SUPPORTING INFORMATION

Enantioselective Catalytic Synthesis of α-Aryl-α-SCF₃-β^{2,2}-Amino Acids

Andreas Eitzinger^a, Jean-François Brière^b, Dominique Cahard^{*b} and Mario Waser^{*a}

mario.waser@jku.at dominique.cahard@univ-rouen.fr

^aJohannes Kepler University Linz, Institute of Organic Chemistry, Altenbergerstraße 69, 4040 Linz, Austria, Fax: +43 732 2468 5411; Tel: +43 732 2468 5402

^b CNRS, UMR 6014 COBRA, Normandie Univ, UNIROUEN, INSA Rouen, 76000 Rouen, France

1. General Information:	2
1.1. General Methods	2
1.2. Single-Crystal Analysis	3
2. Detailed Screening Tables	5
2.1 Trifluoromethylthiolating Agent Screening	5
2.2 Catalyst Screening	6
2.3 Solvent Screening	7
2.4 Base Screening	7
2.5 Further Conditions tested	8
3. Syntheses	9
3.1 Synthesis of racemic 4-SCF ₃ Isoxazolidin-5-ones 2	9
3.2 Asymmetric Synthesis of enantioenriched 4-SCF ₃ Isoxazolidin-5-ones 3	9
4. Further Transformations	14
4.1 Reductive Cleavage of the Isoxazolidin-5-one N-O Bond	14
4.2 Oxidation of SCF ₃ -Isoxazolidin-5-one	14
4.3 Nucleophilic Ring-Opening of SCF ₃ -Isoxazolidin-5-one	15
4.4 KAHA Ligation with N-Fmoc-Leu α-oxo-acid 7	16
5. Copies of NMR Spectra of New Compounds	18
6. Copies of HPLC Chromatograms	42

1. General Information:

1.1. General Methods

¹H- and ¹³C-NMR spectra were recorded on a Bruker Avance III 300 MHz spectrometer with a broad band observe probe and a sample changer for 16 samples and on a Bruker Avance III 700 MHz spectrometer with an Ascend magnet and TCI cryoprobe, which are both property of the Austro-Czech NMR-Research Center "RERI-uasb". NMR spectra were referenced on the solvent peak and chemical shifts are given in ppm.

High resolution mass spectra were obtained using a Thermo Fisher Scientific LTQ Orbitrap XL with an Ion Max API Source. Analyses were made in the positive ionization mode if not otherwise stated. Purine (exact mass for $[M+H]^+ = 121.050873$) and 1,2,3,4,5,6-hexakis(2,2,3,3-tetrafluoropropoxy)-1,3,5,2,4,6-triazatriphosphinane (exact mass for $[M+H]^+ = 922.009798$) were used for internal mass calibration.

HPLC was performed using a Thermo Scientific Dionex Ultimate 3000 system with diode array detector with a CHIRALPAK AD-H, CHIRAL ART Cellulose-SB or Amylose-SA (250 x 4.6 mm, 5 μ m) chiral stationary phase. Optical rotations were recorded on a Schmidt + Haensch Polarimeter Model UniPol L1000 at 589 nm.

All chemicals were purchased from commercial suppliers and used without further purification unless otherwise stated. K₂CO₃ and Cs₂CO₃ were flame-dried *in vacuo* prior to use. Dry solvents were obtained from an MBraun-SPS-800 solvent purification system. All reactions were carried out under argon atmosphere.

4-Aryl-isoxazolidin-5-ones¹ 1 and trifluoromethylthiolating reagents² 3 were prepared following established procedures.

¹ a) M. N. Oliveira, S. Arseniyadis, J. Cossy, *Chem. Eur. J.*, **2008**, 24, 4810 – 4814; b) D. Best, M. Jean, P. Weghe, *J. Org. Chem.*, **2016**, 81, 7760 – 7770.

² a) C. Xu, Q. Shen, *Org. Lett.*, **2014**, 16, 7, 2046 – 2049; b) C. Xu, B. Ma, Q. Shen, *Angew. Chem. Int. Ed.*, **2014**, 53, 9316 – 9320.

1.2. Single-Crystal Analysis

Single-crystal structure analyses were carried out on a Bruker D8 Quest Eco diffractometer operating with Mo-K_{α} radiation (λ = 0.71073 Å). Further crystallographic and refinement data can be found in Table S1. The structures were solved by direct methods (SHELXS-97)³ and refined by full-matrix least squares on F^2 (SHELXL-97).⁴ The H atoms were calculated geometrically, and a riding model was applied in the refinement process. CCDC 1914375 contains the supplementary crystallographic data for compound **2a**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre at www.ccdc.cam.ac.uk.

