Iodine(III) Promoted Ring-Rearrangement Reaction of 1-Arylamino-2-oxocyclopentane-1-carbonitriles to Synthesize N-Aryl-δ-valerolactams

Dhananjay Bhattacherjee,^{a,b,c} Shaifali,^{a,c} Ajay Kumar,^{a,c} Ajay Sharma,^a Rituraj Purohit^{c,d} and Pralay Das*^{a,c}

- ^a Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, H.P., Fax: +91-1894-230433, E-mail: <u>pdas@ihbt.res.in</u>, <u>pralaydas1976@gmail.com</u>
- ^b Ural Federal University, 19, Mira St., 620002 Yekaterinburg, Russian Federation
- ^c Academy of Scientific and Innovative Research, New Delhi, India
- ^d Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India.

Table of Contents	Page No
(A) General Methods	<u>S2</u>
(B) Table S1	\$3
(C) Synthesis and characterization data for the products (Table 1-2)	S3-S15
(D) Spectral data (¹ H, ¹³ C, HRMS) for synthesized compounds	S16-S58
(E) Spectral data (IR and NMR) for reaction intermediates	S59-S60
(F) Crystallographic Data for compound 4i	S61-66
(G) References	S67

(A) General methods

Reagents of high quality were purchased from Sigma Aldrich and TCI chemicals. Silica gel (60-120 and 230-400 mesh size) for column chromatography was procured from Sd Fine-chem Ltd. Commercial reagents and solvents were of analytical grade and were purified by standard procedures prior to use. Thin layer chromatography was performed using precoated silica gel plates 60 F₂₅₄ (Merck) in UV light detector. ESI-MS spectra were analyzed using micro mass Q-TOF ultima spectrometer. ¹H , ¹³C NMR spectra were recorded using a Bruker Advance 300 and 600 spectrometer operating at 300 MHz and 600 MHz for ¹H, 75 MHz and 150 MHz ¹³C. Spectra were recorded at 25 °C in CDCl₃ [residual CHCl₃ ($\delta_{\rm H}$ 7.26 ppm) or CDCl₃ ($\delta_{\rm C}$ 77.00 ppm) and CD₃OD ($\delta_{\rm H}$ 3.30, 4.78 ppm) or CD₃OD ($\delta_{\rm C}$ 49.00 ppm) as international standard] with TMS as internal standard. Chemical shifts were recorded in δ (ppm) relative to the TMS and CDCl₃ signal, coupling constants (*J*) are given in Hz and multiplicities of signals are reported as follows: s, singlet; d, doublet; t, triplet; m, multiplet; brs, broad singlet; qt, quartet. IR spectra were carried out using Shimadzu IR Prestige-21 FT-IR spectrophotometer. The melting point of the solid compounds was recorded using Visual melting range apparatus (MR VIS⁺).

(B) Table S1: Synthesis of 1-arylamino-2-oxocyclopentane-1-carbonitrile derivatives ^{a*}

^aisolated yields *Compounds were synthesized as per procedure in reference 1

(C) Synthesis and characterization data for the products (Table 1-2)

1-(4-Cyanophenyl)-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 1, 2a)

after purification with silica gel column chromatography (50% EtOAc in n-Hexane) **2a** as light

brown solid (41 mg, 82.7%). Melting point: 137-139 °C.

¹H NMR (600 MHz; CDCl₃) δ (*ppm*) 2.67-2.70 (m, 2H), 2.80 (t, J = 7.74 Hz, 2H), 6.40 (t, J = 5.04 Hz, 1H), 7.42 (d, J = 8.34 Hz, 2H), 7.80 (d, J = 8.34 Hz, 2H).

¹³C NMR (150 MHz; CDCl₃) δ (*ppm*) 20.91, 30.45, 112.59, 112.66, 117.62, 117.83, 125.24, 128.72, 133.19, 140.63, 167.58.

ESI-MS $(M+H)^+$ calcd. for $C_{13}H_{10}N_3O^+$ is 224.0818 obsd. 224.0816.

IR (neat) 3082, 3065, 2232, 1699 cm⁻¹.

1-(3-Nitrophenyl)-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 2, 2b)

Prepared as described for GP-II, starting from **1b** (50 mg, 0.2040 mmol) gave, after purification with silica gel column chromatography (30% EtOAc in n-Hexane) **2b** as dark yellow solid (44.5 mg, 89.6%).

¹**H NMR (300 MHz; CDCl₃)** *δ (ppm)* 2.69-2.72 (m, 2H), 2.79-2.83 (m, 2H), 6.38 (m, 1H), 7.61-7.72 (m, 2H), 8.29 (s, 1H), 8.30 (d, *J* = 8.1 Hz, 1H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 20.98, 30.38, 112.65, 117.76, 123.51, 123.74, 124.86, 130.24, 134.14, 137.82, 148.67, 167.76.

ESI-MS $(M+H)^+$ calcd. for $C_{12}H_{10}N_3O_3^+$ is 244.0717 obsd. 244.0720.

IR (neat) 3084, 2230, 1697 cm⁻¹.

1-(3,5-Bis(trifluoromethyl)phenyl)-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 2, 2c)

 \square Prepared as described for GP-II, starting from **1c** (50 mg, 0.1488 mmol) gave,

after purification with silica gel column chromatography (30% EtOAc in n-Hexane) **2c** as off white solid (44.2 mg, 89.1%). Melting point: 112.6-114.5 °C.

¹H NMR (300 MHz; CDCl₃) δ (*ppm*) 2.67-2.73 (m, 2H), 2.79-2.85 (m, 2H), 6.41 (t, J = 5.07 Hz, 1H), 7.76 (s, 2H), 7.94 (s, 1H).

