Supporting Information

Condensation of 1,2-Dicarbonyl Compounds with Modified Huisgen Zwitterions: Synthesis of *N*-Aryl-*N*-Acyl Hydrazones

Jialin Liu,^[a] Jilei Cao,^[a] Rongfang Liu,^[a] Ruifeng Li,^[a] Yan Qiao,^[b] and Rong Zhou*^[a]

[a] College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China.

[b] The State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China

Table of Contents

I. ³¹ P NMR Tracking Experiment	S2
II. Proposed Kukhtin-Ramirez Adduct-Based Mechanism	S3
III. ORTEP Drawings for 5g .	S4
IV. ¹ H and ¹³ C NMR Spectra of Compounds 3 , 5 and 6	S5

I. ³¹P NMR Tracking Experiment

Propyl 2-phenyldiazenecarboxylate **1a** (10 mg, 0.05 mmol), Ph₃P (40 mg 0.15 mmol) were added into CDCl₃ (1.0 mL) in an NMR tube. The resulting mixture was shaken up and immediately applied to ³¹P NMR analysis. Then, the ³¹P NMR data were acquired at the indicated time intervals. After that, ethyl benzoylformate **2a** (18 mg, 0.1 mmol) was added into the tube and the resulting sample was tested again to get the final ³¹P NMR spectrum.

Fig S1 ³¹P NMR tracking experiment of propyl 2-phenyldiazenecarboxylate **1a** with Ph₃P Ethyl benzoylformate **2a** (9 mg, 0.05 mmol), Ph₃P (40 mg 0.15 mmol) were added into CDCl₃ (1.0 mL) in an NMR tube. The resulting mixture was shaken up and immediately applied to ³¹P NMR analysis. After 20 min, the sample was tested again to obtain the corresponding ³¹P NMR data.

Ph
$$CO_2Et$$
 $CDCI_3, rt$
2a in a NMR tube

Fig S2 ³¹P NMR tracking experiment of ethyl benzoylformate 2a with Ph₃P

II. Proposed Kukhtin-Ramirez Adduct-Based Mechanism

In the proposed mechanism, addition of PPh₃ to ethyl benzoylformate **2a** generates the Kukhtin-Ramirez adduct **E**, which undergoes a nucleophilic addition to propyl 2-phenyldiazenecarboxylate **1a** via its dipolar format affording intermediate **F**. Intermediate **F** eliminates triphenylphosphine oxide to give intermediate **G**. Finally, intermediate **G** undertakes an intramolecular S_NAr process to deliver the hydrazone derivative **3a**. However, this mechanism is not operative according to the above ³¹P NMR tracking experiments.

Scheme S1 Proposed mechanism involving the Kukhtin-Ramirez adduct

III. ORTEP Drawings for 5g.

Table S1. Crystal data and structure refinement for 5g.

Identification code	5g	
Empirical formula	C ₂₅ H ₂₂ ClN ₃ O ₃	
Formula weight	447.13	
Temperature	113(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	Triclinic, P-1	
Unit cell dimensions	$a = 8.3937(17) \text{ Å}$ $\alpha = 90.66(3)^{\circ}$	
	$b = 9.2600(19) \text{ Å}$ $\beta = 93.39(3) (9)^{\circ}$	
	$c = 13.938(3) \text{ Å}$ $\gamma = 95.51(3)^{\circ}$	
Volume	1076.3(4) Å ³	
Z, Calculated density	2, 1.329 Mg/m ³	
Absorption coefficient	0.148 mm ⁻¹	
F(000)	452	
Crystal size	0.200 x 0.180 x 0.120 mm ³	
Theta range for data collection .	2.210 to 25.018°	
Limiting indices	-9<=h<=9, -10<=k<=11, -16<=l<=16	
Reflections collected / unique	10248 / 3777 [R(int) = 0.0470]	
Completeness to the $\theta = 25.018^{\circ}$	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3777 / 0 / 291	
Goodness-of-fit on F ²	1.058	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0555, $wR2 = 0.1340$	
R indices (all data)	R1 = 0.0863, $wR2 = 0.1474$	
Largest diff. peak and hole	0.229 and -0.286 e. Å ⁻³	

IV. ¹H and ¹³C NMR Spectra of Compounds 3, 5 and 6

S19

S23

S24

S31

$\begin{array}{c} -7.7\\ -7.26\\ -7.$

