2.2, H-2'b); 2.67 (ddd, 1H, J = 12.9, J = 8.5, J = 5.5, H-2'a); 3.50 (ddd, 1H, J = 11.9, J = 8.0, J = 3.6, H-5'b); 3.56 – 3.63 (m, 1H, H-5'a); 3.59 (s, 1H, HC=C-); 3.86 (td, 1H, J = 3.6, J = 2.2, H-4'); 4.35 – 4.38 (m, 1H, H-3'); 5.25 (bd, 1H, J = 3.0, OH-5'); 5.66 (dd, 1H, J = 7.4, J = 4.1, OH-3'); 6.19 (dd, 1H, J = 8.5, J = 5.9, H-1'); 7.90 (s, 1H, H-8).

<sup>13</sup>C NMR (150.9 MHz, DMSO-*d*<sub>6</sub>): 39.63 (CH<sub>2</sub>-2'); 62.48 (CH<sub>2</sub>-5'); 71.53 (CH-3'); 72.33 (HC=C-); 84.41 (CH-1'); 85.03 (-C=CH); 88.22 (CH-4'); 125.63 (C-5); 136.54 (CH-8); 145.98 (C-2); 148.81 (C-4); 166.36 (C-6). MS (ESI<sup>+</sup>): m/z (%): 299.1 (100) [M+Na]<sup>+</sup>, 575.2 (33) [2M+Na]<sup>+</sup>. HRMS (ESI<sup>+</sup>): calculated for C<sub>12</sub>H<sub>12</sub>O<sub>4</sub>N<sub>4</sub>Na: 299.0751; found: 299.0750.

#### 2-Phenyl-2'-deoxyinosine (4e, d<sup>Ph</sup>I)



To a flask containing 2-Iodo-3',5'-di-*O*-acetyl-2'-deoxyinosine **3** (200 mg, 0.43 mmol), PhB(OH)<sub>2</sub> (79 mg, 0.65 mmol), Cs<sub>2</sub>CO<sub>3</sub> (423 mg, 1.30 mmol), Pd(OAc)<sub>2</sub> (5 mg, 0.02 mmol) and TPPTS [3,3',3"-Phosphanetriyltris(benzenesulfonic acid) trisodium salt, 31 mg, 0.05 mmol] a mixture of CH<sub>3</sub>CN/H<sub>2</sub>O (2/1, 5.4 ml) was added under argon. This mixture was heated at 80 °C for 1.5 h. After cooling, volatiles were evaporated and residue was dissolved in MeOH (5 ml) and MeONa (0.4 ml, 1.75 mmol, 25 wt.% in MeOH) was added. This mixture was stirred at rt (25 °C) for 1 h. Silica gel was added, volatiles were evaporated and the title compound was obtained, after purification by RP-FPLC on a C-18 column (0  $\rightarrow$  100 % MeOH in H<sub>2</sub>O), as a white solid (130 mg, 92% over two steps). NMR data were in good agreement with those published previously.<sup>S3</sup> R<sub>f</sub> = 0.14 (10% MeOH in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (401.0 MHz, DMSO- $d_6$ ): 2.33 (ddd, 1H, J = 13.2, J = 6.3, J = 3.3, H-2'b); 2.71 (ddd, 1H, J = 13.2, J = 7.9, J = 5.9, H-2'a); 3.53 (dd, 1H, J = 11.7, J = 4.7, H-5'a); 3.60 (dd, 1H, J = 11.7, J = 4.7, H-5'b); 3.88 (td, 1H, J = 4.7, J = 2.8, H-4'); 4.43 (td, 1H, J = 5.9, J = 3.3, H-3'); 4.94 (bs, 1H, OH-5'); 5.39 (bs, 1H, OH-3'); 6.40 (dd, 1H, J = 7.9, J = 6.3, H-1'); 7.50-7.60 (m, 3H, H-m, p-Ph); 8.12 (dd, 2H, J = 8.1, J = 1.7, H-o-Ph); 8.32 (s, 1H, H-8); 12.53 (bs, 1H, H-1).

<sup>13</sup>C NMR (100.8 MHz, DMSO-*d*<sub>6</sub>): 39.59 (CH<sub>2</sub>-2'); 61.67 (CH<sub>2</sub>-5'); 70.76 (CH-3'); 83.41 (CH-1'); 87.92 (CH-4'); 122.99 (C-5); 127.85 (CH-*o*-Ph); 128.64 (CH-*m*-Ph); 131.25 (CH-*p*-Ph); 132.48 (C-*i*-Ph); 139.06 (CH-8); 148.36 (C-4); 153.55 (C-2); 157.72 (C-6).

MS (ESI<sup>+</sup>): *m*/*z* (%): 351.1 (100) [M+Na]<sup>+</sup>.

HRMS (ESI<sup>+</sup>): calculated for C<sub>16</sub>H<sub>16</sub>O<sub>4</sub>N<sub>4</sub>Na: 351.1064; found: 351.1064.

#### 2-Chloro-2'-deoxyinosine (4a, d<sup>CI</sup>I)



Starting protected nucleoside **6** (200 mg, 0.40 mmol), DABCO (4 mg, 0.04 mmol) and CsOAc (213 mg, 1.10 mmol) were suspended in dry DMF (3.7 ml). Et<sub>3</sub>N (0.16 ml, 1.10 mmol) was added this mixture was stirred at rt (25 °C) overnight. H<sub>2</sub>O (2 ml) was added and stirring continued for another 30 min, after which CHCl<sub>3</sub> (25 ml) and H<sub>2</sub>O (20 ml) were added. Phases were separated, water phase was extracted with CHCl<sub>3</sub> (2 x 25 ml). Collected organic phases were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated. Residue was dissolved in MeOH (3.7 ml) and K<sub>2</sub>CO<sub>3</sub> (128 mg, 0.90 mmol) was added. This mixture was stirred at rt (25 °C) for 1 h, silica gel was added and volatiles were evaporated. Purification by RP-FPLC on a C-18 column (0  $\rightarrow$  100% MeOH in H<sub>2</sub>O) afforded the desired product as a white solid (76 mg, 72% over two steps).

 $R_f = 0.12$  (10% MeOH in CH<sub>2</sub>Cl<sub>2</sub>).

<sup>1</sup>H NMR (401.0 MHz, DMSO- $d_6$ ): 2.15 (ddd, 1H, J = 13.0, J = 6.0, J = 2.5, H-2'b); 2.62 (ddd, 1H, J = 13.0, J = 8.4, J = 5.6, H-2'a); 3.49 (dd, 1H, J = 11.9, J = 4.0, H-5'a); 3.59 (dd, 1H, J = 11.9, J = 4.0, H-5'b); 3.84 (td, 1H, J = 4.0, J = 2.1, H-4'); 4.35 (td, 1H, J = 5.6, J = 2.1, H-3'); 5.29 (bs, 2H, OH-3', OH-5'); 6.15 (dd, 1H, J = 8.4, J = 6.0, H-1'); 7.85 (s, 1H, H-8).

<sup>13</sup>C NMR (100.8 MHz, DMSO-*d*<sub>6</sub>): 39.38 (CH<sub>2</sub>-2'); 62.15 (CH<sub>2</sub>-5'); 71.18 (CH-3'); 83.82 (CH-1'); 87.89 (CH-4'); 123.94 (C-5); 135.70 (CH-8); 149.76 (C-4); 153.74 (C-2); 166.17 (C-6).