¹³**C NMR (75 MHz; CDCl₃)** δ (*ppm*) 20.95, 30.37, 112.45, 117.56, 122.71 ($J_{C-F} = 3.6 \text{ Hz}$), 124.46, 125.32 ($J_{C-F} = 1.7 \text{ Hz}$), 128.53 ($J_{C-F} = 2.5 \text{ Hz}$), 132.95 ($J_{C-F} = 34.2 \text{ Hz}$), 138.14, 167.66.

ESI-MS $(M+H)^+$ calcd. for $C_{14}H_9F_6N_2O^+$ is 335.0614 obsd. 335.0618.

IR (neat) 3082, 2968, 2230, 1705 cm⁻¹.

Methyl 4-(6-cyano-2-oxo-3,4-dihydropyridin-1(2H)-yl)benzoate (Table 2, 2d)

Prepared as described for GP-II, starting from 1d (50 mg, 0.1937 mmol)

gave, after purification with silica gel column chromatography (20% EtOAc in n-Hexane) **2d** as light brown solid (36.7 mg, 74%). Melting point: 134-136 °C.

¹**H NMR (300 MHz; CDCl₃)** *δ (ppm)* 2.62-2.80 (m, 4H), 3.95 (s, 3H), 6.33 (t, *J* = 4.89 Hz, 1H), 7.35 (d, *J* = 8.4 Hz, 2H), 8.17 (d, *J* = 8.4 Hz, 2H)

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 20.98, 30.55, 52.27, 112.81, 118.18, 124.31, 127.89, 130.45, 130.74, 140.76, 166.02, 167.67.

ESI-MS $(M+H)^+$ calcd. for $C_{14}H_{13}N_2O_3^+$ is 257.0921 obsd. 257.0930.

IR (neat) 3078, 3013, 2955, 2228, 1732, 1703 cm⁻¹.

Ethyl 4-(6-cyano-2-oxo-3,4-dihydropyridin-1(2H)-yl)benzoate (Table 2, 2e)

Prepared as described for GP-II, starting from 1e (50 mg, 0.1838 mmol) gave,

after purification with silica gel column chromatography (20% EtOAc in n-Hexane) **2e** as brown semi-solid (38.2 mg, 77%).

¹**H NMR (300 MHz; CDCl₃)** δ (*ppm*) 1.41 (t, *J* = 7.11 Hz, 3H), 2.64-2.68 (m, 2H), 2.75-2.80 (m, 2H), 4.41 (q, *J* = 14.22 Hz, 2H), 6.32 (t, *J* = 5.04 Hz, 1H), 7.35 (d, *J* = 8.46 Hz, 2H), 8.16 (d, *J* = 8.46 Hz, 2H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 14.24, 20.97, 30.53, 61.22, 112.82, 118.18, 124.26, 127.84, 130.70, 130.81, 140.69, 165.52, 167.67.

ESI-MS $(M+H)^+$ calcd. for $C_{15}H_{15}N_2O_3^+$ is 271.1077 obsd. 271.1083.

IR (neat) 3075, 2982, 2230, 1703 cm⁻¹.

1-(4-Acetylphenyl)-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 2, 2f)

Prepared as described for GP-II, starting from **1f** (50 mg, 0.2066 mmol) gave, after purification with silica gel column chromatography (20% EtOAc in n-Hexane) **2f** as brown solid (38.7 mg, 78%). Melting point: 101.7-103.9 °C.

¹**H NMR (600 MHz; CDCl₃)** δ (*ppm*) 2.64 (s, 3H), 2.66-2.69 (m, 2H), 2.75-2.80 (m, 2H), 6.35 (t, J = 5.04 Hz, 1H), 7.39 (d, J = 8.4 Hz, 2H), 8.08 (d, J = 8.4 Hz, 2H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 21.00, 26.62, 30.56, 112.86, 118.12, 124.46, 128.12, 129.43, 137.07, 140.90, 167.72, 196.82.

ESI-MS $(M+H)^+$ calcd. for $C_{14}H_{13}N_2O_2^+$ is 241.0972 obsd. 241.0980.

IR (neat) 3061, 2924, 2224, 1678 cm⁻¹.

6-Oxo-1-(p-tolyl)-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 2, 2g)

Prepared as described for GP-II, starting from 1g (50 mg, 0.2336 mmol) gave, after purification with silica gel column chromatography (20% EtOAc in n-Hexane) 2g as white

solid (35.6 mg, 72%). Melting point: 108-110.8 °C.

¹**H NMR (300 MHz; CDCl₃)** δ (*ppm*) 2.40 (s, 3H), 2.61-2.66 (m, 2H), 2.73-2.78 (m, 2H), 6.23 (t, J = 5.07 Hz, 1H), 7.14 (d, J = 8.28 Hz, 2H), 7.28 (d, J = 8.05 Hz, 2H).

¹³C NMR (**75 MHz; CDCl₃**) *δ (ppm)* 21.04, 21.18, 30.53, 113.07, 118.95, 122.85, 127.70, 130.15, 134.34, 139.05, 167.95.

ESI-MS $(M+H)^+$ calcd. for $C_{13}H_{13}N_2O^+$ is 213.1022 obsd. 213.1030.

IR (neat) 3046, 2949, 2226, 1688 cm⁻¹.

6-Oxo-1-phenyl-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 2, 2h)

Prepared as described for GP-II, starting from **1h** (50 mg, 0.25 mmol) gave, after purification with silica gel column chromatography (20% EtOAc in n-Hexane) **2h** as brown solid (32.7 mg, 66%). Melting point: 93-96 °C.