Crystal Data	2a
Empirical formula	C ₁₅ H ₁₆ NO ₄ F ₃ S
Formula weight [g/mol]	363.35
Color	colorless
Crystal size [mm]	0.70 × 0.47 × 0.20
Crystal system	orthorhombic
Space group	P212121
<i>a</i> [Å]	6.2580(3)
b [Å]	10.6081(5)
<i>c</i> [Å]	25.7799(12)
α [°]	90
β [°]	90
γ [°]	90
<i>V</i> [Å ³]	1711.41(14)
Ζ	4
D _{calc} [g/cm ³]	1.410
μ [mm ⁻¹]	0.24
<i>T</i> [K]	296
θ range [°]	3.1-25.0
No. of reflections measured	13540
No. of independent reflections	3037
Obs. Reflections with $l > 2\sigma(l)$	2401
No. of Parameters refined/restraints	221/0
Absorption correction	multi-scan
T _{min} , T _{max}	0.85, 0.95
$\Delta \rho_{min} \Delta \rho_{max} [e Å^{-3}]$	-0.19/0.19
F(000)	752
Rint	0.046

Table 1: Crystal Data, Data Collection and Structure Refinement Details for Compound 2a

³ G. M. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures, Göttingen, Germany, 1997. See also: G. M. Sheldrick, *Acta Crystallographica*, **1990**, *A46*, 467 – 473.

⁴ G. M. Sheldrick, SHELXL-97, Program for crystal structure refinement, Göttingen, Germany, 1997. See also: G. M. Sheldrick, *Acta Crystallographica*, **2008**, *A64*, 112 – 122.

$R_1 \left(R[F^2 \ge 2\sigma(F^{2)}] \right)$	0.039
$wR_2(wR(F^2))$	0.084
GooF	1.09
Flack x	-0.03(5)
CCDC no.	1914375

Figure 1: Single Crystal Structure of (S)-2a.

2. Detailed Screening Tables

Screening of reaction conditions for the formation of **2a** was conducted using the following general procedure:

Isoxazolidin-5-one **1a** (0.05 mmol), RN-SCF₃-reagent **I-IV**, base and catalyst were dissolved in the respective solvent and stirred for the given time and at the temperature indicated. In case of reactions performed below room temperature, electrophile **I-IV** was added with a delay of 15 min after mixing all other components. After completion of the reaction, the mixture was diluted with Et₂O and washed with water and brine. The organic phase was dried over Na₂SO₄, filtered and concentrated *in vacuo*. Where necessary, the crude mixture was purified by column chromatography (silica gel, heptanes/EtOAc = 5/1) to yield **2a**.

2.1 Trifluoromethylthiolating Agent Screening

Table 2: LG-SCF₃⁺-Reagent Screening: Reactions were run at r.t. for 20 h using 0.1 mmol **1a** and 0.15 or 0.30 mmol **I-IV** in Et₂O (c = 0.1 M with respect to **1a**); [a] Isolated yields; [b] Determined by HPLC using a chiral stationary phase.

entry	catalyst (mol%)	LG (eq.)	base	base-eq.	2a yield / % ^[a]	2a e.r. ^[b]
1	TEBAC (10)	Saccharin (1.5) (III)	Cs ₂ CO ₃	1.1	-	-
2	A2 (5)	Saccharin (1.5) (III)	Cs_2CO_3	1.1	-	-
3	A2 (5)	Saccharin (3) (III)	Cs_2CO_3	2	-	-
4	A2 (5)	Phthalimide (3) (II)	Cs_2CO_3	2	70	75:15
5	A2 (10)	Succinimide (3) (I)	Cs_2CO_3	2	80	82:18
6	A2 (20)	Cumyl-OH (1.5) (IV)	Cs_2CO_3	2	-	-

2.2 Catalyst Screening

A3 (Ar = 3,4,5-F-C₆H₂)

A7

Figure 2: Catalysts tested for the asymmetric trifluoromethylthiolation of 1a.