MS (ESI<sup>+</sup>): m/z (%): 309.1 (100) [(<sup>35</sup>Cl)M+Na]<sup>+</sup>, 311.1 (31) [(<sup>37</sup>Cl)M+Na]<sup>+</sup>, 325.1 (32) [(<sup>35</sup>Cl)M+K]<sup>+</sup>, 327.1 (10) [(<sup>37</sup>Cl)M+K]<sup>+</sup>.

HRMS (ESI<sup>+</sup>): calculated for C<sub>10</sub>H<sub>11</sub>O<sub>4</sub>N<sub>4</sub>(<sup>35</sup>Cl)Na: 309.0361 found: 309.0362.

#### 2-Chloro-2'-deoxyinosine-5'-O-triphosphate (5a, d<sup>CI</sup>ITP)



Starting 2-chloro-2'-deoxyinosine **4a** ( $d^{Cl}I$ , 21 mg, 0.07 mmol) was dried in vacuo overnight. Then it was dissolved in dry PO(OMe)<sub>3</sub> (0.84 ml) and cooled down to 0 °C. Freshly distilled POCl<sub>3</sub> (8 µl, 0.09 mmol) was added dropwise and this mixture was stirred at 0 °C until no more starting material could be observed by TLC (ca. 3 hours). Then an ice-cold solution of (*n*-Bu<sub>3</sub>NH)<sub>2</sub>H<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (197 mg, 0.36 mmol) and *n*-Bu<sub>3</sub>N (75 µl, 0.29 mmol) in dry DMF (0.54 ml) was added dropwise. The mixture was stirred for another 1 hour at 0 °C and then stopped by the addition of cold 2 M TEAB (0.54 ml). The mixture was concentrated on a rotavap; the residue was co-evaporated with distilled water three times. The crude product was dissolved in water (ca 3 ml); the aqueous solution was purified by semi-preparative HPLC using a linear gradient of methanol ( $5 \rightarrow 100\%$ ) in 0.1 M TEAB buffer. The appropriate fractions were combined and evaporated on a rotavap. The viscous oil was coevaporated with distilled water three times. The product was converted to sodium salt on an ion-exchange column (Dowex 50WX8 in Na<sup>+</sup> cycle) and freeze-dried. The title compound was obtained as a white solid (8 mg, 21%).

<sup>1</sup>H NMR (401.0 MHz, D<sub>2</sub>O, ref(dioxane) = 3.75 ppm): 2.55 (ddd, 1H, J = 14.0, J = 6.3, J = 3.8, H-2'b); 2.77 (ddd, 1H, J = 14.0, J = 7.3, J = 6.2, H-2'a); 4.15 (ddd, 1H, J = 11.5, J = 5.3, J = 3.8, H-5'b); 4.23 (ddd, 1H, J = 11.5, J = 6.3, J = 3.8, H-5'a); 4.28 (qd, 1H, J = 3.8, J = 2.4, H-4'); 4.80 (dt, 1H, J = 6.2, J = 3.8, J = 3.7, H-3'); 6.38 (dd, 1H, J = 7.3, 6.3, H-1'); 8.28 (s, 1H, H-8).

<sup>13</sup>C NMR (100.8 MHz, D<sub>2</sub>O, ref(dioxane) = 69.3 ppm): 41.75 (CH<sub>2</sub>-2'); 67.99 (d, *J* = 5.5, CH<sub>2</sub>-5'); 73.53 (CH-3'); 86.04 (CH-1'); 88.41 (d, *J* = 8.8, CH-4'); 124.96 (C-5); 140.80 (CH-8); 153.18 (C-4); 156.75 (C-2); 170.16 (C-6).

<sup>31</sup>P{<sup>1</sup>H} NMR (162.3 MHz, D<sub>2</sub>O): -18.86 (t, J = 19.2, P<sub> $\beta$ </sub>); -8.21 (d, J = 19.2, P<sub> $\alpha$ </sub>); -3.51 (d, J = 19.2, P<sub> $\gamma$ </sub>).

MS (ESI<sup>-</sup>): m/z (%): 365.0 (100) [(<sup>35</sup>Cl)M–H<sub>3</sub>P<sub>2</sub>O<sub>6</sub>]<sup>-</sup>, 367.0 (24) [(<sup>37</sup>Cl)M–H<sub>3</sub>P<sub>2</sub>O<sub>6</sub>]<sup>-</sup>, 445.0 (38) [(<sup>35</sup>Cl)M–H<sub>2</sub>PO<sub>3</sub>–H]<sup>-</sup>, 467.0 (33) [(<sup>35</sup>Cl)M–H–H<sub>2</sub>PO<sub>3</sub>+Na]<sup>-</sup>, 524.9 (67) [(<sup>35</sup>Cl)M–H]<sup>-</sup>, 526.9 (14) [(<sup>37</sup>Cl)M–H]<sup>-</sup>.

HRMS (ESI<sup>-</sup>): calculated for  $C_{10}H_{13}O_{13}N_4(^{35}Cl)P_3$ : 524.9386; found: 524.9383; calculated for  $C_{10}H_{12}O_{13}N_4(^{35}Cl)P_3Na$ : 546.9205; found: 546.9202.

#### 2-Methyl-2'-deoxyinosine-5'-*O*-triphosphate (5b, d<sup>Me</sup>ITP)



2-Methyl-2'-deoxyinosine-5'-*O*-triphosphate **5b** ( $d^{Me}ITP$ ) was prepared from nucleoside **4b** ( $d^{Me}I$ , 25 mg, 0.10 mmol) following the procedure described for the preparation of **5a** ( $d^{Cl}ITP$ ). The desired triphosphate was isolated as a white lyophilizate (27 mg, 56%).

<sup>1</sup>H NMR (401.0 MHz, D<sub>2</sub>O, ref(dioxane) = 3.75 ppm): 2.53 (s, 3H, CH<sub>3</sub>); 2.60 (ddd, 1H, *J* = 14.0, *J* = 6.5, *J* = 4.3, H-2'b); 2.78 (ddd, 1H, *J* = 14.0, *J* = 7.1, *J* = 5.7, H-2'a); 4.14 - 4.24 (m, 2H, H-5'a, H-5'b); 4.31 (qd, 1H, *J* = 3.4, *J* = 1.2, H-4'); 4.76 - 4.80 (m, 1H, H-3'); 6.45 (dd, 1H, *J* = 7.1, *J* = 6.5, H-1'); 8.36 (s, 1H, H-8).

<sup>13</sup>C NMR (100.8 MHz, D<sub>2</sub>O, ref(dioxane) = 69.3 ppm): 23.33 (CH<sub>3</sub>); 41.79 (CH<sub>2</sub>-2'); 67.89 (d, *J* = 5.4, CH<sub>2</sub>-5'); 73.34 (CH-3'); 86.42 (CH-1'); 88.58 (d, *J* = 8.2, CH-4'); 124.16 (C-5); 142.05 (CH-8); 151.83 (C-4); 159.95 (C-2); 162.09 (C-6).

<sup>31</sup>P{<sup>1</sup>H} NMR (162.3 MHz, D<sub>2</sub>O): -17.78 (t, J = 18.5, P<sub> $\beta$ </sub>); -7.85 (d, J = 18.2, P<sub> $\alpha$ </sub>); -2.29 (d, J = 19.0, P<sub> $\gamma$ </sub>).