¹H NMR (300 MHz; CDCl₃) δ (*ppm*) 2.60-2.67 (m, 2H), 2.75-2.80 (m, 2H), 6.26 (t, J = 5.01 Hz, 1H), 7.27 (d, J = 6.96 Hz, 2H), 7.41-7.52 (m, 3H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 21.04, 30.55, 113.00, 118.80, 123.20, 127.99, 129.01, 129.48, 136.96, 167.89.

ESI-MS $(M+H)^+$ calcd. for $C_{12}H_{11}N_2O^+$ is 199.0866 obsd. 199.0881.

IR (neat) 3076, 2947, 2226, 1697 cm⁻¹.

1-(4-Fluorophenyl)-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 2, 2i)

Prepared as described for GP-II, starting from **1i** (50 mg, 0.2293 mmol) gave, after purification with silica gel column chromatography (20% EtOAc in n-Hexane) **2i** as white solid (31.7 mg, 64%). Melting point: 109-111.1 °C.

¹**H NMR (300 MHz; CDCl₃)** *δ (ppm)* 2.55-2.60 (m, 2H), 2.66-2.71 (m, 2H), 6.19 (t, *J* = 4.86 Hz, 1H), 7.06-7.19 (m, 4H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 21.05, 30.51, 112.91, 116.57 ($J_{C-F} = 23.1 \text{ Hz}$), 118.75, 123.26, 129.94 ($J_{C-F} = 9.0 \text{ Hz}$), 132.84 ($J_{C-F} = 3.5 \text{ Hz}$), 162.51 ($J_{C-F} = 249.2 \text{ Hz}$), 167.96.

ESI-MS $(M+H)^+$ calcd. for $C_{12}H_{10}FN_2O^+$ is 217.0772 obsd. 217.0760.

IR (neat) 3063, 2970, 2222, 1693 cm⁻¹.

1-(3-Chlorophenyl)-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 2, 2j)

Prepared as described for GP-II, starting from **1j** (50 mg, 0.2136 mmol) gave, after purification with silica gel column chromatography (20% EtOAc in n-Hexane) **2j** as white solid (34.2 mg, 69%). Melting point: 130.8-134.6 °C.

¹**H NMR (600 MHz; CDCl₃)** *δ (ppm)* 2.62-2.65 (m, 2H), 2.77 (t, *J* = 7.8 Hz, 2H), 6.28 (t, *J* = 5.04 Hz, 1H), 7.16-7.18 (m, 1H), 7.30 (s, 1H), 7.42-7.43 (m, 2H).

¹³C NMR (150 MHz; CDCl₃) δ (*ppm*) 20.95, 30.43, 112.78, 118.26, 123.89, 126.25, 128.48, 129.27, 130.34, 134.92, 137.89, 167.71.

ESI-MS $(M+H)^+$ calcd. for $C_{12}H_{10}CIN_2O^+$ is 233.0476 obsd. 233.0482.

IR (neat) 3071, 2963, 2224, 1693 cm⁻¹.

1-(4-Bromophenyl)-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 2, 2k)

Prepared as described for GP-II, starting from 1k (50 mg, 0.1798 mmol) gave, after purification with silica gel column chromatography (20% EtOAc in n-Hexane) 2k as brown solid (31.3 mg, 63%). Melting point: 102.0-104.8 °C.

¹**H NMR (300 MHz; CDCl₃)** *δ (ppm)* 2.61-2.79 (m, 4H), 6.29 (t, *J* = 4.89 Hz, 1H), 7.15(d, *J* = 8.52 Hz, 2H), 7.62 (d, *J* = 8.52 Hz, 2H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 21.00, 30.48, 112.85, 118.35, 122.99, 123.75, 129.62, 132.71, 135.86, 167.76.

ESI-MS $(M+H)^+$ calcd. for $C_{12}H_{10}BrN_2O^+$ is 276.9971 obsd. 276.9979.

IR (neat) 3059, 2957, 2226, 1688 cm⁻¹.

1-(4-Iodophenyl)-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 2, 2l)

Prepared as described for GP-II, starting from **11** (50 mg, 0.1533 mmol) gave, after purification with silica gel column chromatography (20% EtOAc in n-Hexane) **21** as brown solid (32.8 mg, 66%). Melting point: 107.3-110 °C.

¹**H NMR (600 MHz; CDCl₃)** δ (*ppm*) 2.63-2.66 (m, 2H), 2.76 (t, *J* = 7.86 Hz, 2H), 6.30 (t, *J* = 5.04 Hz, 1H), 7.02 (d, *J* = 8.54 Hz, 2H), 7.81 (d, *J* = 8.52 Hz, 2H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 20.97, 30.44, 94.54, 112.84, 118.23, 123.84, 129.76, 136.56, 138.64, 167.70.

ESI-MS $(M+H)^+$ calcd. for $C_{12}H_{10}IN_2O^+$ is 324.9832 obsd. 324.9828.

IR (neat) 2947, 2891, 2230, 1682 cm⁻¹.

1-(3,5-Dichlorophenyl)-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 2, 2m)

Prepared as described for GP-II, starting from **1m** (50 mg, 0.1865 mmol) gave, after purification with silica gel column chromatography (20% EtOAc in n-Hexane) **2m** as brown solid (39.2 mg, 79%). Melting point: 129-132 °C.

¹**H NMR (300 MHz; CDCl₃)** *δ (ppm)* 2.61-2.80 (m, 4H), 6.32 (t, *J* = 5.01 Hz, 1H), 7.19-7.20 (m, 2H), 7.43-7.44 (m, 1H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 20.97, 30.44, 112.59, 117.96, 124.41, 126.94, 129.43, 135.63, 138.48, 167.59.

ESI-MS $(M+H)^+$ calcd. for $C_{12}H_9C_{12}N_2O^+$ is 267.0086 obsd. 267.0090.