Table 3: Catalyst Screening: Reactions were run at r.t. for 20 h using 0.10 mmol **1a**, 0.15 mmol **I** or **II** and 0.11 mmol base in the solvent indicated and at c = 0.1 M (with respect to **1a**); [a] Isolated yields; [b] Determined by HPLC using a chiral stationary phase.[c] Determined by ¹H NMR of the crude product.

entry	catalyst (mol%)	LG (eq.)	solvent	base	2a yield / % ^[a]	2a e.r. ^[b]
8	A1 (5)	SuccN (1.5) (I)	Et ₂ O	Cs ₂ CO ₃	77	90:10
9	A3 (5)	SuccN (1.5) (I)	<i>i</i> Pr ₂ O	K ₂ CO ₃	70	59 : 51
10	A4 (10)	PhthN (1.5) (II)	<i>i</i> Pr ₂ O	K ₂ CO ₃	62	67:33
11	A5 (10)	PhthN (1.5) (II)	<i>i</i> Pr ₂ O	K ₂ CO ₃	54	58:42
12	A6 (10)	SuccN (1.5) (I)	MTBE toluene	K ₂ CO ₃	70	50 : 50
13	A7 (20)	PhthN (1.5) (II)	<i>i</i> Pr ₂ O	K ₂ CO ₃	60	50 : 50
14	A8 (20)	PhthN (1.5) (II)	<i>i</i> Pr ₂ O	K ₂ CO ₃	55	53:47
15	A9 (20)	PhthN (1.5) (II)	<i>i</i> Pr ₂ O	K ₂ CO ₃	57	50 : 50
16	-	SuccN (1.5) (I)	<i>i</i> Pr ₂ O	Cs ₂ CO ₃	75 (conv.) ^[c]	-

2.3 Solvent Screening

Table 4: Solvent Screening: Reactions were run at r.t. for 20 h using 0.10 mmol **1a**, 0.15 mmol SuccNSCF₃ (**I**), 0.005 mmol A**1** and 0.02 mmol K_2CO_3 at c = 0.1 M (with respect to **1a**); [a] Isolated yields; [b] Determined by HPLC using a chiral stationary phase.

entry	solvent	2a yield / % ^[a]	2a e.r. ^[b]
17	C ₅ H ₉ -O-CH ₃	85	87:13
18	MTBE	82	87:13
19	iPr ₂ O	87	88:12
20	2-Me-THF	73	81 : 19
21	THF	66	76 : 24
22	1,4-dioxane	79	76 : 24
23	DCM	53	75 : 25
24	toluene	56	84:16
25	Et ₂ O	89	89:11

2.4 Base Screening

Table 5: Solvent Screening: Reactions were run at r.t. for 20 h using 0.10 mmol **1a**, 0.12 mmol SuccNSCF₃(**I**), indicated amount of catalyst and 0.02 mmol of base in Et₂O at c = 0.1 M (with respect to **1a**); [a] Isolated yields; [b] Determined by HPLC using a chiral stationary phase.

entry	catalyst (mol%)	base (20 mol%)	2a yield / % ^[a]	2a e.r. ^[b]
26	A1 (5)	KHCO ₃	79	88:12
27	A1 (5)	Na ₂ CO ₃	80	89:11
28	A1 (5)	Li ₂ CO ₃	34	87:13

29	A1 (5)	K ₂ HPO ₄	88	90:10
30	A1 (5)	Rb ₂ CO ₃	65	83:17
31	A1 (5)	KOAc	25	90:10
32	A1 (5)	Na-phenoxide	71	89:11
33	A1 (5)	DBU	56	55 : 45

2.5 Further Conditions tested

Table 6: LG-SCF₃⁺-Reagent Screening: Reactions were run for 20 h using 0.1 mmol **1a** and 0.12 or 0.105 mmol SuccNSCF₃ (**I**), 0.005 mmol **A1** and 0.02 mmol of base in Et₂O; [a] Isolated yields; [b] Determined by HPLC using a chiral stationary phase. [c] 0.1 M SuccNSCF₃ (**I**)-solution (in Et₂O) added over 5 h via syringe pump.

entry	solvent (c)	base (20 mol%)	<i>T</i> / °C	yield / % ^[a]	e.r. ^[b]
35	Et ₂ O (0.1 M)	K ₂ HPO ₄	-40	72	93:7
36	Et ₂ O (0.05 M)	K ₂ HPO ₄	25	82	91:9
37	Et ₂ O (0.01 M)	K ₂ HPO ₄	25	82	92:9
38	Et ₂ O (0.01 M) ^[c]	K ₂ HPO ₄	25	86	93:7
39	Et ₂ O (0.01 M) ^[c]	K ₂ HPO ₄	-20	90	95 : 5
40	Et ₂ O (0.05 M)	K ₂ HPO ₄	-20	90	93:7
41	Et ₂ O (0.05 M)	K-Phthalimide	-20	84	93 : 7