MS (ESI<sup>-</sup>): m/z (%): 365.0 (75) [M–H<sub>3</sub>P<sub>2</sub>O<sub>6</sub>]<sup>-</sup>, 425.0 (100) [M–H<sub>2</sub>PO<sub>3</sub>]<sup>-</sup>, 447.0 (53) [M–H–H<sub>2</sub>PO<sub>3</sub>+Na]<sup>-</sup>, 469.0 (31) [M–2H–H<sub>2</sub>PO<sub>3</sub>+2Na]<sup>-</sup>, 549.0 (28) [M–3H+2Na]<sup>-</sup>. HRMS (ESI<sup>-</sup>): calculated for C<sub>11</sub>H<sub>16</sub>O<sub>13</sub>N<sub>4</sub>P<sub>3</sub>: 504.9932; found: 504.9931; calculated for C<sub>11</sub>H<sub>15</sub>O<sub>13</sub>N<sub>4</sub>P<sub>3</sub>Na: 526.9752; found: 526.9750.

#### 2-Vinyl-2'-deoxyinosine-5'-O-triphosphate (5c, dvITP)



2-Vinyl-2'-deoxyinosine-5'-*O*-triphosphate **5c** ( $d^{V}ITP$ ) was prepared from nucleoside **4c** ( $d^{V}I$ , 20 mg, 0.07 mmol) following the procedure described for the preparation of **5a** ( $d^{CI}ITP$ ). The desired triphosphate was isolated as a white lyophilizate (11.4 mg, 31%).

<sup>1</sup>H NMR (401.0 MHz, D<sub>2</sub>O, ref(dioxane) = 3.75 ppm): 2.57 (ddd, 1H, J = 13.9, J = 6.3, J = 3.9, H-2'b); 2.83 (ddd, 1H, J = 13.9, J = 7.6, J = 5.9, H-2'a); 4.14 – 4.26 (m, 2H, H-5'a, H-5'b); 4.28 (qd, 1H, J = J = 4.0, J = 1.7, H-4'); 4.76 – 4.79 (m, 1H, H-3'); 5.68 (dd, 1H, J = 10.7, J = 1.3, CH<sub>a</sub>H<sub>b</sub>=CH); 6.33 (dd, 1H, J = 17.4, J = 1.3, CH<sub>a</sub>H<sub>b</sub>=CH); 6.51 (dd, 1H, J = 7.6, 6.3, H-1'); 6.68 (dd, 1H, J = 17.4, J = 10.7, CH<sub>2</sub>=CH); 8.32 (s, 1H, H-8).

<sup>13</sup>C NMR (100.8 MHz, D<sub>2</sub>O, ref(dioxane) = 69.3 ppm): 41.83 (CH<sub>2</sub>-2'); 68.10 (d, *J* = 5.9, CH<sub>2</sub>-5'); 73.63 (CH-3'); 85.91 (CH-1'); 88.27 (d, *J* = 8.3, CH-4'); 124.87 (C-5); 125.54 (CH<sub>2</sub>=CH); 137.70 (CH=CH<sub>2</sub>); 141.22 (CH-8); 153.00 (C-4); 162.53 (C-2); 167.88 (C-6).

<sup>31</sup>P{<sup>1</sup>H} NMR (162.0 MHz, D<sub>2</sub>O): -20.29 (t, J = 20.6, P<sub> $\beta$ </sub>); -8.97 (d, J = 20.0, P<sub> $\alpha$ </sub>); -4.06 (d, J = 21.0, P<sub> $\gamma$ </sub>).

MS (ESI<sup>-</sup>): *m*/*z* (%): 357.1 (73) [M–H<sub>3</sub>P<sub>2</sub>O<sub>6</sub>]<sup>-</sup>, 437.0 (100) [M–H<sub>2</sub>PO<sub>3</sub>]<sup>-</sup>, 517.0 (57) [M–H]<sup>-</sup>, 539.0 (39) [M–2H+Na]<sup>-</sup>.

HRMS (ESI<sup>-</sup>): calculated for  $C_{12}H_{16}O_{13}N_4P_3$ : 516.9932; found: 516.9929; calculated for  $C_{12}H_{15}O_{13}N_4P_3Na$ : 538.9752; found: 538.9749.

#### 2-Phenyl-2'-deoxyinosine-5'-O-triphosphate (5e, d<sup>Ph</sup>ITP)



2-Phenyl-2'-deoxyinosine-5'-*O*-triphosphate **5e** ( $d^{Ph}ITP$ ) was prepared from nucleoside **4e** ( $d^{Ph}I$ , 24 mg, 0.07 mmol) following the procedure described for the preparation of **5a** ( $d^{Cl}ITP$ ). The desired triphosphate was isolated as a white lyophilizate (16 mg, 39%).

<sup>1</sup>H NMR (401.0 MHz, D<sub>2</sub>O, ref(dioxane) = 3.75 ppm): 2.60 (ddd, 1H, J = 13.9, J = 6.4, J = 3.9, H-2'b); 2.84 (ddd, 1H, J = 13.9, J = 7.6, J = 7.0, H-2'a); 4.17 – 4.29 (m, 2H, H-5'a, H-5'b); 4.31 (qd, 1H, J = 3.7, J = 1.5, H-4'); 4.83 (dt, 1H, J = 7.0, J = 3.8, H-3'); 6.60 (dd, 1H, J = 7.6, J = 6.4, H-1'); 7.50 – 7.53 (m, 3H, H-*m*,*p*-Ph); 8.06 – 8.09 (m, 2H, H-*o*-Ph); 8.34 (s, 1H, H-8).

<sup>13</sup>C NMR (100.8 MHz, D<sub>2</sub>O, ref(dioxane) = 69.3 ppm): 41.84 (CH<sub>2</sub>-2'); 68.14 (d, J = 5.6, CH<sub>2</sub>-5'); 73.65 (CH-3'); 85.92 (CH-1'); 88.25 (d, J = 8.6, CH-4'); 124.54 (C-5); 130.90 (CH-o-Ph); 131.22 (CH-m-Ph); 132.69 (CH-p-Ph); 140.65 (CH-i-Ph); 141.15 (CH-8); 153.52 (C-4); 164.24 (C-6); 170.27 (C-2).

<sup>31</sup>P{<sup>1</sup>H} NMR (162.3 MHz, D<sub>2</sub>O): -18.23 (t, J = 18.9, P<sub> $\beta$ </sub>); -8.03 (d, J = 18.9, P<sub> $\alpha$ </sub>); -2.77 (d, P<sub> $\gamma$ </sub>).

MS (ESI<sup>-</sup>): *m*/*z* (%): 407.1 (57) [M–H<sub>3</sub>P<sub>2</sub>O<sub>6</sub>]<sup>-</sup>, 487.0 (100) [M–H<sub>2</sub>PO<sub>3</sub>]<sup>-</sup>, 567.0 (50) [M–H]<sup>-</sup>, 589.0 (30) [M–2H+Na]<sup>-</sup>.

HRMS (ESI<sup>-</sup>): calculated for  $C_{16}H_{18}O_{13}N_4P_3$ : 567.0089; found: 567.0087; calculated for  $C_{16}H_{17}O_{13}N_4P_3Na$ : 588.9908; found: 588.9905.