IR (neat) 3186, 3070, 2224, 1680 cm⁻¹.

4-Methyl-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 3, 4a)

Prepared as described for GP-II, starting from **3a** (50 mg, 0.2336 mmol) gave, after purification with silica gel column chromatography (20% EtOAc in n-Hexane) **4a** as white solid (33.7 mg, 68%). Melting point: 102.2-103.7 °C.

¹**H NMR (300 MHz; CDCl₃)** *δ (ppm)* 1.26 (d, *J* = 6.96 Hz, 3H), 2.49-2.57 (m, 1H), 2.78-2.92 (m, 2H), 6.16 (d, *J* = 4.23 Hz, 1H), 7.24-7.27 (m, 2H), 7.43-7.52 (m, 3H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 18.82, 27.75, 38.59, 113.04, 117.62, 127.93, 129.0, 129.14, 129.49, 136.84, 167.74.

ESI-MS $(M+H)^+$ calcd. for $C_{13}H_{13}N_2O^+$ is 213.1022 obsd. 213.1031.

IR (neat) 3069, 2959, 2228, 1691 cm⁻¹.

4-Methyl-6-oxo-1-(p-tolyl)-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 3, 4b)

Prepared as described for GP-II, starting from **3b** (50 mg, 0.2212 mmol) gave, after purification with silica gel column chromatography (20% EtOAc in n-Hexane) **4b** as light yellow solid (32.5 mg, 65%). Melting point: 82-84 °C.

¹H NMR (300 MHz; CDCl₃) δ (*ppm*) 1.25 (d, *J* = 6.96 Hz, 3H), 2.40 (s, 3H), 2.51-2.56 (m, 1H), 2.78-2.85 (m, 2H), 6.14 (d, *J* = 4.23 Hz, 1H), 7.12 (d, *J* = 8.28 Hz, 2H), 7.28 (d, *J* = 8.07 Hz, 2H). ¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 18.87, 21.20, 27.80, 38.64, 113.13, 117.87, 127.68, 128.74, 130.19, 134.27, 139.09, 167.83.

ESI-MS $(M+H)^+$ calcd. for $C_{14}H_{15}N_2O^+$ is 227.1179 obsd. 227.1185.

IR (neat) 3053, 2976, 2230, 1688 cm⁻¹.

1-(4-Benzoylphenyl)-5-methyl-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 3, 4c)

Prepared as described for GP-II, starting from 3c (50 mg, 0.1572 mmol)

gave, after purification with silica gel column chromatography (20% EtOAc in n-Hexane) **4c** as light brown solid (42.2 mg, 85%). Melting point: 128-130 °C.

¹**H NMR (300 MHz; CDCl₃)** δ (*ppm*) 1.35 (d, *J* = 6.81 Hz, 3H), 2.43-2.50 (m, 1H), 2.64-2.84 (m, 2H), 6.32-6.35 (m, 1H), 7.39 (d, *J* = 8.46 Hz, 2H), 7.51 (t, *J* = 7.59 Hz, 2H), 7.62 (t, *J* = 7.59 Hz, 1H), 7.82-7.85 (m, 2H), 7.92 (d, *J* = 8.43 Hz, 2H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 15.32, 28.73, 34.97, 112.92, 117.78, 123.89, 127.78, 128.37, 129.98, 131.05, 132.61, 137.23, 137.51, 140.60, 170.95, 195.44.

ESI-MS $(M+H)^+$ calcd. for $C_{20}H_{17}N_2O_2^+$ is 317.1285 obsd. 317.1290.

IR (neat) 3061, 2984, 2232, 1695 cm⁻¹.

1-(3-Chlorophenyl)-5-methyl-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 3, 4d)

Prepared as described for GP-II, starting from **3d** (50 mg, 0.2016 mmol) gave, after purification with silica gel column chromatography (20% EtOAc in n-Hexane) **4d** as brown solid (37.7 mg, 76%). Melting point: 117.5-120 °C.

¹**H NMR (300 MHz; CDCl₃)** *δ (ppm)* 1.33 (d, *J* = 6.81 Hz, 3H), 2.36-2.47 (m, 1H), 2.62-2.81 (m, 2H), 6.26-6.30 (m, 1H), 7.14-7.18 (m, 1H), 7.28 (s, 1H), 7.41-7.43 (m, 2H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 15.36, 28.74, 34.92, 112.85, 117.98, 123.22, 126.25, 128.53, 129.22, 130.32, 134.94, 138.22, 170.95.

ESI-MS $(M+H)^+$ calcd. for $C_{13}H_{12}CIN_2O^+$ is 247.0633 obsd. 247.0637.

IR (neat) 3080, 3061, 2226, 1686 cm⁻¹.

1-(4-Cyanophenyl)-5-methyl-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 3, 4e)

Prepared as described for GP-II, starting from 3e (50 mg, 0.2092 mmol) gave,

after purification with silica gel column chromatography (20% EtOAc in n-Hexane) **4e** as off white solid (34.2 mg, 69%). Melting point: 112-114 °C.

¹H NMR (300 MHz; CDCl₃) δ (*ppm*) 1.34 (d, *J* = 6.78 Hz, 3H), 2.43-2.50 (m, 1H), 2.64-2.83 (m, 2H), 6.35-6.38 (m, 1H), 7.39 (d, *J* = 8.16 Hz, 2H), 7.78 (d, *J* = 8.13 Hz, 2H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 15.25, 28.67, 34.95, 112.57, 112.73, 117.31, 117.88, 124.65, 128.73, 133.18, 140.97, 170.80.

ESI-MS $(M+H)^+$ calcd. for $C_{14}H_{12}N_3O^+$ is 238.0975 obsd. 238.0983.

