Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Visible-Light-Promoted Radical Cross-Coupling of para-Quinone

Methides with N-Substituted Anilines: An Efficient Approch to 2,2-

Diarylethylamines

Qiao-Lei Wu,† Jing Guo,† Gong-Bin Huang, Albert S. C. Chan, Jiang Weng,* Gui Lu*

Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China

E-mail: wengj2@mail.sysu.edu.cn; lugui@mail.sysu.edu.cn

Table of Content

 General Information General Procedure for the Synthesis of Substrates	S2
	S2
	S3
4. Characterization of Compounds 3a-3w and 3aa	S6
5. Copies of ¹ H and ¹³ C NMR Spectra of Compounds 3a-3w and 3aa	S14
6. References	S38

1. General Information

All the commercial reagents were used as such without further purification. All solvents were used as commercial anhydrous grade without further purification. The flash column chromatography was carried out over silica gel (230-400 mesh). ¹H and ¹³C NMR spectra were recorded on a Bruker Avance-400 MHz spectrometer or Bruker Avance-500 MHz spectrometer. Chemical shifts in ¹H NMR spectra were reported in parts per million (ppm, δ) downfield from the internal standard Me₄Si (TMS, $\delta = 0$ ppm). Chemical shifts in ¹³C NMR spectra were reported relative to the central line of the chloroform signal ($\delta = 77.0$ ppm). Peaks were labeled as singlet (s), doublet (d), triplet (t), quartet (q), and multiplet (m). High resolution mass spectra were obtained with a Shimadzu LCMS-IT-TOF mass spectrometer. Chemical yields refer to pure isolated substances.

2. General Procedure for the Synthesis of Substrates

(a) General synthetic method of *p*-QMs derivatives^[1]

In a dry 100 mL round-bottom flask, a solution of phenols (25.0 mmol) and the corresponding aldehydes (25.0 mmol) in toluene (100 mL) was heated to reflux. Piperidine (50.0 mmol, 4.95 mL) was dropwise added within 1 h. The reaction mixture was continued to reflux for 12-18 h. After cooling just below the boiling point of the reaction mixture, acetic anhydride (50.0 mmol, 2.55 g) was added and the stirring was continued for 15 min. Then the reaction mixture was cooled to room temperature, poured into water and extracted with CH₂Cl₂. The combined organic phases were dried over anhydrous Na₂SO₄ and solvents were removed under reduced pressure. The crude products were purified by flash column chromatography and further recrystallized from *n*-hexane, affording the desired *p*-QMs **1a-1m**.

(b) Experimental procedure for the preparation of tertiary amines (reductive methylation of amines)^[2]

$$\begin{array}{c} \text{R-NH}_2 & \xrightarrow{\text{HCHO}} & \stackrel{\text{R}}{\xrightarrow{}} \\ \text{R = aryl} & \stackrel{\text{NaBH}_3\text{CN}, \text{ZnCl}_2}{\text{MeOH}, \text{RT}} & \stackrel{\text{Me}}{\xrightarrow{}} \\ \end{array}$$

Amine (1.0 g) and aldehyde (8.0 equiv.) was stirred in methanol (15 mL) to which preprepared methanol (5 mL) solution of sodium cyanoborohydride (1.0 equiv.) and zinc chloride (0.5 equiv.) was added at room temperature. The resulted reaction mixture was stirred overnight at room temperature and basified with 0.1 N NaOH (20 mL). Methanol was evaporated and aqueous layer was extracted with ethyl acetate (3×50 mL). The combined organic layer was washed with water and brine, dried over anhydrous sodium sulfate. Further, the organic layer was evaporated to dryness and subjected for silica gel column chromatography using ethyl acetate/hexane as eluent. Yield of *tert*-amines were approx. 80-90%. **2n-2w.**

3. Mechanistic Experiments

(a) The Fluorescence Quenching Studies.

The Stern-Volmer fluorescence quenching studies were run with freshly prepared Eosin Y (0.16 μ M solution in DMF) at room temperature. The solution was irradiated at 490 nm and fluorescence was measured from 500 nm to 655 nm. Control experiments showed that the excited EY* was quenched by *p*-QM 1a.

Figure S1. Fluorescence quenching of excited EY* with *p*-QM (**1a**), *N*,*N*-dimethylaniline (**2a**) or $2\mathbf{a}$ +K₂HPO₄ in DMF (excitation wavelength: 490 nm). EY (1.6 μ M) in DMF (black line), EY (1.6 μ M) with **2a** (0.72 mM) in DMF (red line), EY (1.6 μ M) with **2a** (0.72 mM) and K₂HPO₄ (0.72 mM) in DMF (blue line), EY (1.6 μ M) with **1a** (0.72 mM) in DMF (pink line).