3. Syntheses

3.1 Synthesis of racemic 4-SCF₃-4-Aryl-Isoxazolidin-5-ones 2

4-Aryl-Isoxazolidin-5-ones **1** (0.10 mmol), N-SCF₃-Succinimide **I** (0.12 mmol), TEBAC (0.01 mmol) and Cs_2CO_3 (0.11 mmol) were dissolved in Et₂O (2 mL) and stirred overnight. After completion of the reaction, the mixture was diluted with Et₂O (20 mL) and washed two times with water (20 mL) and brine (20 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated *in vacuo*. If necessary, the crude mixture was purified by column chromatography (silica gel, heptanes/EtOAc) to give the respective racemic 4-SCF₃-Isoxazolidin-5-ones **2**.

3.2 Asymmetric Synthesis of enantioenriched 4-SCF₃-4Aryl-Isoxazolidin-5-ones 2

4-Aryl-Isoxazolidin-5-ones **1** (0.10 mmol), (*R*,*R*)-catalyst **A1** (0.005 mmol) and K₂HPO₄ (0.02 mmol) were dissolved in Et₂O (2 mL) at -20 °C. N-SCF₃-Succinimide **I** (0.105 mmol) was added and the mixture was stirred for 20 h at -20 °C. After completion of the reaction, the mixture was diluted with Et₂O (20 mL) and washed two times with water (20 mL) and brine (20 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated *in vacuo*. If necessary, the crude mixture was purified by column chromatography (silica gel, heptanes/EtOAc) to give the respective scalemic 4-SCF₃-Isoxazolidin-5-ones **2**. Analytical data for new compounds are given below.

(*tert*-butyl (*S*)-5-oxo-4-phenyl-4-((trifluoromethyl)thio)isoxazolidine-2carboxylate): Prepared following the general procedure using 1 mmol 1a and 3 mol% A1. Obtained as colourless crystals (327.7 mg, 0.90 mmol, 90 %, e.r. = 93:7 (98:2 after single recryst. from DCM/*n*-hexane)). m.p. = 69 – 71 °C. R_f (heptanes/EtOAc = 5/1) = 0.55. $[a]_D^{22}$ (c = 1.00, CHCl₃) = -23.4°. ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 7.67 – 7.58 (m, 2H), 7.48 – 7.39 (m, 3H), 4.94 (d, J = 12.8 Hz, 1H), 4.59 (d, J = 12.8 Hz, 1H), 1.35 (s, 9H).¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 170.5, 155.5, 131.8, 130.2, 129.5, 128.5 (q, J = 311.0 Hz) 127.6, 85.1, 59.7, 59.7, 56.8, 27.9. ¹⁹F NMR (282 MHz, δ , CDCl₃, 298 K): -36.7. HRMS (ESI): calcd *m/z* for C₁₅H₁₆F₃NO₄S: 381.1090 [M+NH₄]⁺; found: 381.1090. HPLC (YMC CHIRAL ART Cellulose-SB, eluent: hexane:*i*-PrOH = 100:1, 0.5 mL/min, 10 °C) retention times: t_{minor} = 28.0 min, t_{major} = 34.6 min.

Compound 2b (tert-butyl (S)-4-(naphthalen-2-yl)-5-oxo-4-((trifluoromethyl)thio)isoxazolidine-2-

carboxylate): Prepared according to the general procedure and obtained as a colourless oil (35.9 mg, 0.087 mmol, 87 %, e.r. = 94:6). R_f (heptanes/EtOAc = 5/1) = 0.55. $[a]_D^{22}$ (c = 1.00, CHCl₃) = -40.5°; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 8.07 (d, *J* = 2.1 Hz, 1H), 7.93 (d, *J* = 8.8 Hz, 1H), 7.90 – 7.80 (m, 2H), 7.70 (dd, *J* = 8.8, 2.1 Hz, 1H),

7.63 – 7.49 (m, 2H), 5.06 (d, J = 12.8 Hz, 1H), 4.67 (d, J = 12.8 Hz, 1H), 1.25 (s, 9H). ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 170.6, 155.5, 133.6, 132.9, 129.7, 128.7, 128.7, 128.6 (q, J = 310.8 Hz) 127.9, 127.8, 127.4, 127.3, 124.1, 85.1, 59.7, 59.7, 57.1, 57.1, 27.8. ¹⁹F NMR (282 MHz, δ , CDCl₃, 298 K): -36.6. HRMS (ESI): calcd *m*/*z* for C₁₉H₁₈F₃NO₄S: 431.1247 [M+NH₄]⁺; found: 431.1242. HPLC (Chiralpak AD-H, eluent: hexane:*i*-PrOH = 100:1, 0.5 mL/min, 10 °C) retention times: t_{major} = 35.5 min, t_{minor} = 39.5 min.