IR (neat) 3098, 3065, 3044, 2235, 1703 cm⁻¹.

4,4-Dimethyl-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 3, 4f)

Prepared as described for GP-II, starting from **3f** (50 mg, 0.2192 mmol) gave,

after purification with silica gel column chromatography (20% EtOAc in n-Hexane) **4f** as white solid (30.7 mg, 62%). Melting point: 116-118 °C.

¹**H NMR (600 MHz; CDCl₃)** *δ (ppm)* 1.27 (s, 6H), 2.62 (s, 2H), 6.10 (s, 1H), 7.25-7.26 (m, 2H), 7.44-7.45 (m, 1H), 7.49 (t, *J* = 7.86 Hz, 2H).

¹³C NMR (150 MHz; CDCl₃) δ (*ppm*) 26.77, 32.87, 45.28, 113.09, 116.49, 127.87, 129.01, 129.51, 133.57, 136.77, 167.71.

ESI-MS $(M+H)^+$ calcd. for $C_{14}H_{15}N_2O^+$ is 227.1179 obsd. 227.1184.

IR (neat) 3055, 2963, 2228, 1701 cm⁻¹.

4,4-Dimethyl-6-oxo-1-(m-tolyl)-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 3, 4g)

Prepared as described for GP-II, starting from 3g (50 mg, 0.2066 mmol) gave, after purification with silica gel column chromatography (30% EtOAc in n-Hexane) 4g as brown solid (37 mg, 75%). Melting point: 93-95.3 °C.

¹**H NMR (300 MHz; CDCl₃)** *δ (ppm)* 1.25 (s, 6H), 2.41 (s, 3H), 2.60 (s, 2H), 6.07 (s, 1H), 7.05 (m, 2H), 7.25-7.37 (m, 2H).

¹³C NMR (**75** MHz; CDCl₃) *δ (ppm)* 21.25, 26.75, 32.82, 45.27, 113.10, 116.57, 124.81, 128.43, 129.25, 129.87, 133.31, 136.67, 139.53, 167.70.

ESI-MS $(M+H)^+$ calcd. for $C_{15}H_{17}N_2O^+$ is 241.1335 obsd. 241.1336.

IR (neat) 3067, 2965, 2226, 1699 cm⁻¹.

4,4-Dimethyl-1-(3-nitrophenyl)-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 3, 4h)

Prepared as described for GP-II, starting from **3h** (50 mg, 0.1831 mmol) gave, after purification with silica gel column chromatography (30% EtOAc in n-Hexane) **4h** as yellow semi-solid (33.2 mg, 67%).

¹**H NMR (300 MHz; CDCl₃)** *δ (ppm)* 1.28 (s, 6H), 2.64 (s, 2H), 6.21 (s, 1H), 7.59-7.69 (m, 2H), 8.14-8.15 (m, 1H), 8.28-8.31 (m, 1H).

¹³C NMR (**75 MHz; CDCl**₃) *δ (ppm)* 26.72, 32.98, 45.01, 112.69, 115.33, 123.29, 123.70, 130.24, 133.99, 135.13, 137.64, 148.66, 167.59.

ESI-MS $(M+H)^+$ calcd. for $C_{14}H_{14}N_3O_3^+$ is 272.1030 obsd. 272.1030.

IR (neat) 3092, 2965, 2230, 1697 cm⁻¹.

1-(4-Cyanophenyl)-4,4-dimethyl-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 3, 4i)

Prepared as described for GP-II, starting from **3i** (50 mg, 0.1976 mmol) gave, after purification with silica gel column chromatography (30% EtOAc in n-Hexane) **4i** as light yellow solid (36.2 mg, 73%). Melting point: 119-122°C.

¹**H NMR (300 MHz; CDCl₃)** *δ (ppm)* 1.25 (s, 6H), 2.60 (s, 2H), 6.21 (s, 1H), 7.37-7.40 (m, 2H), 7.76-7.79 (m, 2H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 26.64, 32.91, 45.07, 112.58, 112.71, 115.22, 117.81, 128.56, 133.19, 135.52, 140.44, 167.42.

ESI-MS $(M+H)^+$ calcd. for $C_{15}H_{14}N_3O^+$ is 252.1131 obsd. 252.1140.

IR (neat) 3099, 2980, 2230, 1701 cm⁻¹.

1-(4-Bromophenyl)-4,4-dimethyl-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 3, 4j)

Prepared as described for GP-II, starting from **3i** (50 mg, 0.1633 mmol) gave,

after purification with silica gel column chromatography (30% EtOAc in n-Hexane) **4j** as white solid (33.8 mg, 68%). Melting point: 172.3-175.9 °C.

¹**H NMR (300 MHz; CDCl₃)** δ (*ppm*) 1.25 (s, 6H), 2.60 (s, 2H), 6.12 (s, 1H), 7.12 (d, J = 8.58 Hz, 2H), 7.62 (d, J = 8.58 Hz, 2H).

¹³C NMR (**75** MHz; CDCl₃) *δ (ppm)* 26.77, 32.89, 45.19, 112.93, 116.02, 122.97, 129.48, 132.73, 134.09, 135.71, 167.58.

ESI-MS $(M+H)^+$ calcd. for $C_{14}H_{14}BrN_2O^+$ is 305.0284 obsd. 305.0291.

IR (neat) 3067, 2957, 2228, 1697 cm⁻¹.

1-(3-Chlorophenyl)-4,4-dimethyl-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 3, 4k)

Prepared as described for GP-II, starting from 3k (50 mg, 0.1908 mmol) gave,

after purification with silica gel column chromatography (30% EtOAc in n-Hexane) **4k** as yellow solid (37.7 mg, 76%). Melting point: 107-109.2 °C.