Figure S2. EY emission quenching by different concentrations of p-QM 1a (excitation wavelength: 550 nm)

Figure S3. EY emission quenching by different concentrations of *N*,*N*-dimethylaniline **2a** (excitation wavelength: 550 nm)

Figure S4. Stern-Volmer fluorescence quenching studies of EY by p-QM 1a or N,N-dimethylaniline 2a

(b) Radical Trapping Experiments.

MS spectrum of product 4a

(c) De-tert-butylation of 2,2-diarylethylamine 3aa.^[1b]

To a solution of **3a** (51.5 mg, 0.12 mmol) in dry benzene (3.0 mL) was added AlCl₃ (160 mg, 1.2 mmol) under nitrogen. The reaction mixture was then warmed to 60 °C and stirred for 1 h. Following addition of H₂O (10 mL), the resulting mixture was extracted with ethyl acetate (10 mL × 3), and the combined extracts were dried over anhydrous Na₂SO₄. The solvent of filtrate was concentrated under reduced pressure. The residue obtained was purified by flash column chromatography on silica gel eluting with petroleum ether/AcOEt (10/1 \rightarrow 4/1) to afford the de*tert*-butylation of 2,2-diarylethylamine **3aa** as a solid (22.8 mg, 60% yield).

4. Characterization of Compounds 3a-3w and 3aa

3a

2,6-Di-tert-butyl-4-(2-(methyl(phenyl)amino)-1-(o-tolyl)ethyl)phenol (3a)

¹H NMR (400 MHz, CDCl₃) δ : 7.39 (d, J = 7.2 Hz, 1H), 7.26-7.23 (m, 1H), 7.22-7.18 (m, 2H), 7.13 (d, J = 4.4 Hz, 2H), 6.97 (s, 2H), 6.67 (t, J = 7.2 Hz, 1H), 6.59 (d, J = 8.0 Hz, 2H), 5.03 (s, 1H), 4.49 (t, J = 7.2 Hz, 1H), 3.97 (d, J = 7.6 Hz, 2H), 2.58 (s, 3H), 2.19 (s, 3H), 1.38 (s, 18H); ¹³C NMR (126 MHz, CDCl₃) δ : 152.2, 148.8, 141.7, 136.7, 135.6, 135.6, 133.3, 130.5, 129.1, 129.1, 126.7, 126.1, 125.8, 124.7, 124.7, 115.6, 111.8, 111.8, 59.1, 43.7, 39.2, 34.3, 34.3, 30.3, 20.0. HRMS (ESI): m/z [M+H]⁺ calcd. for [C₃₀H₄₀NO]⁺: 430.3104, found: 430.3100.

2,6-Di-tert-butyl-4-(2-(methyl(phenyl)amino)-1-(m-tolyl)ethyl)phenol (3b)

¹H NMR (400 MHz, CDCl₃) δ : 7.26-7.15 (m, 3H), 7.10 (d, J = 8.5 Hz, 2H), 7.03 (d, J = 5.6 Hz, 3H), 6.68 (t, J = 7.2 Hz, 1H), 6.61 (d, J = 8.4 Hz, 2H), 5.06 (s, 1H), 4.24 (t, J = 7.2 Hz, 1H), 3.93 (d, J = 7.2 Hz, 2H), 2.57 (s, 3H), 2.32 (s, 3H), 1.40 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ : 152.3, 148.7, 143.5, 137.9, 135.6, 135.6, 133.5, 129.3, 129.1, 129.1, 128.2, 127.0, 125.0, 124.7, 124.7, 115.6, 111.9, 119.9, 59.0, 48.6, 39.3, 34.3, 34.3, 30.3, 21.5. HRMS (ESI): m/z [M+H]⁺ calcd. for [C₃₀H₄₀NO]⁺: 430.3104, found: 430.3103.

3c

2,6-Di-tert-butyl-4-(2-(methyl(phenyl)amino)-1-(p-tolyl)ethyl)phenol (3c)

¹H NMR (400 MHz, CDCl₃) δ : 7.26-7.21 (m, 2H), 7.19 (d, *J* = 7.7 Hz, 2H), 7.12 (d, *J* = 7.6 Hz, 2H), 7.04 (s, 2H), 6.69 (t, *J* = 7.2 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 2H), 5.07 (s, 1H), 4.26 (t, *J* = 7.2 Hz, 1H), 4.04-3.85 (m, 2H), 2.59 (s, 3H), 2.34 (s, 3H), 1.41(s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ : 152.3, 148.7, 140.6, 135.7, 135.6, 135.6, 133.6, 129.1, 129.1, 129.1, 129.1, 128.1, 128.1, 124.6, 124.6, 115.6, 111.9, 111.9, 59.1, 48.2, 39.3, 34.3, 34.3, 30.3, 21.0. HRMS (ESI): *m/z* [M+H]⁺ calcd. for [C₃₀H₄₀NO]⁺: 430.3104, found: 430.3098.