Compound 2c (tert-butyl (S)-5-oxo-4-(p-tolyl)-4-((trifluoromethyl)thio)isoxazolidine-2-

carboxylate): Prepared according to the general procedure and obtained as a colourless oil (34.2 mg, 0.091 mmol, 91 %, e.r. = 94:6). R_f (heptanes/EtOAc = 5/1) = 0.55. $[a]_D^{22}$ (c = 1.00, CHCl₃) = -24.2°; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 7.49 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 4.93 (d, *J* = 12.7 Hz, 1H), 4.56 (d, *J* = 12.7 Hz, 1H),

2.36 (s, 3H), 1.35 (s, 9H). ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 170.7, 155.5, 140.5, 130.2, 128.7 (q, J = 310.8 Hz), 128.6, 127.5, 85.0, 59.7, 56.7, 27.8, 21.2. ¹⁹F NMR (282 MHz, δ , CDCl₃, 298 K): -36.8. HRMS (ESI): calcd *m*/*z* for C₁₆H₁₈F₃NO₄S: 395.1247 [M+NH₄]⁺; found: 395.1250. HPLC (Chiralpak AD-H, eluent: hexane:*i*-PrOH = 300:1, 0.5 mL/min, 10 °C) retention times: t_{major} = 36.6 min, t_{minor} = 42.0 min.

Compound 2d (tert-butyl (S)-4-(4-(tert-butyl)phenyl)-5-oxo-4-((trifluoromethyl)

thio)isoxazolidine-2-carboxylate): Prepared according to the general procedure and obtained as a colourless solid (33.1 mg, 0.079 mmol, 79 %, e.r. = 95:5). m.p. = 84 - 86 °C. R_f (heptanes/EtOAc = 5/1) = 0.60. [a]_D²² (c = 1.00, CHCl₃) = -10.0° ; ¹H NMR (700 MHz, δ , CDCl₃, 298 K): 7.51 (d, *J* = 8.7 Hz, 2H), 7.43 (d, *J* = 8.7 Hz, 2H), 4.99 (d, *J* =

12.8 Hz, 1H), 4.55 (d, J = 12.7 Hz, 1H), 1.30 (s, 9H), 1.30 (s, 9H). ¹³C NMR (176 MHz, δ , CDCl₃, 298 K): 170.9, 155.6, 153.7, 128.7 (q, J = 310.8 Hz), 128.2, 127.4, 126.5, 84.9, 59.6, 56.8, 34.9, 31.2, 27.8. ¹⁹F NMR (282 MHz, δ , CDCl₃, 298 K): -36.8. HRMS (ESI): calcd *m/z* for C₁₉H₂₄F₃NO₄S: 437.1716 [M+NH₄]⁺; found: 437.1712. HPLC (YMC CHIRAL ART Amylose-SA, eluent: hexane:*i*-PrOH = 300:1, 0.5 mL/min, 10 °C) retention times: $t_{minor} = 17.3$ min, $t_{major} = 21.5$ min.

Compound 2e (tert-butyl (S)-5-oxo-4-(thiophen-3-yl)-4-((trifluoromethyl)thio)isoxazolidine-2-

carboxylate): Prepared according to the general procedure and obtained as a light-yellow oil (30.2 mg, 0.082 mmol, 82 %, e.r. = 94:6). R_f (heptanes/EtOAc = 5/1) = 0.50. [a]_D²³ (c = 1.00, CHCl_3) = -29.3°; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 7.57 (dd, J = 3.0, 1.4 Hz, 1H), 7.41 (dd, J = 5.2, 3.0 Hz, 1H), 7.27 – 7.24 (m, 1H), 4.90 (d, J = 12.7 Hz, 1H),

4.59 (d, J = 12.7 Hz, 1H), 1.40 (s, 9H). ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 170.3, 155.6, 131.9, 128.7 (q, J = 311.0 Hz) 128.0, 126.5, 126.0, 85.2, 60.1, 60.1, 60.1, 60.0, 53.8, 53.7, 27.9. ¹⁹F NMR (282 MHz, δ , CDCl₃, 298 K): -37.0. HRMS (ESI): calcd *m*/*z* for C₁₃H₁₄F₃NO₄S₂: 387.0655 [M+NH₄]⁺; found: 387.0655. HPLC (YMC CHIRAL ART Amylose-SB, eluent: hexane:*i*-PrOH = 100:1, 0.5 mL/min, 10 °C) retention times: t_{minor} = 23.0 min, t_{major} = 37.5 min.