¹**H NMR (300 MHz; CDCl₃)** *δ (ppm)* 1.26 (s, 6H), 2.61 (s, 2H), 6.13 (s, 1H), 7.14-7.15 (m, 1H), 7.27 (s, 1H), 7.42-7.43 (m, 2H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 26.75, 32.91, 45.17, 112.86, 116.00, 126.15, 128.36, 129.33, 130.40, 134.19, 135.01, 137.74, 167.59.

ESI-MS $(M+H)^+$ calcd. for $C_{14}H_{14}CIN_2O^+$ is 261.0789 obsd. 261.0793.

IR (neat) 3063, 2967, 2234, 1697 cm⁻¹.

1-(4-Benzoylphenyl)-5-isopropyl-6-oxo-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 3, 4l)

Prepared as described for GP-II, starting from **31** (50 mg, 0.1445 mmol) gave, after purification with silica gel column chromatography (30% EtOAc in n-Hexane) **41** as brown solid (38.3 mg, 77%). Melting point: 89-93 °C.

¹**H NMR (300 MHz; CDCl₃)** δ (*ppm*) 1.01 (d, *J* = 6.87 Hz, 3H), 1.10 (d, *J* = 6.87 Hz, 3H), 2.34-2.40 (m, 1H), 2.53-2.70 (m, 3H), 6.32-6.36 (m, 1H), 7.38 (d, *J* = 8.46 Hz, 2H), 7.48-7.53 (m, 2H), 7.59-7.65 (m, 1H), 7.82-7.84 (m, 2H), 7.93 (d, *J* = 8.49 Hz, 2H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 18.87, 20.53, 22.66, 27.05, 46.14, 112.94, 117.47, 124.10, 127.82, 128.36, 129.98, 131.04, 132.59, 137.27, 137.49, 140.66, 169.86, 195.42.

ESI-MS $(M+H)^+$ calcd. for $C_{22}H_{21}N_2O_2^+$ is 345.1598 obsd. 345.1611.

IR (neat) 3075, 2959, 2228, 1692, 1651 cm⁻¹.

5-Isopropyl-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 3, 4m)

Prepared as described for GP-II, starting from **3m** (50 mg, 0.2066 mmol) gave, after purification with silica gel column chromatography (30% EtOAc in n-Hexane) **4m** as brown solid (35.7 mg, 72%). Melting point: 57-60 °C.

¹**H NMR (300 MHz; CDCl₃)** δ (*ppm*) 1.01 (d, *J* = 6.69 Hz, 3H), 1.08 (d, *J* = 6.87 Hz, 3H), 2.32-2.36 (m, 1H), 2.49-2.64 (m, 3H), 6.24 (t, *J* = 4.89 Hz, 1H), 7.24 (d, *J* = 7.71 Hz, 2H), 7.41-7.51 (m, 3H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 18.88, 20.52, 22.66, 27.03, 46.04, 113.09, 118.00, 122.82, 127.98, 128.80, 129.39, 137.26, 169.92.

ESI-MS $(M+H)^+$ calcd. for $C_{15}H_{17}N_2O^+$ is 241.1335 obsd. 241.1340.

IR (neat) 3053, 2966, 2878, 2230, 1676 cm⁻¹.

1-(3-Chlorophenyl)-6-oxo-4-phenyl-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 3, 4n)

Prepared as described for GP-II, starting from **3n** (50 mg, 0.1612 mmol) gave, after purification with silica gel column chromatography (30% EtOAc in n-Hexane) **4n** as brown solid (31.8 mg, 64%). Melting point: 106.4-108.4 °C.

¹**H NMR (300 MHz; CDCl₃)** *δ (ppm)* 2.91-3.12 (m, 2H), 4.05-4.12 (m, 1H), 6.39 (d, *J* = 4.32 Hz, 1H), 7.18-7.46 (m, 9H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 38.63, 38.71, 112.71, 118.12, 112.26, 126.81, 127.06, 128.03, 128.54, 129..41, 129.51, 130.46, 135.11, 137.72, 139.46, 166.94.

ESI-MS $(M+H)^+$ calcd. for $C_{18}H_{14}CIN_2O^+$ is 309.0789 obsd. 309.0794.

IR (neat) 3067, 3032, 2230, 1701 cm⁻¹.

1-(4-Cyanophenyl)-6-oxo-4-phenyl-1,4,5,6-tetrahydropyridine-2-carbonitrile (Table 3, 40)

Prepared as described for GP-II, starting from **30** (50 mg, 0.1661 mmol)

gave, after purification with silica gel column chromatography (30% EtOAc in n-Hexane) **40** as light yellow solid (35.3 mg, 71%). Melting point: 146-149 °C.

¹H NMR (300 MHz; CDCl₃) δ (*ppm*) 2.94-3.13 (m, 2H), 4.07-4.12 (m, 1H), 6.48 (d, J = 4.44 Hz, 1H), 7.27 (d, J = 7.35 Hz, 2H), 7.34-7.45 (m, 5H), 7.80 (d, J = 8.43 Hz, 2H).

¹³C NMR (75 MHz; CDCl₃) δ (*ppm*) 38.51, 38.64, 112.58, 112.89, 117.38, 117.77, 126.74, 128.13, 128.43, 128.76, 129.45, 133.30, 139.09, 140.42, 166.83.

ESI-MS $(M+H)^+$ calcd. for $C_{19}H_{14}N_3O^+$ is 300.1131 obsd. 300.1138.

IR (neat) 3059, 3026, 2226, 1703 cm⁻¹.

#Note: In most of the ¹H NMR mentioned below, we have noticed minor peaks at aromatic region may be due to the corresponding rotational isomers of the compound (present in different plans).