2,6-Di-tert-butyl-4-(1-(2-methoxyphenyl)-2-(methyl(phenyl)amino)ethyl)phenol (3d)

¹H NMR (400 MHz, CDCl₃) δ : 7.29-7.24 (m, 1H), 7.24-7.14 (m, 3H), 7.08 (s, 2H), 6.92 (t, *J* = 7.2 Hz, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.67-6.64 (m, 3H), 5.02 (s, 1H), 4.70 (t, *J* = 7.2 Hz, 1H), 4.02-3.86 (m, 2H), 3.77 (s, 3H), 2.64 (s, 3H), 1.39 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ : 157.3, 152.1, 149.2, 135.3, 135.3, 133.1, 131.8, 128.9, 128.9, 128.7, 127.3, 125.2, 125.2, 120.4, 115.5, 112.1, 110.8, 57.8, 55.4, 42.5, 39.0, 34.3, 34.3, 30.3. HRMS (ESI): *m/z* [M+H]⁺ calcd. for [C₃₀H₄₀NO₂]⁺: 446.3054, found: 446.3055.

2,6-Di-*tert*-butyl-4-(1-(3-methoxyphenyl)-2-(methyl(phenyl)amino)ethyl)phenol (3e)

¹H NMR (400 MHz, CDCl₃) δ : 7.26-7.12 (m, 3H), 7.03 (s, 2H), 6.88 (d, J = 7.2 Hz, 1H), 6.81 (s, 1H), 6.76 (dd, J = 8.0, 2.4 Hz, 1H), 6.68 (t, J = 7.2 Hz, 1H), 6.62 (d, J = 8.0 Hz, 2H), 5.07 (s, 1H), 4.25 (t, J = 7.2 Hz, 1H), 3.99-3.87 (m, 2H), 3.77 (s, 3H), 2.58 (s, 3H), 1.40 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ : 159.6, 152.4, 148.7, 145.3, 135.7, 135.7, 133.2, 129.2, 129.1, 129.1, 124.7, 124.7, 120.7, 115.7, 114.3, 111.9, 111.9, 111.5, 58.9, 55.1, 48.7, 39.3, 34.3, 34.3, 30.3. HRMS (ESI): m/z [M+H]⁺ calcd. for [C₃₀H₄₀NO₂]⁺: 446.3054, found: 446.3051.

3f

2,6-Di-tert-butyl-4-(1-(4-methoxyphenyl)-2-(methyl(phenyl)amino)ethyl)phenol (3f)

¹H NMR (400 MHz, CDCl₃) δ : 7.28-7.22 (m, 2H), 7.20 (d, J = 8.0 Hz, 2H), 7.03 (s, 2H), 6.86 (d, J = 8.0 Hz, 2H), 6.70 (t, J = 7.2 Hz, 1H), 6.64 (d, J = 8.4 Hz, 2H), 5.08 (s, 1H), 4.26 (t, J = 7.2 Hz, 1H), 3.93-3.86 (m, 2H), 3.81 (s, 3H), 2.59 (s, 3H), 1.42 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ : 158.0, 152.2, 148.7, 135.8, 135.7, 135.7, 133.7, 129.2, 129.2, 129.1, 129.1, 124.6, 124.6, 115.6, 113.7, 113.7, 111.9, 111.9, 59.1, 55.2, 47.7, 39.3, 34.3, 34.3, 30.3. HRMS (ESI): m/z [M+H]⁺ calcd. for [C₃₀H₄₀NO₂]⁺: 446.3054, found: 446.3053.

3g

2,6-Di-tert-butyl-4-(2-(methyl(phenyl)amino)-1-phenylethyl)phenol (3g)

¹H NMR (400 MHz, CDCl₃) δ : 7.24 (s, 1H), 7.23-7.19 (m, 3H), 7.18-7.14 (m, 3H), 6.97 (s, 2H), 6.62 (t, *J* = 7.2 Hz, 1H), 6.56 (d, *J* = 8.4 Hz, 2H), 5.01 (s, 1H), 4.24 (t, *J* = 7.2 Hz, 1H), 3.95-3.84 (m, 2H), 2.52 (s, 3H), 1.35 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ : 152.3, 148.7, 143.7, 135.7, 135.7, 133.4, 129.1, 129.1, 128.3, 128.3, 128.3, 128.3, 126.3, 124.7, 124.7, 115.7, 111.9, 111.9, 59.0, 48.6, 39.3, 34.3, 34.3, 30.3. HRMS (ESI): *m*/*z* [M+H]⁺ calcd. for [C₂₉H₃₈NO]⁺: 416.2948, found: 416.2944.