Compound 2f (tert-butyl (S)-4-(4-methoxyphenyl)-5-oxo-4-((trifluoromethyl)thio)isoxazolidine-2-

carboxylate): Prepared according to the general procedure and obtained as a colourless oil (30.6 mg, 0.76 mmol, 78 %, e.r. = 94:6). R_f (heptanes/EtOAc = 5/1) = 0.35. $[a]_D^{22}$ (c = 1.00, CHCl₃) = -33.0°; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 7.59 – 7.47 (m, 2H), 6.99 – 6.87 (m, 2H), 4.94 (d, *J* = 12.7 Hz, 1H), 4.56 (d, *J* = 12.7 Hz, 1H),

3.81 (s, 3H), 1.35 (s, 9H). ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 170.7, 160.9, 155.6, 129.1, 128.7 (q, J = 311.0 Hz), 123.0, 114.8, 85.0, 59.7, 59.6, 56.6, 56.6, 55.6, 27.9. ¹⁹F NMR (282 MHz, δ , CDCl₃, 298 K): -36.9. HRMS (ESI): calcd *m*/*z* for C₁₆H₁₈F₃NO₅S: 411.1196 [M+NH₄]⁺; found: 411.1195. HPLC (YMC CHIRAL ART Amylose-SB, eluent: hexane:*i*-PrOH = 100:1, 0.5 mL/min, 10 °C) retention times: t_{minor} = 32.5 min, t_{major} = 37.4 min.

Compound 2g (tert-butyl (S)-4-(3,4-dimethoxyphenyl)-5-oxo-4-((trifluoromethyl)

thio)isoxazolidine-2-carboxylate): Prepared according to the general procedure and obtained as a colourless oil (34.0 mg, 0.080 mmol, 80 %, e.r. = 94:6). R_f (heptanes/EtOAc = 5/1) = 0.30. [a]_D²² (c = 0.70, CHCl₃) = -43.0°; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 7.17 – 7.08 (m, 2H), 6.91 – 6.82 (m, 1H), 4.97 (d, J = 12.8 Hz, 1H), 4.56 (d, J =

12.8 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 1.36 (s, 9H). ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 170.7, 155.6, 150.6, 149.6, 128.7 (q, *J* = 311.0 Hz), 123.2, 120.3, 111.3, 110.6, 85.0, 59.6, 56.8, 56.2, 56.2, 27.9. ¹⁹F NMR (282 MHz, δ , CDCl₃, 298 K): -36.9. HRMS (ESI): calcd *m*/*z* for C₁₇H₂₀F₃NO₆S: 441.1302 [M+NH₄]⁺; found: 441.1305. HPLC (Chiralpak AD-H, eluent: hexane:*i*-PrOH = 95:5, 0.5 mL/min, 10 °C) retention times: t_{major} = 23.2 min, t_{minor} = 24.7 min.

Compound 2h (tert-butyl (S)-4-(4-((tert-butyldimethylsilyl)oxy)-3,5-dimethylphenyl)-5-oxo-4-

((trifluoromethyl)thio)isoxazolidine-2-carboxylate): Prepared according to the general procedure and obtained as a colourless oil (46.1 mg, 0.088 mmol, 88 %, e.r. = 95:5). R_f (heptanes/EtOAc = 5/1) = 0.60. [a]_D²² (c = 1.00, CHCl₃) = - 45.8°; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 7.18 (s, 2H), 4.98 (d, *J* = 12.7 Hz, 1H), 4.50 (d, *J* = 12.7 Hz, 1H), 2.21 (s, 6H), 1.34

(s, 9H), 1.02 (s, 9H), 0.17 (s, 6H). ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 171.0, 155.6, 153.9, 130.0, 128.7 (q, J = 311.0 Hz), 128.0, 123.1, 84.7, 59.5, 56.7, 27.9, 26.1, 18.9, 18.1, -2.8. ¹⁹F NMR (282 MHz, δ , CDCl₃, 298 K): -37.0. HRMS (ESI): calcd m/z for C₂₃H₃₄F₃NO₅SSi: 539.2217[M+NH₄]⁺; found: 539.2221. HPLC (Chiralpak AD-H, eluent: hexane:*i*-PrOH = 300:1, 0.5 mL/min, 10 °C) retention times: t_{major} = 15.3 min, t_{minor} = 19.0 min.