D. Spectral data (¹H, ¹³C, HRMS-ESI) for synthesized compounds (2a-m, 4ao).

S24

200.1737

179.2166

130.28

137.2600

102.3603 123.3016

242.0960

258.0889

S32

S33

263.1138

313.3254

199.2962

0.3747

102.4290

124.3772

(E) Spectral data (IR and NMR) for reaction intermediates.

(F) Crystallographic Data for compound 4i (CCDC1861158).

Bond precision:	C-C = 0.0074 A	A Wavelength=1.54184				
Cell:	a=7.5028(10)	b=10.3065(10)	c=17.339(2)			
	alpha=90	beta=93.209(11)	gamma=90			
Temperature:	293 K					
	Calculated	Reported				
Volume	1338.7(3)	1338.7(3)				
Space group	P 21/c	P 1 21/c	1			
Hall group	-P 2ybc	-P 2ybc				
Moiety formula	C15 H13 N3 O	C15 H13 N	13 0			
Sum formula	C15 H13 N3 O	C15 H13 N	13 0			
Mr	251.28	251.28				
Dx,g cm-3	1.247	1.247				
Z	4	4				
Mu (mm-1)	0.651	0.651				
F000	528.0	528.0				
F000'	529.54					
h,k,lmax	8,12,20	8,12,20				
Nref	2379	2259				
Tmin, Tmax	0.787,0.912	0.453,1.0	00			
Tmin'	0.787					
Correction meth AbsCorr = GAUSS	od= # Reported T IAN	Limits: Tmin=0.453	Tmax=1.000			
Data completene	ss= 0.950	Theta(max) = 66.93	0			
R(reflections) =	0.0934(1466)	wR2(reflections)=	0.4097(2259)			
S = 1.639	Npar=	= 174				

Table S2. Crystal data and structure refinement for compound						
4i.						
Identification code	4i					
Empirical formula	$C_{15}H_{13}N_{3}O$					
Formula weight	251.28					
Temperature/K	293(2)					
Crystal system	monoclinic					
Space group	$P2_1/c$					
a/Å	7.5028(10)					
b/Å	10.3065(10)					
c/Å	17.339(2)					
$\alpha/^{\circ}$	90					
β/°	93.209(11)					
$\gamma/^{\circ}$	90					
Volume/Å ³	1338.7(3)					
Ζ	4					
$\rho_{calc}g/cm^3$	1.247					
µ/mm ⁻¹	0.651					
F(000)	528					
Crystal size/mm ³	0.367 imes 0.333 imes 0.141					
Radiation	$CuK\alpha (\lambda = 1.54184)$					
2Θ range for data collection/°	9.98 to 133.86					
Index ranges	$-8 \le h \le 8, -10 \le k \le 12, -20 \le l \le 18$					
Reflections collected	3969					
Independent reflections	2259 [$R_{int} = 0.0287$, $R_{sigma} = 0.0316$]					
Data/restraints/parameters	2259/0/174					
Goodness-of-fit on F ²	1.639					
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0934$, $wR_2 = 0.2885$					
Final R indexes [all data]	$R_1 = 0.1436, wR_2 = 0.4097$					
Largest diff. peak/hole / e Å ⁻³	0.39/-0.52					

Table S3. Displacement Parameters (Å2×103) for 4i. Ueq is definedas 1/3 of of the trace of the orthogonalised UIJ tensor.								
Atom	х	У	Z	U(eq)				
015	2603(5)	2678(3)	2244(2)	75.4(12)				
N1	3088(5)	519(3)	2106(2)	58.5(11)				
C2	2246(7)	1576(4)	2439(3)	59.6(12)				
C16	3299(7)	-1815(4)	1924(3)	63.7(13)				
C9	7454(7)	387(5)	1211(3)	69.7(15)				
C6	2761(6)	-746(4)	2384(3)	57.3(12)				
C13	8536(8)	1381(5)	49(4)	78.1(17)				
C8	6137(7)	195(4)	1720(3)	64.0(13)				
C12	4109(7)	1457(5)	916(3)	68.3(14)				
C7	4452(7)	732(4)	1566(3)	60.2(13)				
C5	1964(7)	-965(5)	3036(3)	68.0(14)				
C11	5427(7)	1664(5)	414(3)	71.3(15)				
C10	7123(7)	1136(5)	563(4)	67.1(14)				
N17	3682(7)	-2686(4)	1556(3)	85.0(16)				
C4	1337(7)	113(5)	3540(3)	63.7(13)				
C19	2810(8)	463(6)	4137(3)	79.0(17)				
C3	885(8)	1260(5)	3007(3)	69.5(14)				
C18	-349(8)	-281(6)	3943(4)	84.5(19)				
N14	9684(8)	1594(6)	-340(4)	109(2)				

-

Table S4. Anisotropic Displacement Parameters (Å ^{2×103}) for 4i. The Anisotropic displacement factor exponent takes the form: - 2π ² [h ² a ^{*2} U ₁₁ +2hka*b*U ₁₂ +].									
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂			
015	106(3)	40.7(18)	80(3)	4.1(16)	13(2)	8.9(16)			
N1	73(3)	38.7(19)	66(2)	2.8(16)	16(2)	5.2(15)			
C2	78(3)	49(2)	52(3)	-0.2(19)	11(2)	6.9(19)			
C16	77(3)	46(2)	70(3)	0(2)	15(2)	-0.9(19)			
С9	70(3)	51(2)	89(4)	3(2)	13(3)	7(2)			
C6	71(3)	42(2)	60(3)	1.9(19)	13(2)	-0.5(18)			
C13	87(4)	63(3)	87(4)	13(3)	27(3)	10(3)			
C8	72(3)	47(2)	74(3)	6(2)	11(2)	4.9(19)			
C12	74(3)	56(3)	76(3)	8(2)	9(3)	10(2)			
C7	73(3)	38(2)	71(3)	0.2(19)	15(2)	4.7(18)			
C5	88(3)	44(2)	74(3)	-1(2)	18(3)	-8(2)			
C11	83(4)	59(3)	73(3)	14(2)	19(3)	8(2)			
C10	72(3)	46(2)	85(4)	-1(2)	20(3)	4(2)			
N17	100(4)	58(3)	99(4)	-19(3)	24(3)	4(2)			
C4	79(3)	56(3)	58(3)	-8(2)	12(2)	-9(2)			
C19	92(4)	78(4)	67(4)	-4(3)	11(3)	-17(3)			
C3	82(3)	62(3)	66(3)	-10(2)	16(3)	10(2)			
C18	88(4)	81(4)	87(4)	-22(3)	26(3)	-25(3)			
N14	105(4)	93(4)	134(5)	40(4)	63(4)	22(3)			