#### 2-Ethynyl-2'-deoxyinosine-5'-*O*-triphosphate (5d, d<sup>E</sup>ITP)



2-Ethynyl-2'-deoxyinosine **4d** (**d**<sup>E</sup>**I**, 19 mg, 0.07 mmol) and proton sponge (17 mg, 0.08 mmol) were dried in vacuo overnight. Dry PO(OMe)<sub>3</sub> (0.8 ml) was added and resulting mixture was cooled down to 0 °C. Freshly distilled POCl<sub>3</sub> (8 µl, 0.09 mmol) was added dropwise and this mixture was stirred at 0 °C until no more starting material could be observed by TLC (ca 3 hours). Then an ice-cold solution of (*n*-Bu<sub>3</sub>NH)<sub>2</sub>H<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (185 mg, 0.34 mmol) and *n*-Bu<sub>3</sub>N (70 µl, 0.27 mmol) in dry DMF (0.5 ml) was added dropwise. This mixture was stirred for another 1 hour at 0 °C and then stopped by the addition of cold 1 M NH<sub>4</sub>HCO<sub>3</sub> (1 ml). The mixture was concentrated on a rotavap; the residue was co-evaporated with distilled water three times. The crude product was dissolved in water (ca 3 ml); the aqueous solution was purified by semi-preparative HPLC using a linear gradient of methanol (5  $\rightarrow$  100%) in 0.1 M NH<sub>4</sub>HCO<sub>3</sub> (0  $\rightarrow$  100%) in H<sub>2</sub>O. The appropriate fractions were combined and evaporated on a rotavap. The viscous oil was coevaporated with distilled water three times. The viscous oil was coevaporated with distilled water three to sodium salt on an ion-exchange column (Dowex 50WX8 in Na<sup>+</sup> cycle) and freeze-dried. The title compound was obtained as a white lyophilizate (6 mg, 17%).

<sup>1</sup>H NMR (600.1 MHz, DMSO- $d_6$ ): 2.60 (ddd, 1H, J = 13.6, J = 6.0, J = 3.7, H-2'b); 2.78 (ddd, 1H, J = 13.6, J = 7.1, J = 5.7, H-2'a); 4.15 – 4.24 (m, 2H, H-5'); 3.56 – 3.63 (m, 1H, H-5'a); 4.27 –

4.31 (m, 1H, H-4'); 4.74 – 4.78 (m, 1H, H-3'); 6.46 (dd, 1H, *J* = 7.1, *J* = 6.0, H-1'); 8.49 (bs, 1H, H-8).

<sup>13</sup>C NMR (150.9 MHz, DMSO-*d*<sub>6</sub>): 42.02 (CH<sub>2</sub>-2'); 68.23 (d, J = 4.4, CH<sub>2</sub>-5'); 73.70 (CH-3'); 77.71 (HC=C-); 83.70 (-C=CH); 86.40 (CH-1'); 88.26 (d, J = 8.4, CH-4'). Multiple aromatic signals missing in the spectra, most probably due to tautomerism.

 $^{31}P{^{1}H}$  NMR (202.4 MHz, D<sub>2</sub>O): -19.09 (bs, P<sub> $\beta$ </sub>); -10.34 (s, P<sub> $\alpha$ </sub>); -5.45 (bs, P<sub> $\gamma$ </sub>).

MS (ESI): *m/z* (%): 355.0 (100) [M–H<sub>3</sub>P<sub>2</sub>O<sub>6</sub>]<sup>-</sup>, 457.0 (33) [M–H–H<sub>2</sub>PO<sub>3</sub>+Na]<sup>-</sup>.

HRMS (ESF): calculated for  $C_{12}H_{14}O_{13}N_4P_3$ : 514.9776; found: 514.9776; calculated for  $C_{12}H_{13}O_{13}N_4P_3Na$ : 536.9595; found: 536.9600.

## Enzymatic synthesis and characterization of modified DNA

### Materials and methods

Oligonucleotides were purchased from Generi Biotech (Czech Republic) or Eurofins Genomics (Germany). *KOD XL* DNA polymerase and corresponding reaction buffer were obtained from Merck Millipore. *Therminator* DNA polymerase and all of the restriction enzymes, corresponding reaction buffers, as well as natural nucleoside triphosphates (dATP, dCTP, dGTP, dTTP), were purchased from New England Biolabs. Streptavidin magnetic beads were obtained from Roche. All solutions for biochemical reactions were prepared using Milli-Q water. The gels were visualized by a fluorescence scanner (Typhoon FLA 9500, GE Healthcare). Concentration of DNA solutions was calculated using A<sub>260</sub> values measured on a Nanodrop and values obtained with OligoCalc.<sup>S4</sup> Mass spectra of oligonucleotides were measured by MALDI-TOF, on UltrafleXtreme MALDI-TOF/TOF mass spectrometer (Bruker Daltonics, Germany), with 1 kHz smartbeam II laser. QIAquick nucleotide removal kit was purchased from QIAGEN.

#### Analytical primer extension

#### Incorporation of one modified d<sup>R</sup>ITP

Reaction mixture (20 µl) was prepared by mixing primer Prim15-FAM (0.150 µM), template Temp19 (0.225 µM), *Therminator* DNA polymerase (0.1 U), natural dTTP (1.5 µM), either natural dGTP or modified d<sup>R</sup>ITP (8 µM for d<sup>Cl</sup>ITP and d<sup>Me</sup>ITP or 20 µM for d<sup>V</sup>ITP, d<sup>E</sup>ITP and d<sup>Ph</sup>ITP) and reaction buffer (10×, 2 µl). The reaction was incubated at 60 °C for 60 min (30 min in case of the reaction with natural dGTP). The reaction was stopped by addition of PAGE stop solution (20 µl; 80% [v/v] formamide, 20 mM EDTA, 0.025% [w/v] bromophenol blue, 0.025% [w/v] xylene cyanol) and heated at 95 °C for 5 min. Aliquots (3.5 µl) were subjected to separation by denaturing polyacrylamide gel electrophoresis (12.5%) containing 1 × TBE buffer (pH 8.0) and 7 M urea at 42 mA for 1 hour. The gel was visualized by a fluorescent scanner.

#### Incorporation of four modified d<sup>R</sup>ITP

Reaction mixture (20 µl) was prepared by mixing primer Prim15-FAM (0.150 µM), template Temp31-TINA (0.225 µM), *Therminator* DNA polymerase (0.2 U), natural dNTPs (dTTP, dATP, dCTP, 20 µM), either natural dGTP or modified d<sup>R</sup>ITP (100 µM) and reaction buffer (10×, 2 µl). The reaction was incubated at 60 °C for 60 min. The reaction was stopped by addition of PAGE stop solution (20 µl; 80% [v/v] formamide, 20 mM EDTA, 0.025% [w/v] bromophenol blue, 0.025% [w/v] xylene cyanol) and heated at 95 °C for 5 min. Aliquots (3.5 µl) were subjected to separation by denaturing polyacrylamide gel electrophoresis (12.5%) containing 1 × TBE buffer (pH 8.0) and 7 M urea at 42 mA for 1 hour. The gel was visualized by a fluorescent scanner.

#### Kinetic study of incorporation of $d^{Me}ITP$ and $d^{V}ITP$

Multiple PEX reaction mixtures (10  $\mu$ l, 6 samples for each nucleotide used in the reactions, 18 in total) containing *Therminator* DNA polymerase (0.2 U), primer Prim15-FAM (0.150  $\mu$ M),

template Temp16 (0.225  $\mu$ M), natural dGTP or modified dITPs (200  $\mu$ M) and reaction buffer (10×, 1  $\mu$ l) were incubated at 60 °C for specific time intervals (0.5, 1, 2, 5, 10 and 30 minutes) and then the reaction was stopped by the addition of PAGE stop solution (10  $\mu$ l) and immediate heating to 95 °C for 5 minutes. Aliquots (3.5  $\mu$ l) were subjected to vertical electrophoresis in 12.5% denaturing polyacrylamide gel containing 1 × TBE buffer (pH 8.0) and 7 M urea at 42 mA for 1 hour. The gel was visualized by a fluorescent scanner.