3h

2,6-Di-*tert*-butyl-4-(1-(4-chlorophenyl)-2-(methyl(phenyl)amino)ethyl)phenol (3h)

¹H NMR (500 MHz, CDCl₃) δ : 7.27 (d, *J* = 8.5 Hz, 2H), 7.23 (t, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 8.5Hz, 2H), 7.00 (s, 2H), 6.70 (t, *J* = 7.0 Hz, 1H), 6.62 (d, *J* = 8.5 Hz, 2H), 5.11 (s, 1H), 4.28 (t, *J* = 7.5 Hz, 1H), 4.00-3.85 (m, 2H), 2.59 (s, 3H), 1.41 (s, 18H); ¹³C NMR (126 MHz, CDCl₃) δ : 152.5, 148.6, 142.3, 135.8, 135.8, 132.8, 132.0, 129.7, 129.7, 129.1, 129.1, 128.5, 128.5, 124.5, 124.5, 115.9, 112.0, 112.0, 58.9, 47.9, 39.4, 34.4, 34.4, 30.3. HRMS (ESI): *m/z* [M+H]⁺ calcd. for [C₂₉H₃₇NOCl]⁺: 450.2558, found: 450.2554.

2,6-Di-tert-butyl-4-(1-(2-chlorophenyl)-2-(methyl(phenyl)amino)ethyl)phenol (3i)

¹H NMR (400 MHz, CDCl₃) δ : 7.42 (dd, J = 8.0, 1.6 Hz, 1H), 7.36 (dd, J = 8.0, 1.2 Hz, 1H), 7.29-7.24 (m, 1H), 7.23-7.19 (m, 2H), 7.16 (td, J = 8.0, 1.6 Hz, 1H), 7.05 (s, 2H), 6.69 (t, J = 7.2 Hz, 1H), 6.64 (d, J = 8.0 Hz, 2H), 5.08 (s, 1H), 4.88 (t, J = 7.2 Hz, 1H), 3.96 (d, J = 7.5 Hz, 2H), 2.68 (s, 3H), 1.40 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ : 152.3, 149.1, 141.0, 135.6, 135.6, 134.5, 132.2, 129.8, 129.0, 129.0, 128.7, 127.4, 126.7, 124.8, 124.8, 116.0, 112.3, 112.3, 58.2, 44.5, 38.8, 34.3, 30.3. HRMS (ESI): m/z [M+H]⁺ calcd. for [C₂₉H₃₇NOCl]⁺: 450.2558, found: 450.2562.

4-(1-(2-Bromophenyl)-2-(methyl(phenyl)amino)ethyl)-2,6-di-tert-butylphenol (3j)

¹H NMR (500 MHz, CDCl₃) δ : 7.55 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 7.5 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.20 (t, J = 8.0 Hz, 2H), 7.12-7.02 (m, 3H), 6.69 (t, J = 7.5 Hz, 1H), 6.64 (d, J = 8.0 Hz, 2H), 5.07 (s, 1H), 4.86 (t, J = 7.0 Hz, 1H), 4.05-3.85 (m, 2H), 2.67 (s, 3H), 1.39 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ : 152.4, 149.2, 142.7, 135.7, 135.7, 133.2, 132.2, 129.0, 129.0, 128.9, 127.7, 127.4, 125.5, 124.8, 124.8, 116.1, 112.4, 112.4, 58.3, 47.2, 38.8, 34.3, 34.3, 30.3. HRMS (ESI): m/z [M+H]⁺ calcd. for [C₂₉H₃₇NOBr]⁺: 494.2053, found: 494.2051.