Table S5. Bond Lengths for 4i.									
Atom	Atom	Length/Å		Atom	Atom	Length/Å			
015	C2	1.219(6)		C13	C10	1.445(7)			
N1	C2	1.400(6)		C13	N14	1.145(7)			
N1	C6	1.417(5)		C8	C7	1.391(7)			
N1	C7	1.442(6)		C12	C7	1.366(7)			
C2	C3	1.493(7)		C12	C11	1.370(7)			
C16	C6	1.431(6)		C5	C4	1.505(7)			
C16	N17	1.147(7)		C11	C10	1.395(8)			
C9	C8	1.376(7)		C4	C19	1.515(8)			
C9	C10	1.374(8)		C4	C3	1.526(8)			
C6	C5	1.328(7)		C4	C18	1.534(7)			

Table S6. Bond Angles for 4i.								
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°
C2	N1	C6	119.0(4)		C12	C7	N1	120.7(4)
C2	N1	C7	120.2(4)		C12	C7	C8	120.2(5)
C6	N1	C7	120.2(4)		C6	C5	C4	122.6(4)
015	C2	N1	119.9(4)		C12	C11	C10	120.3(5)
015	C2	C3	123.7(4)		C9	C10	C13	119.8(5)
N1	C2	C3	116.3(4)		C9	C10	C11	119.5(5)
N17	C16	C6	178.0(6)		C11	C10	C13	120.7(5)
C10	C9	C8	120.1(5)		C5	C4	C19	109.4(5)
N1	C6	C16	117.4(4)		C5	C4	C3	106.7(4)
C5	C6	N1	122.7(4)		C5	C4	C18	111.2(4)
C5	C6	C16	119.9(4)		C19	C4	C3	111.0(4)
N14	C13	C10	178.0(8)		C19	C4	C18	109.9(4)
C9	C8	C7	119.8(5)		C3	C4	C18	108.6(5)

Table S7. Torsion Angles for 4i.										
Α	В	С	D	Angle/°		A	В	С	D	Angle/°
015	C2	C3	C4	- 143.8(5)		C8	C9	C10	C11	-2.1(8)
N1	C2	C3	C4	38.5(6)		C12	C11	C10	C9	1.1(8)
N1	C6	C5	C4	-0.1(9)		C12	C11	C10	C13	- 178.1(5)
C2	N1	C6	C16	166.0(5)		C7	N1	C2	015	3.7(8)
C2	N1	C6	C5	-12.8(8)		C7	N1	C2	C3	- 178.4(4)
C2	N1	C7	C8	123.0(5)		C7	N1	C6	C16	-22.6(7)
C2	N1	C7	C12	-56.5(7)		C7	N1	C6	C5	158.5(5)
C16	C6	C5	C4	- 179.0(5)		C7	C12	C11	C10	0.1(8)
C9	C8	C7	N1	179.9(4)		C5	C4	C3	C2	-46.8(6)
C9	C8	C7	C12	-0.6(7)		C11	C12	C7	N1	179.2(5)
C6	N1	C2	O15	175.1(5)		C11	C12	C7	C8	-0.3(8)
C6	N1	C2	C3	-7.1(7)		C10	C9	C8	C7	1.8(8)
C6	N1	C7	C8	-48.2(7)		N17	C16	C6	N1	-127(18)
C6	N1	C7	C12	132.3(5)		N17	C16	C6	C5	52(18)
C6	C5	C4	C19	-91.2(7)		C19	C4	C3	C2	72.4(6)
C6	C5	C4	C3	29.0(7)		C18	C4	C3	C2	- 166.7(4)
C6	C5	C4	C18	147.3(6)		N14	C13	C10	C9	-61(17)
C8	C9	C10	C13	177.2(5)		N14	C13	C10	C11	119(17)

Table S8. Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters (Å ² ×10 ³) for 4i.								
Atom	x	У	z	U(eq)				
H9	8570	8	1305	84				
H8	6371	-291	2166	77				
H12	2980	1810	813	82				
H5	1785	-1819	3187	82				
H11	5190	2159	-29	86				
H19A	3049	-265	4473	119				
H19B	2443	1190	4435	119				
H19C	3871	684	3882	119				
H3A	-240	1080	2724	83				
H3B	711	2020	3324	83				
H18A	-1236	-584	3565	127				
H18B	-804	456	4208	127				
H18C	-63	-960	4308	127				

(G) References:

- (a) D. Bhattacherjee, V. Thakur, S. Sharma, S. Kumar, R. Bharti, C. B. Reddy and P. Das, *Adv. Synth. Catal.* **2017**, *359*, 2209-2214.
- [#]In proton NMR spectra refers peak of H₂O in CDCl₃ as impurities and it is not taken into account in the yield calculations of final products.