# Incorporation of one $d^{v}ITP$ into the 26-mer DNA used for reaction between peptide and DNA

Reaction mixture (20 µl) was prepared by mixing primer Prim16-FAM (0.150 µM), template Temp26 (0.225 µM), *Therminator* DNA polymerase (0.05 U), natural dNTPs (dATP, dCTP, dTTP, 10 µM), either natural dGTP or modified d<sup>V</sup>ITP (20 µM) and reaction buffer (10×, 2 µl). The reaction was incubated at 60 °C for 60 min (30 min in case of the reaction with natural dGTP). The reaction was stopped by addition of PAGE stop solution (20 µl; 80% [v/v] formamide, 20 mM EDTA, 0.025% [w/v] bromophenol blue, 0.025% [w/v] xylene cyanol) and heated at 95 °C for 5 min. Aliquots (3.5 µl) were subjected to separation by denaturing polyacrylamide gel electrophoresis (12.5%) containing 1 × TBE buffer (pH 8.0) and 7 M urea at 42 mA for 1 hour. The gel was visualized by a fluorescent scanner.

# Preparation of modified oligonucleotides by PEX on a semi-preparative scale followed by magnetoseparation

#### **General remarks**

Streptavidine magnetic particles (Roche, 50 µl) were washed with binding buffer ( $3 \times 200$  µl, 10 mM Tris, 1 mM EDTA, 100 mM NaCl, pH 7.5). Finished PEX reactions were stopped by cooling to 4 °C. Then the PEX solution ( $20 \mu$ l) and binding buffer ( $50 \mu$ l) were added to the magnetic beads. The mixture was incubated for 30 min at 15 °C and 1100 rpm. The magnetic beads were collected on a magnet (DynaMagTM-2, Invitrogen) and washed with washing buffer ( $3 \times 200 \mu$ l, 10 mM Tris, 1 mM EDTA, 500 mM NaCl, pH 7.5) and water ( $5 \times 200 \mu$ l). Then water ( $50 \mu$ l) was added and the sample was denatured for 2 min at 55 °C and 900 rpm. The beads were collected on a magnet and the solution was transferred into a clean vial and analyzed by MALDI-TOF MS (for copies of mass spectra see **Figures S10-S13, S18**).

#### Reaction with d<sup>Me</sup>ITP and template Temp19-bio

Reaction mixture (20  $\mu$ l) contained *Therminator* DNA polymerase (0.6 U), primer Prim15 (8  $\mu$ M), template Temp19-bio (10  $\mu$ M), modified d<sup>Me</sup>ITP (40  $\mu$ M), natural dTTP (72  $\mu$ M) and Thermopol reaction buffer (10×, 2  $\mu$ l). The reaction mixture was incubated for 30 min at 60 °C in a thermal cycler.

#### **Reaction with d<sup>v</sup>ITP and template Temp19-bio**

Reaction mixture (20  $\mu$ l) contained *Therminator* DNA polymerase (0.6 U), primer Prim15 (8  $\mu$ M), template Temp19-bio (10  $\mu$ M), modified d<sup>V</sup>ITP (100  $\mu$ M), natural dTTP (150  $\mu$ M) and Thermopol

reaction buffer (10×, 2  $\mu l).$  The reaction mixture was incubated for 90 min at 60  $^{\circ}C$  in a thermal cycler.

#### Reaction with d<sup>Me</sup>ITP and template Temp31-(bio)TINA

Reaction mixture (20  $\mu$ l) contained *Therminator* DNA polymerase (0.6 U), primer Prim 15 (8  $\mu$ M), template Temp31-(bio)TINA (10  $\mu$ M), modified d<sup>Me</sup>ITP (200  $\mu$ M), natural dNTPs (dATP, dCTP, dTTP, 200  $\mu$ M) and Thermopol reaction buffer (10×, 2  $\mu$ l). The reaction mixture was incubated for 30 min at 60 °C in a thermal cycler.

#### Reaction with d<sup>v</sup>ITP and template Temp31-(bio)TINA

Reaction mixture (20  $\mu$ l) contained *Therminator* DNA polymerase (1 U), primer Prim15 (8  $\mu$ M), template Temp31-(bio)TINA (10  $\mu$ M), modified d<sup>V</sup>ITP (1000  $\mu$ M), natural dNTPs (dATP, dCTP, dTTP, 600  $\mu$ M) and Thermopol reaction buffer (10×, 2  $\mu$ l). The reaction mixture was incubated for 120 min at 60 °C in a thermal cycler.

#### Reaction with d<sup>v</sup>ITP and template Temp26-bio

Reaction mixture (20  $\mu$ l) contained *Therminator* DNA polymerase (0.75 U), primer Prim16-FAM (8  $\mu$ M), template Temp26-bio (10  $\mu$ M), modified d<sup>V</sup>ITP (300  $\mu$ M), natural dNTPs (dATP, dCTP, dTTP, 200  $\mu$ M) and Thermopol reaction buffer (10×, 2  $\mu$ l). The reaction mixture was incubated for 60 min at 60 °C in a thermal cycler.

#### Semi-preparative preparation of modified DNA

PEX reactions were performed as described above for preparation of modified DNA followed by magnetoseparation, with the exception of using non-biotinylated templates (for sequences see Table S1). Reactions were stopped by cooling to 4 °C. Prepared modified dsDNA was purified with a QIAquick nucleotide removal kit (QIAGEN) following the provided procedure. Products were eluted with 50  $\mu$ l of H<sub>2</sub>O and concentration was determined using NanoDrop and values obtained from OligoCalc.<sup>S4</sup>

Natural DNA for control experiments was prepared by preparing a reaction mixture (20  $\mu$ l) containing *Therminator* DNA polymerase (0.3 U), primer Prim-15 (8  $\mu$ M), template (either Temp19 or Temp31-TINA, 10  $\mu$ M), natural dNTPs (120  $\mu$ M) and Thermopol reaction buffer (10×, 2  $\mu$ l). Reaction mixtures were incubated at 60 °C for 40 min. Prepared dsDNA was purified as described above.

# Primer extension experiments for studies of cleavage by restriction endonucleases

Reaction mixtures (20  $\mu$ l) were prepared by mixing primer (0.150  $\mu$ M), template (0.225  $\mu$ M), *Therminator* or *KOD XL* DNA polymerases, natural or modified dNTPs and corresponding reaction buffer (10×, 2  $\mu$ l). The reactions were incubated at 60 °C for 30-100 min. The reaction

mixtures were then divided into two portions. The first portion (11.5  $\mu$ l) was used directly for PAGE analysis and the second portion (8.5  $\mu$ l) was used for DNA cleavage studies.

Incorporation of modified  $d^{R}ATPs$  within the recognition sequence of AfeI restriction endonuclease PEX was performed using KOD XL DNA polymerase (0.05 U), natural dNTPs (dGTP, dCTP, dTTP, 10  $\mu$ M), natural dATP or modified  $d^{R}ATPs$  (40  $\mu$ M), primer Prim15-FAM and template Temp\_AfA. Reaction mixtures were incubated at 60 °C for 60 min. Restriction endonuclease AfeI (5 U) and NEB 4 reaction buffer (10×, 1  $\mu$ l) were added to the second portion of the PEX reaction and the mixture was incubated for 1 h at 37 °C.