3K

4-(1-(3,5-Di-*tert***-butyl-4-hydroxyphenyl)-2-(methyl(phenyl)amino)ethyl)benzonitrile (***3k***) ¹H NMR (400 MHz, CDCl₃) \delta: 7.48 (d,** *J* **= 8.0 Hz, 2H), 7.25 (d,** *J* **= 8.4 Hz, 2H), 7.16-7.10 (m, 2H), 6.87 (s, 2H), 6.61 (t,** *J* **= 7.2 Hz, 1H), 6.51 (d,** *J* **= 8.0 Hz, 2H), 5.05 (s, 1H), 4.27 (t,** *J* **= 8.0 Hz, 1H), 3.93-3.77 (m, 2H), 2.49 (s, 3H), 1.31 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) \delta: 152.7, 149.5, 148.5, 137.7, 136.1, 136.1, 132.1, 132.1, 131.8, 129.2, 129.1, 124.6, 124.6, 119.0, 116.3, 114.3, 112.1, 112.1, 110.1, 58.6, 48.6, 39.5, 34.4, 34.4, 30.2. HRMS (ESI):** *m/z* **[M+H]⁺ calcd. for [C₃₀H₃₇N₂O]⁺: 441.2900, found: 441.2900.**

31

2,6-Di-tert-butyl-4-(2-(methyl(phenyl)amino)-1-(4-(trifluoromethyl)phenyl)ethyl)phenol (31)

¹H NMR (400 MHz, CDCl₃) δ : 7.58 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.29-7.24 (m, 2H), 7.04 (s, 2H), 6.74 (t, *J* = 6.8 Hz, 1H), 6.65 (d, *J* = 8.4 Hz, 2H), 5.16 (s, 1H), 4.40 (t, *J* = 7.6 Hz, 1H), 4.07-3.92 (m, 2H), 2.62 (s, 3H), 1.44 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ : 152.6, 148.5, 148.0, 136.0, 136.0, 132.3, 129.2, 129.2, 128.6, 128.6, 128.8, 125.3 (d, *J* = 3.3 Hz), 125.2 (d, *J* = 3.7 Hz), 124.6, 124.6, 116.1, 112.1, 112.1, 58.8, 48.5, 39.5, 34.4, 34.4, 30.3. HRMS (ESI): *m/z* [M+H]⁺ calcd. for [C₃₀H₃₇NOF₃]⁺: 484.2822, found: 484.2824.

2,6-Di-*tert*-butyl-4-(1-(3,5-dichlorophenyl)-2-(methyl(phenyl)amino)ethyl)phenol (3m)

¹H NMR (400 MHz, CDCl₃) δ : 7.30 (d, J = 3.2 Hz, 1H), 7.27 (d, J = 1.4 Hz, 1H), 7.26-7.24 (m, 1H), 7.18 (d, J = 1.6 Hz, 2H), 7.00 (s, 2H), 6.75 (t, J = 7.2 Hz, 1H), 6.65 (d, J = 8.0 Hz, 2H), 5.18 (s, 1H), 4.27 (t, J = 7.2 Hz, 1H), 3.95 (qd, J = 14.5, 7.5 Hz, 2H), 2.65 (s, 3H), 1.45 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ : 152.8, 148.4, 147.3, 136.1, 136.1, 134.7, 134.7, 131.8, 129.2, 129.2, 126.9, 126.9, 126.5, 124.6, 124.6, 116.3, 112.1, 112.1, 58.6, 48.2, 39.6, 34.4, 34.4, 30.3. HRMS (ESI): m/z [M+H]⁺ calcd. for [C₂₉H₃₆NOCl₂]⁺: 484.2168, found: 484.2167.

2,6-Di-*tert*-butyl-4-(2-((4-chlorophenyl)(methyl)amino)-1-(*o*-tolyl)ethyl)phenol (3*n*)

¹H NMR (500 MHz, CDCl₃) δ : 7.35 (d, *J* = 7.5 Hz, 1H), 7.24-7.21 (m, 1H), 7.13-7.11 (m, 3H), 7.10 (s, 1H), 6.92 (s, 2H), 6.45 (d, *J* = 9.0 Hz, 2H), 5.03 (s, 1H), 4.41 (t, *J* = 7.5 Hz, 1H), 3.98-3.87 (m, 2H), 2.54 (s, 3H), 2.17 (s, 3H), 1.35 (s, 18H); ¹³C NMR (126 MHz, CDCl₃) δ : 152.3, 147.3, 141.4, 136.7, 135.7, 135.7, 133.0, 130.6, 128.8, 128.8, 126.5, 126.2, 125.9, 124.7, 124.7, 120.4, 112.8, 112.8, 59.1, 43.6, 39.3, 34.3, 34.3, 30.3, 20.0. HRMS (ESI): *m/z* [M+H]⁺ calcd. for [C₃₀H₃₉NOCl]⁺: 464.2715, found: 464.2716.