Compound 2i (tert-butyl (S)-4-(4-fluorophenyl)-5-oxo-4-((trifluoromethyl)thio)isoxazolidine-2-

carboxylate): Prepared according the general procedure and obtained as a colourless oil (32.0 mg, 0.084 mmol, 84 %, e.r. = 93:7). R_f (heptanes/EtOAc = 5/1) = 0.55. [a]_D²² (c = 1.00, CHCl₃) = -15.1° ; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 7.69 – 7.59 (m, 2H), 7.19 – 7.06 (m, 2H), 4.88 (d, J = 12.8 Hz, 1H), 4.61 (d, J = 12.9 Hz, 1H), 1.39 (s, 9H).

¹³C NMR (75 MHz, δ, CDCl₃, 298 K): 170.2, 163.5 (d, J = 250.8 Hz), 155.5, 128.4 (q, J = 311.7 Hz), 129.8 (d, J = 8.6 Hz), 116.6 (d, J = 22.1 Hz) 85.4, 77.6, 76.7, 59.7, 56.1, 27.9. ¹⁹F NMR (282 MHz, δ, CDCl₃, 298 K): -36.8, -110.2. HRMS (ESI): calcd *m/z* for C₁₅H₁₅F₄NO₄S: 399.0996 [M+NH₄]⁺; found: 399.0999. HPLC (YMC CHIRAL ART Amylose-SB, eluent: hexane:*i*-PrOH = 100:1, 0.5 mL/min, 10 °C) retention times: $t_{minor} = 24.6 \text{ min}$, $t_{major} = 34.4 \text{ min}$.

Compound 2j (tert-butyl (S)-4-(4-chlorophenyl)-5-oxo-4-((trifluoromethyl)thio)isoxazolidine-2-

carboxylate): Prepared according the general procedure and obtained as a colourless oil (33.9 mg, 0.085 mmol, 85%, e.r. = 91:9). R_f (heptanes/EtOAc = 5/1) = 0.50. [a]_D^{22} (c = 1.00, CHCl₃) = -10.5°; ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 7.64 – 7.53 (m, 2H), 7.45 – 7.39 (m, 2H), 4.85 (d, *J* = 13.0 Hz, 1H), 4.61 (d, *J* = 12.9 Hz, 1H), 1.41 (s, 9H).

¹³C NMR (75 MHz, δ, CDCl₃, 298 K): 170.0, 155.4, 136.5, 130.6, 129.7, 129.0, 128.6 (q, J = 309.7 Hz), 85.4, 77.6, 77.2, 76.7, 59.6, 56.1, 27.9. ¹⁹F NMR (282 MHz, δ, CDCl₃, 298 K): -36.7. HRMS (ESI): calcd *m/z* for C₁₅H₁₅ClF₃NO₄S: 415.0701[M+NH₄]⁺; found: 415.0705. HPLC (YMC CHIRAL ART Amylose-SB, eluent: hexane:*i*-PrOH = 100:1, 0.5 mL/min, 10 °C) retention times: t_{minor} = 33.9 min, t_{major} = 35.4 min.

Compound 2k (tert-butyl (S)-4-(4-bromophenyl)-5-oxo-4-((trifluoromethyl)thio)isoxazolidine-2-

carboxylate): Prepared according to the general procedure and obtained as a colourless oil (35.8 mg, 0.081 mmol, 81 %, e.r. = 91:9). R_f (heptanes/EtOAc = 5/1) = 0.45. $[a]_D^{22}$ (c = 1.00, CHCl₃) = -11.6°; ¹H NMR (700 MHz, δ , CDCl₃, 298 K): 7.60 – 7.55 (m, 2H), 7.53 – 7.50 (m, 2H), 4.83 (d, *J* = 12.9 Hz, 1H), 4.61 (d, *J* = 12.9 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (176 MHz, δ , CDCl₃, 298 K): 169.9, 155.4, 132.7,

131.2, 129.2, 128.6 (q, J = 310.6 Hz) 124.7, 85.5, 77.3, 77.2, 77.0, 59.6, 56.1, 27.9. ¹⁹F NMR (282 MHz, δ , CDCl₃, 298 K): -36.6. HRMS (ESI): calcd *m*/*z* for C₁₅H₁₅BrF₃NO₄S: 459.0196 [M+NH₄]⁺; found: 459.0198. HPLC (YMC CHIRAL ART Amylose-SB, eluent: hexane:*i*-PrOH = 100:1, 0.5 mL/min, 10 °C) retention times: t_{minor} = 41.7 min, t_{major} = 43.0 min.