Incorporation of modified  $d^R$ ITPs within the recognition sequence of AfeI restriction endonuclease PEX was performed using *Therminator* DNA polymerase (0.16 U), natural dNTPs (dATP, dCTP, dTTP, 16  $\mu$ M), natural dGTP or modified  $d^R$ ITPs (40  $\mu$ M), primer Prim15-FAM and template Temp\_AfG. Reaction mixtures were incubated at 60 °C for 100 min. Restriction endonuclease AfeI (5 U) and NEB 4 reaction buffer (10×, 1  $\mu$ l) were added to the second portion of the PEX reaction and the mixture was incubated for 1 h at 37 °C.

Incorporation of modified  $d^{R}ATPs$  within the recognition sequence of EcoRI restriction endonuclease

PEX was performed using *Therminator* DNA polymerase (0.1 U), natural dNTPs (dGTP, dCTP, dTTP, 140  $\mu$ M), natural dATP or modified d<sup>R</sup>ATPs (200  $\mu$ M), primer Prim15-FAM and template Temp\_EcA. Reaction mixtures were incubated at 60 °C for 30 min. Restriction endonuclease EcoRI-HF (10 U) and CutSmart reaction buffer (10×, 1  $\mu$ l) were added to the second portion of the PEX reaction and the mixture was incubated for 1 h at 37 °C.

Incorporation of modified  $d^{R}ITPs$  within the recognition sequence of EcoRI restriction endonuclease

PEX was performed using *Therminator* DNA polymerase (0.04 U), natural dNTPs (dATP, dCTP, dTTP, 10  $\mu$ M), natural dGTP or modified d<sup>R</sup>ITPs (40  $\mu$ M), primer Prim15-FAM and template Temp\_EcG. Reaction mixtures were incubated at 60 °C for 100 min. Restriction endonuclease EcoRI-HF (10 U) and CutSmart reaction buffer (10×, 1  $\mu$ l) were added to the second portion of the PEX reaction and the mixture was incubated for 1 h at 37 °C.

Incorporation of modified  $d^{R}ATPs$  within the recognition sequence of KpnI restriction endonuclease

PEX was performed using *KOD XL* DNA polymerase (0.05 U), natural dNTPs (dGTP, dCTP, dTTP, 10  $\mu$ M), natural dATP or modified d<sup>R</sup>ATPs (40  $\mu$ M), primer Prim15-FAM and template Temp\_KpA. Reaction mixtures were incubated at 60 °C for 60 min. Restriction endonuclease KpnI (5 U) and NEB 1.1 reaction buffer (10×, 1  $\mu$ l) were added to the second portion of the PEX reaction and the mixture was incubated for 1 h at 37 °C.

Incorporation of modified  $d^R$ ITPs within the recognition sequence of KpnI restriction endonuclease PEX was performed using *Therminator* DNA polymerase (0.04 U), natural dNTPs (dATP, dCTP, dTTP, 10  $\mu$ M), natural dGTP or modified  $d^R$ ITPs (40  $\mu$ M), primer Prim\_KpG-FAM and template Temp\_KpG. Reaction mixtures were incubated at 60 °C for 100 min. Restriction endonuclease

KpnI (5 U) and NEB 1.1 reaction buffer ( $10\times$ , 1 µl) were added to the second portion of the PEX reaction and the mixture was incubated for 1 h at 37 °C.

Incorporation of modified  $d^{R}ATPs$  within the recognition sequence of PstI restriction endonuclease PEX was performed using KOD XL DNA polymerase (0.025 U), natural dNTPs (dGTP, dCTP, dTTP, 20  $\mu$ M), natural dATP or modified  $d^{R}ATPs$  (20  $\mu$ M), primer Prim15-FAM and template Temp\_PsA. Reaction mixtures were incubated at 60 °C for 30 min. Restriction endonuclease PstI-HF (10 U) and CutSmart reaction buffer (10×, 1  $\mu$ l) were added to the second portion of the PEX reaction and the mixture was incubated for 1 h at 37 °C.

Incorporation of modified  $d^R$ ITPs within the recognition sequence of PstI restriction endonuclease PEX was performed using *Therminator* DNA polymerase (0.14 U), natural dNTPs (dATP, dCTP, dTTP, 16  $\mu$ M), natural dGTP or modified  $d^R$ ITPs (40  $\mu$ M), primer Prim15-FAM and template Temp\_PsG. Reaction mixtures were incubated at 60 °C for 100 min. Restriction endonuclease PstI-HF (10 U) and CutSmart reaction buffer (10×, 1  $\mu$ l) were added to the second portion of the PEX reaction and the mixture was incubated for 1 h at 37 °C.

Incorporation of modified  $d^{R}ATPs$  within the recognition sequence of PvuII restriction endonuclease

PEX was performed using *KOD XL* DNA polymerase (0.063 U), natural dNTPs (dGTP, dCTP, dTTP, 100  $\mu$ M), natural dATP or modified d<sup>R</sup>ATPs (100  $\mu$ M), primer Prim15-FAM and template Temp\_PvA. Reaction mixtures were incubated at 60 °C for 30 min. Restriction endonuclease PvuII (5 U) and NEB 3.1 reaction buffer (10×, 1  $\mu$ l) were added to the second portion of the PEX reaction and the mixture was incubated for 1 h at 37 °C.

Incorporation of modified  $d^{R}ITPs$  within the recognition sequence of PvuII restriction endonuclease

PEX was performed using *Therminator* DNA polymerase (0.16 U), natural dNTPs (dATP, dCTP, dTTP, 16  $\mu$ M), natural dGTP or modified d<sup>R</sup>ITPs (40  $\mu$ M), primer Prim15-FAM and template Temp\_PvG. Reaction mixtures were incubated at 60 °C for 100 min. Restriction endonuclease PvuII (5 U) and NEB 3.1 reaction buffer (10×, 1  $\mu$ l) were added to the second portion of the PEX reaction and the mixture was incubated for 1 h at 37 °C.

Incorporation of modified  $d^{R}ATPs$  within the recognition sequence of RsaI restriction endonuclease

PEX was performed using *KOD XL* DNA polymerase (0.025 U), natural dNTPs (dGTP, dCTP, dTTP, 100  $\mu$ M), natural dATP or modified d<sup>R</sup>ATPs (200  $\mu$ M), primer Prim15-FAM and template Temp\_RsA. Reaction mixtures were incubated at 60 °C for 30 min. Restriction endonuclease RsaI (5 U) and NEB 4 reaction buffer (10×, 1  $\mu$ l) were added to the second portion of the PEX reaction and the mixture was incubated for 1 h at 37 °C.

Incorporation of modified  $d^{R}ITPs$  within the recognition sequence of RsaI restriction endonuclease PEX was performed using *Therminator* DNA polymerase (0.04 U), natural dNTPs (dATP, dCTP, dTTP, 10  $\mu$ M), natural dGTP or modified  $d^{R}ITPs$  (40  $\mu$ M), primer Prim15-FAM and template

Temp\_RsG. Reaction mixtures were incubated at 60 °C for 90 min. Restriction endonuclease RsaI (5 U) and NEB 4 reaction buffer (10×, 1  $\mu$ l) were added to the second portion of the PEX reaction and the mixture was incubated for 1 h at 37 °C.