4-(2-((4-Bromophenyl)(methyl)amino)-1-(*o*-tolyl)ethyl)-2,6-di-*tert*-butylphenol (*3o*)

¹H NMR (400 MHz, CDCl₃) δ : 7.35 (d, J = 7.6 Hz, 1H), 7.27-7.22 (m, 3H), 7.16-7.09 (m, 2H), 6.92 (s, 2H), 6.41 (d, J =8.8 Hz, 2H), 5.04 (s, 1H), 4.41 (t, J = 7.2 Hz, 1H), 3.98-3.86 (m, 2H), 2.53 (s, 3H), 2.17 (s, 3H), 1.36 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ : 152.3, 147.7, 141.4, 136.7, 135.7, 135.7, 133.0, 131.7, 131.7, 130.6, 126.5, 126.2, 125.9, 124.7, 124.7, 113.3, 113.3, 107.5, 59.0, 43.5, 39.3, 34.3, 34.3, 30.3, 20.0. HRMS (ESI): m/z [M+H]⁺ calcd. for [C₃₀H₃₉NOBr]⁺: 508.2210, found: 508.2210.

4-(2-([1,1'-Biphenyl]-4-yl(methyl)amino)-1-(o-tolyl)ethyl)-2,6-di-tert-butylphenol (3p)

¹H NMR (500 MHz, CDCl₃) δ : 7.56 (d, *J* = 7.5 Hz, 2H), 7.46 (d, *J* = 8.5 Hz, 2H), 7.41-7.38 (m, 3H), 7.26-7.23 (m, 2H), 7.18-7.08 (m, 2H), 6.98 (s, 2H), 6.64 (d, *J* = 8.5 Hz, 2H), 5.04 (s, 1H), 4.50 (t, *J* = 7.0 Hz, 1H), 4.07-3.92 (m, 2H), 2.62 (s, 3H), 2.21 (s, 3H), 1.37 (s, 18H); ¹³C NMR (126 MHz, CDCl₃) δ : 152.2, 148.2, 141.6, 141.3, 136.7, 135.6, 135.6, 133.2, 130.6, 128.6, 128.6, 128.6, 128.6, 128.2, 127.7, 127.7, 126.6, 126.1, 126.2, 125.9, 125.8, 124.8, 124.7, 112.0, 111.9, 59.1, 43.9, 39.2, 34.3, 30.3, 20.0. HRMS (ESI): *m*/*z* [M+H]⁺ calcd. for [C₃₆H₄₄NO]⁺: 506.3417, found: 506.3413.

2,6-Di-tert-butyl-4-(2-(methyl(p-tolyl)amino)-1-(o-tolyl)ethyl)phenol (3q)

¹H NMR (400 MHz, CDCl₃) δ : 7.38 (d, *J* = 7.6 Hz, 1H), 7.23 (dd, *J* = 8.0, 4.8 Hz, 1H), 7.16-7.13 (m, 2H), 7.02 (d, *J* = 8.4 Hz, 2H), 6.98 (s, 2H), 6.53 (d, *J* = 8.4 Hz, 2H), 5.04 (s, 1H), 4.47 (t, *J* = 7.2 Hz, 1H), 3.93 (d, *J* = 7.2 Hz, 2H), 2.56 (s, 3H), 2.26 (s, 3H), 2.20 (s, 3H), 1.38 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ : 152.1, 146.8, 141.9, 136.7, 135.5, 135.5, 133.5, 130.5, 129.6, 129.6, 129.6, 126.7, 126.0, 125.8, 124.8, 124.8, 112.1, 112.1, 59.5, 43.9, 39.3, 34.3, 34.3, 30.3, 20.1. HRMS (ESI): *m/z* [M+H]⁺ calcd. for [C₃₁H₄₂NO]⁺: 444.3261, found: 444.3262.

2,6-Di-tert-butyl-4-(2-((4-methoxyphenyl)(methyl)amino)-1-(o-tolyl)ethyl)phenol (3r)

¹H NMR (500 MHz, CDCl₃) δ : 7.39 (d, *J* = 7.5 Hz, 1H), 7.26-7.24 (m, 1H), 7.14 (d, *J* = 3.5 Hz, 2H), 6.99 (s, 2H), 6.82 (d, *J* = 8.0 Hz, 2H), 6.57 (d, *J* = 8.0 Hz, 2H), 5.05 (s, 1H), 4.46 (t, *J* = 7.0 Hz, 1H), 3.95-3.85 (m, 2H), 3.78 (s, 3H), 2.59 (s, 3H), 2.22 (s, 3H), 1.40 (s, 18H); ¹³C NMR (126 MHz, CDCl₃) δ : 152.1, 151.1, 143.9, 141.9, 136.6, 135.5, 135.5, 133.5, 130.5, 126.7, 126.0, 125.8, 124.8, 124.8, 114.7, 114.7, 113.7, 113.7, 60.0, 55.9, 43.9, 39.6, 34.2, 34.2, 30.3, 20.0. HRMS (ESI): *m/z* [M+H]⁺ calcd. for [C₃₁H₄₂NO₂]⁺: 460.3210, found: 460.3211.

2,6-Di-tert-butyl-4-(2-(methyl(o-tolyl)amino)-1-(o-tolyl)ethyl)phenol (3s)

¹H NMR (400 MHz, CDCl₃) δ : 7.29 (d, J = 7.6 Hz, 1H), 7.18-7.15 (m, 2H), 7.13-7.02 (m, 4H), 7.01-6.90 (m, 3H), 5.00 (s, 1H), 4.26 (t, J = 7.6 Hz, 1H), 3.61-3.47 (m, 2H), 2.62 (s, 3H), 2.17 (s, 3H), 1.87 (s, 3H), 1.37 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ : 151.9, 151.8, 141.8, 136.2, 135.2, 135.2, 134.4, 133.4, 130.9, 130.2, 127.1, 126.2, 125.7, 125.7, 124.9, 124.9, 123.1, 121.1, 60.8, 44.7, 43.2, 34.2, 30.3, 30.3, 19.8, 17.7. HRMS (ESI): m/z [M+H]⁺ calcd. for [C₃₁H₄₂NO]⁺: 444.3261, found: 444.3262.

2,6-Di-tert-butyl-4-(2-(methyl(m-tolyl)amino)-1-(o-tolyl)ethyl)phenol (3t)

¹H NMR (400 MHz, CDCl₃) δ : 7.39 (d, J = 7.6 Hz, 1H), 7.27-7.23 (m, 1H), 7.18-7.12 (m, 2H), 7.10 (t, J = 7.8 Hz, 1H), 6.98 (s, 2H), 6.51 (d, J = 7.4 Hz, 1H), 6.43 (dd, J = 8.4, 2.4 Hz, 1H), 6.38 (s, 1H), 5.04 (s, 1H), 4.48 (t, J = 7.6 Hz, 1H), 3.94 (d, J = 7.2 Hz, 2H), 2.57 (s, 3H), 2.29 (s, 3H), 2.20 (s, 3H), 1.38 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ : 152.1, 148.9, 141.8, 138.6, 136.7, 135.5, 135.5, 133.4, 130.5, 128.9, 126.7, 126.1, 125.8, 124.8, 124.8, 116.7, 112.7, 109.1, 59.2, 43.9, 39.2, 34.3, 34.3, 30.3, 21.94, 20.0. HRMS (ESI): m/z [M+H]⁺ calcd. for [C₃₁H₄₂NO]⁺: 444.3261, found: 444.3257.

2,6-Di*-tert*-butyl-4-(2-((2-chloro-4-methylphenyl)(methyl)amino)-1-(*o*-tolyl)ethyl)phenol (*3u*) ¹H NMR (500 MHz, CDCl₃) δ : 7.31 (d, *J* = 7.5 Hz, 1H), 7.16 (t, *J* = 6.5 Hz, 1H), 7.10-7.07 (m, 3H), 6.96 (s, 2H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.77 (d, *J* = 8.0 Hz, 1H), 4.97 (s, 1H), 4.34 (t, *J* = 7.5 Hz, 1H), 3.84 (dd, *J* = 13.5, 8.0 Hz, 1H), 3.63 (dd, *J* = 13.5, 7.0 Hz, 1H), 2.74 (s, 3H), 2.25 (d, *J* = 4.0 Hz, 6H), 1.37 (s, 18H); ¹³C NMR (126 MHz, CDCl₃) δ : 151.9, 146.7, 141.7, 136.0, 135.2, 135.2, 133.1, 132.9, 130.8, 130.3, 128.7, 127.6, 127.1, 125.8, 125.8, 125.0, 125.0, 122.3, 60.2, 44.6, 41.9, 34.2, 34.2, 30.2, 20.3, 19.9. HRMS (ESI): *m*/*z* [M+H]⁺ calcd. for [C₃₁H₄₁NOCl]⁺: 478.2871, found: 478.2873.