Incorporation of modified  $d^RATPs$  within the recognition sequence of SacI restriction endonuclease PEX was performed using *KOD XL* DNA polymerase (0.025 U), natural dNTPs (dGTP, dCTP, dTTP, 20  $\mu$ M), natural dATP or modified  $d^RATPs$  (20  $\mu$ M), primer Prim15-FAM and template Temp\_SaA. Reaction mixtures were incubated at 60 °C for 30 min. Restriction endonuclease SacI-HF (10 U) and CutSmart reaction buffer (10×, 1  $\mu$ l) were added to the second portion of the PEX reaction and the mixture was incubated for 1 h at 37 °C.

Incorporation of modified  $d^R ITPs$  within the recognition sequence of SacI restriction endonuclease PEX was performed using *Therminator* DNA polymerase (0.16 U), natural dNTPs (dATP, dCTP, dTTP, 16  $\mu$ M), natural dGTP or modified  $d^R ITPs$  (40  $\mu$ M), primer Prim15-FAM and template Temp\_SaG. Reaction mixtures were incubated at 60 °C for 100 min. Restriction endonuclease SacI-HF (10 U) and CutSmart reaction buffer (10×, 1  $\mu$ l) were added to the second portion of the PEX reaction and the mixture was incubated for 1 h at 37 °C.

Incorporation of modified  $d^{R}ATPs$  within the recognition sequence of ScaI restriction endonuclease PEX was performed using KOD XL DNA polymerase (0.075 U), natural dNTPs (dGTP, dCTP, dTTP, 20  $\mu$ M), natural dATP or modified  $d^{R}ATPs$  (20  $\mu$ M), primer Prim15-FAM and template Temp\_ScA. Reaction mixtures were incubated at 60 °C for 40 min. Restriction endonuclease ScaI-HF (10 U) and CutSmart reaction buffer (10×, 1  $\mu$ l) were added to the second portion of the PEX reaction and the mixture was incubated for 1 h at 37 °C.

Incorporation of modified  $d^R ITPs$  within the recognition sequence of Scal restriction endonuclease PEX was performed using *Therminator* DNA polymerase (0.04 U), natural dNTPs (dATP, dCTP, dTTP, 10  $\mu$ M), natural dGTP or modified  $d^R ITPs$  (40  $\mu$ M), primer Prim15-FAM and template Temp\_ScG. Reaction mixtures were incubated at 60 °C for 100 min. Restriction endonuclease Scal-HF (10 U) and CutSmart reaction buffer (10×, 1  $\mu$ l) were added to the second portion of the PEX reaction and the mixture was incubated for 1 h at 37 °C.

Before loading of the PAGE gel, PAGE stop solution (either 11.5 or 8.5  $\mu$ l, depending on the original portion of the PEX reaction) was added and samples were denatured by heating at 95 °C for 5 min. Aliquots (3.5  $\mu$ l) were analyzed by denaturing PAGE (12.5%). The gels were visualized by a fluorescent scanner. Conversion of the cleavage was determined using ImageJ software by comparison of the ratios of the intensity of the cleavage product and sum of intensities of the cleavage product and the rest of the products.<sup>S5</sup>

## Post-synthetic modification of DNA

## Materials and methods

The oligonucleotides for these experiments were prepared by PEX on a large scale and purified with a QIAquick nucleotide removal kit (QIAGEN). Fluorescent thiol (**CM-SH**) was prepared as described previously.<sup>S6</sup> L-cysteine was obtained from Sigma-Aldrich. Dodecapeptides were purchased at IOCB Prague. Samples were concentrated on a CentriVap Vacuum Concentrator system (Labconco). Fluorescence spectra were measured on a Fluoromax 4 spectrofluorimeter (HORIBA Scientific). Conversion of the reactions was determined using ImageJ software.

## Fluorescent labelling of vinyl modified DNAs

Reaction mixture was prepared by dissolving vinyl modified DNA (**DNA19\_1**<sup>v</sup>**H** or **DNA31\_4**<sup>v</sup>**H**) (0.5 nmol) in H<sub>2</sub>O (12.5  $\mu$ l). To this, thiol [**CM-SH**, (500 mM in 0.5 M TEAA buffer, pH = 8.0), 12.5  $\mu$ l] was added and the reaction mixture was kept at 37 °C and 500 rpm for 3 days.

Steady-state fluorescence measurements of the products of thiol-ene reaction were performed with DNA after thiol-ene reaction and purification with QIAquick nucleotide removal kit (QIAGEN). DNA concentration was determined on a Nanodrop and recalculated using values from OligoCalc.<sup>S4</sup> Emission spectra were recorded using a 0.5  $\mu$ M solution of DNA in phosphate buffer (20 mM, pH = 7.0, 1 M NaCl) using 100  $\mu$ l quartz cuvette. Solution was equilibrated for 2 min in a thermal holder (25 °C) before the fluorescence spectrum was recorded. Excitation wavelength was 390 nm and the range of the emission spectra was 410-650 nm. Control experiments were performed using natural non-modified DNA following the same procedure (thiol-ene reaction, purification and emission spectra measurement).

To obtain single-stranded DNA for MALDI analysis, the thiol-ene reaction was performed as described above using DNA after PEX with biotinylated template. Reaction mixture was first purified using QIAquick nucleotide removal kit (QIAGEN) and subsequently ssDNAs were generated by magnetoseparation. Thus a solution of modified DNA obtained after elution from the spin column (50  $\mu$ l of miliQ H<sub>2</sub>O) was diluted by 50  $\mu$ l of binding buffer (10 mM Tris, 1 mM EDTA, 100 mM NaCl, pH 7.5). Streptavidine magnetic particles (Roche, 100  $\mu$ l) were washed with binding buffer (3 × 200  $\mu$ l). The diluted modified DNA sample (100  $\mu$ l) was then added to the magnetic particles. Mixture was incubated at 15 °C and 1100 rpm for 30 min. The magnetic beads were collected on a magnet (DynaMagTM-2, Invitrogen) and washed with washing buffer (3 × 200  $\mu$ l, 10 mM Tris, 1 mM EDTA, 500 mM NaCl, pH 7.5) and water (5 × 200  $\mu$ l). Then water (50  $\mu$ l) was added and the sample was denatured for 2 min at 55 °C and 900 rpm. The beads were collected on a magnet and the solution was transferred into a clean vial and analyzed by MALDI-TOF MS (for copies of mass spectra see **Figure S14-S15**).

To analyze the product of thiol-ene reaction using PAGE, the reaction was performed as described above using DNA after PEX with Prim15-FAM and Temp19. The product of thiol-ene reaction was purified with QIAquick nucleotide removal kit (QIAGEN) two times. Concentration of DNA was determined on a Nanodrop and recalculated using values from OligoCalc. An aliquot was taken and diluted with miliQ H<sub>2</sub>O to a total volume of 20  $\mu$ l of approximately 500 nM concentration. PAGE stop solution (20  $\mu$ l) was added and sample was denaturated at 95 °C for 5 min. Aliquot (3.5  $\mu$ l) was subjected to vertical electrophoresis in 20% denaturing polyacrylamide gel containing

1×TBE buffer (pH 8.0) and 7 M urea at 42 mA for 120 min. The gel was visualized by a fluorescent scanner.