2,6-Di-tert-butyl-4-(2-(diphenylamino)-1-(o-tolyl)ethyl)phenol (3v)

¹H NMR (400 MHz, CDCl₃) δ : 7.35 (d, J = 7.6 Hz, 1H), 7.25-7.20 (m, 1H), 7.19 (s, 1H), 7.17 (d, J = 0.8 Hz, 2H), 7.15 (s, 2H), 7.14 (s, 1H), 6.96 (s, 2H), 6.90 (t, J = 7.2 Hz, 2H), 6.68 (d, J = 8.0 Hz, 4H), 5.05 (s, 1H), 4.47 (dd, J = 8.8, 5.2 Hz, 1H), 4.38 (dd, J = 14.0, 5.2 Hz, 1H), 4.21 (dd, J = 14.0, 9.2 Hz, 1H) 2.16 (s, 3H), 1.36 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ : 152.2, 148.2, 141.3, 136.8, 135.6, 133.1, 130.5, 129.0, 126.5, 126.2, 125.9, 125.1, 121.2, 77.3, 77.0, 76.7, 58.8, 43.8, 34.3, 30.3, 19.9. HRMS (ESI): m/z [M+H]⁺ calcd. for [C₃₅H₄₂NO]⁺: 492.3261, found: 492.3255.

3w

2,6-Di-tert-butyl-4-(2-(ethyl(phenyl)amino)-1-(o-tolyl)ethyl)phenol (3w)

¹H NMR (400 MHz, CDCl₃) δ : 7.39 (d, *J* = 7.6 Hz, 1H), 7.25-7.17 (m, 3H), 7.13 (d, *J* = 4.8 Hz, 2H), 6.98 (s, 2H), 6.73-6.44 (m, 3H), 5.02 (s, 1H), 4.44 (t, *J* = 7.1 Hz, 1H), 3.89 (d, *J* = 7.1 Hz, 2H), 3.14-2.84 (m, 2H), 2.20 (s, 3H), 1.37 (s, 18H), 0.89 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 147.7, 141.9, 136.8, 135.5, 133.4, 130.5, 129.2, 126.6, 126.1, 125.9, 124.8, 115.3, 111.9, 77.3, 77.0, 76.7, 57.2, 45.8, 43.8, 34.3, 30.3, 20.1, 11.7. HRMS (ESI): *m*/*z* [M+H]⁺ calcd. for [C₃₁H₄₂NO]⁺: 444.3261, found: 444.3258.

4-(2-(Ethyl(phenyl)amino)-1-(o-tolyl)ethyl)phenol (3aa)

¹H NMR (500 MHz, CDCl₃) δ : 7.39 (d, *J* = 8.0 Hz, 1H), 7.29-7.24 (m, 3H), 7.21-7.13 (m, 2H), 7.06 (d, *J* = 8.5 Hz, 2H), 6.75-6.72 (m, 3H), 6.65 (d, *J* = 8.0 Hz, 2H), 4.93 (s, 1H), 4.52 (dd, *J* = 8.5, 6.0 Hz, 1H), 4.06 (dd, *J* = 8.5, 6.0 Hz, 1H), 3.93 (dd, *J* = 14.5, 9.0 Hz, 1H), 2.61 (s, 3H), 2.16 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ : 154.0, 148.7, 141.3, 136.9, 135.3, 130.7, 129.5, 129.2, 129.2, 126.5, 126.4, 125.9, 115.9, 115.2, 115.2, 111.8, 59.1, 43.2, 39.5, 19.8. HRMS (ESI): *m/z* [M+H]⁺: calcd. for [C₂₂H₂₄NO]⁺: 318.1852, found: 318.1850.

5. Copies of ¹H and ¹³C NMR Spectra of Compounds 3a-3w and 3aa

¹H NMR spectrum of 3b in CDCl₃

¹³C NMR spectrum of 3b in CDCl₃

¹H NMR spectrum of 30 in CDCl₃

¹³C NMR spectrum of 30 in CDCl₃

S30

¹H NMR spectrum of 3aa in CDCl₃

6. References.

- (a) J. Guo, G.-B. Huang, Q.-L. Wu, Y. Xie, J. Weng and G. Lu, Org. Chem. Front., 2019, 6, 1955; (b) W.-D. Chu, L.-F. Zhang, X. Bao, X.-H. Zhao, C. Zeng, J.-Y. Du, G.-B. Zhang, F.-X. Wang, X.-Y. Ma, C.-A. Fan, Angew. Chem., Int. Ed. 2013, 52, 9229; (c) L. Caruana, F. Kniep, T. K. Johansen, P. H. Poulsen, K. A. Jørgensen, J. Am. Chem. Soc. 2014, 136, 15929; (d) D. Richter, N. Hampel, T. Singer, A. R. Ofial, H. Mayr, Eur. J. Org. Chem. 2009, 19, 3203.
- (2) S. Gupta, P. Sureshbabu, A. K. Singh, S. Sabiah, J. Kandasamy, *Tetrahedron Lett.* 2017, **58**, 909.