## Reaction of vinyl modified DNAs and L-cysteine

Reaction mixture was prepared by dissolving vinyl modified DNA (**DNA19\_1**<sup>V</sup>**H** or **DNA31\_4**<sup>V</sup>**H**) (0.5 nmol) in H<sub>2</sub>O (12.5  $\mu$ l). To this, L-cysteine (500 mM in 0.5 M TEAA buffer, pH = 8.0, 12.5  $\mu$ l) was added and the reaction mixture was kept at 50 °C and 500 rpm overnight. To obtain single-stranded DNA for MALDI analysis, reaction mixture was first purified using QIAquick nucleotide removal kit (QIAGEN) and subsequently ssDNAs were generated by magnetoseparation as described above (for copies of mass spectra see **Figure S16-S17**). To analyze the product of thiol-ene reaction using PAGE, the reaction was performed as described above using DNA after PEX with Prim15-FAM and Temp19. The PAGE analysis was performed as described above.

## **Reaction of vinyl modified DNA and dodecapeptides**

DNA for these reactions was prepared using primer Prim16-FAM and template Temp26-bio. Reaction mixture was prepared as follows: in a PCR eppendorf, 2  $\mu$ l of vinyl modified DNA solution (**DNA26\_1<sup>v</sup>H-FAM**, 26  $\mu$ M in TEAA buffer, pH = 8.0) was mixed with the corresponding amount of peptide (1-100 eq., solutions in TEAA buffer). The final concentration was of DNA was adjusted to 5  $\mu$ M with TEAA buffer. Reactions were kept at 20 °C for 1 h and then the temperature was increased over the course of 2 h to 37 °C. Reactions were kept at this temperature for 1 day (in one case reaction was run for 2 days). Stop solution (3  $\mu$ l) and reaction mixtures (3  $\mu$ l) were then combined and this mixture was denatured at 95 °C for 12 min. Residues were subjected to vertical electrophoresis in 12.5 % denaturing polyacrylamide gel containing 1×TBE buffer (pH 8.0) and 7 M urea at 42 mA for 80 min. The gel was visualized by a fluorescent scanner.

To obtain DNA suitable for MALDI analysis, reaction was performed on a bigger scale using 30  $\mu$ l of the aforementioned DNA solution and 10 eq. of peptide\_pos. After completion of the reaction, ssDNA was obtained by magnetoseparation as described above using 100  $\mu$ l of magnetic beads (for copy of mass spectra see **Figure S19**).

## **Thermal denaturation studies**

The oligonucleotides for these experiments were prepared by PEX on a semi-preparative scale. Concentration of DNA was determined on a Nanodrop and recalculated using values from OligoCalc. Samples were concentrated and then redissolved in phosphate buffer (20 mM, pH = 7.0; 1 M NaCl) to have  $A_{260}$  above 0.1. Thermal denaturation studies were performed on a Cary 100 UV-Vis spectrometer equipped with temperature controller (Agilent Technologies) monitoring the absorbance values at 260 nm between 35–95 °C. Data were collected from 6 independent heating-cooling cycles. Annealing temperatures ( $T_m$  / °C) were obtained by plotting temperature versus absorbance and applying a sigmodial curve fit.

## References

- S1. Y. Wang, D. Rösner, M. Grzywa, A. Marx, Angew. Chem. Int. Ed., 2014, 53, 8159-8162.
- **S2.** Z. Kazimierczuk, H. B. Cottam, G. R. Revankar, R. K. Robins, *J. Am. Chem. Soc.*, 1984, **106**, 6379-6382.
- **S3.** S. Pochet, L. Dugué, Nucleosides & Nucleotides, 1995, 14, 1195-1210.
- S4. W. A. Kibbe, Nucleic Acids Res., 2007, 35, W43-W46.
- S5. C. A. Schneider, W. S. Rasband, K. W. Eliceiri, Nature Methods, 2012, 9, 671-675.
- S6. S. Akita, N. Umezawa, T. Higuchi, Org. Lett., 2005, 7, 5565-5568.

# **Copies of MALDI spectra**



Figure S10: MALDI-TOF MS spectrum of  $ON19_1^{Me}H$  after PEX with Temp19-bio and  $d^{Me}ITP$ , calculated for  $[M+H]^+$ : 5914.9 Da; found: 5916.0.



**Figure S11:** MALDI-TOF MS spectrum of **ON19\_1**<sup>V</sup>**H** after PEX with Temp19-bio and **d**<sup>V</sup>**ITP**, calculated for [M+H]<sup>+</sup>: 5926.9 Da; found: 5929.0.



Figure S12: MALDI-TOF MS spectrum of **ON31\_4**<sup>Me</sup>H after PEX with Temp31-(bio)TINA and  $d^{Me}ITP$ , calculated for  $[M+H]^+$ : 9613.3 Da; found: 9614.6.



Figure S13: MALDI-TOF MS spectrum of  $ON31_4^VH$  after PEX with Temp31-(bio)TINA and  $d^VITP$ , calculated for  $[M+H]^+$ : 9661.3 Da; found: 9662.8.



**Figure S14:** MALDI-TOF MS spectrum of **ON19\_1**<sup>CM</sup>**H** after thiol-ene reaction of **DNA19\_1**<sup>V</sup>**H** and **CM-SH**, calculated for  $[M+H]^+$ : 6134.9 Da; found: 6137.6. Peak at 5931.0 Da represents the starting vinyl modified DNA, 4675.6 Da is the signal of unreacted primer.



**Figure S15:** MALDI-TOF MS spectrum of **ON31\_4**<sup>CM</sup>**H** after thiol-ene reaction of **DNA31\_4**<sup>V</sup>**H** and **CM-SH**. Starting vinyl modified DNA was extended by one or two or three additional As at the 3' end due to non-templated extension. Products of thiol-ene reaction:  $[M+2As+2CM+K]^+$ : 10756.4, found 10750.5 – product of reaction of two vinyl groups,  $[M+3As+2CM+Na]^+$ : 11037.6, found 11038.3, etc.



**Figure S16:** MALDI-TOF MS spectrum of **ON19**\_1<sup>Cys</sup>**H** after thiol-ene reaction of **DNA19**\_1<sup>V</sup>**H** and **L-cysteine**, calculated for  $[M+H]^+$ : 6049.0 Da; found: 6050.5. Peak at 5934.4 Da represents the starting vinyl modified DNA.



**Figure S17:** MALDI-TOF MS spectrum of **ON31**\_4<sup>Cys</sup>**H** after thiol-ene reaction of **DNA31**\_4<sup>V</sup>**H** and **L-cysteine**. Starting vinyl modified DNA was extended by one, two or three additional As at the 3' end due to non-templated extension (calculated for  $[M+2As+H]^+$ : 10287.4 Da; found: 10287.8;  $[M+3As+H]^+$  10600.6; found 10595.4). Products of thiol-ene reaction:  $[M+2As+cys+K]^+$ : 10448.4, found 10448.7 – product of reaction of one vinyl group;  $[M+3As+cys+Na]^+$ : 10746.4, found 10751.0 – product of reaction of one vinyl group, etc.



Figure S18: MALDI-TOF MS spectrum of  $ON26_1^VH$  after PEX with Temp26-bio, Prim16-FAM and  $d^VITP$ , calculated for  $[M+H]^+$ : 8652.5 Da; found: 8650.6.



**Figure S19:** MALDI-TOF MS spectrum of **ON26\_1**<sup>pept\_pos</sup>**H**, acquired by reaction of **DNA26\_1**<sup>V</sup>**H** with **peptide\_pos**, calculated for  $[M+H]^+$ : 10060.5 Da; found: 10060.3,  $[M-Ac+H]^+$  = 10018.5, found 10023.9.

# **Copies of NMR spectra**







S40











S45

