4. Further Transformations

4.1 Reductive Cleavage of the Isoxazolidin-5-one N-O Bond

Under an Argon atmosphere, product 2a (0.5 mmol), HCO₂NH₄ (5 mmol) and Pd/C (10% w/w) were placed in a round bottom flask and tBuOH (4 mL) was added. The suspension was stirred vigorously at r.t. overnight. After completion of the reaction, the mixture was filtered through a short pad of Celite® (washed with DCM). The solvent was removed in vacuo, giving 4 in high purity.

Compound 4 ((S)-3-((tert-butoxycarbonyl)amino)-2-phenyl-2-((trifluoromethyl)thio)

propanoic acid): Prepared following the method described above and obtained $\begin{bmatrix} OH \\ HN - Boc \\ \vdots \\ SCF_3 \\ \textbf{4} \end{bmatrix}$ as a colourless powder (166.2 mg, 0.45 mmol, 97%). R_f (heptanes/EtOAc = 1/1) = 0.45. m.p. = 146 °C (decomp.). ¹H NMR (300 MHz, δ , CD₃OD, 298 K): 7.56 - 7.51 (m, 2H), 7.42 - 7.34 (m, 3H), 4.70 (d, J = 15.2 Hz, 1H), 4.43 (d, J = 15.1) Hz, 1H), 1.40 (s, 9H). ¹³C NMR (75 MHz, δ, CD₃OD, 298 K): 175.2, 158.1,

138.3, 131.5 (q, J = 307.3 Hz), 129.7, 129.5, 129.3, 82.8, 67.1, 57.7, 28.4. ¹⁹F NMR (282 MHz, δ , CD₃OD, 298 K): -38.3. HRMS (ESI): calcd m/z for C₁₅H₁₈F₃NO₄S: 383.1247 [M+NH₄]⁺; found: 383.1250.

4.2 Oxidation of SCF₃-Isoxazolidin-5-one 2a

Using an analogous procedure as was reported by Su⁵, sulfone 5 was prepared as follows: SCF₃-Isoxazolidin-5-one 2a (0.10 mmol) was dissolved in CCl₄/ACN/H₂O at room temperature. NaIO₄ (0.30 mmol) and RuCl₃·H₂O (0.005 mmol) were added and the suspension was stirred vigorously overnight. The crude mixture was then filtered and the filtrate treated with DCM (20 mL) and H₂O (20 mL). The aqueous phase was extracted with DCM (20 mL) and the combined organic phases were washed with

⁵ W. Su, *Tetrahedron Lett.*, **1994**, 35, 4955 - 4958

saturated aq. NaHCO₃ solution (20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo* to yield **5**.

Compound 5: (*tert*-butyl (S)-5-oxo-4-phenyl-4-((trifluoromethyl)sulfonyl)isoxazolidine-2-

carboxylate): Prepared following the method described above and obtained as a light-yellow oil. (38.6 mg, 0.098 mmol, 98%). R_f (heptanes/EtOAc = 5/1) = 0.40. ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 7.81 – 7.70 (m, 2H), 7.57 – 7.48 (m, 3H), 5.29 (d, *J* = 13.3 Hz, 1H), 4.89 (d, *J* = 13.3 Hz, 1H), 1.35 (s, 9H). ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 165.3, 155.0, 131.7, 129.8, 128.9,

125.7, 120.0 (q, J = 331.3 Hz), 85.8, 74.3, 55.8, 27.8. ¹⁹F NMR (282 MHz, δ , CDCl₃, 298 K): -68.3. HRMS (ESI): calcd *m*/*z* for C₁₅H₁₆F₃NO₆S: 413.0989 [M+NH₄]⁺; found: 413.0991.

4.3 Nucleophilic Ring-Opening of SCF₃-Isoxazolidin-5-one 2a

In a pressure Schlenk-tube, SCF₃-Isoxazolidin-5-one **2a** (0.1 mmol) and substituted benzylamine **9** (0.5 mmol) were dissolved in *t*BuOH and stirred at 90 °C overnight. Volatiles were removed in vacuo and the crude mixture was purified by column chromatography (silica gel, heptanes/EtOAc) to yield amides **6**.

Compound 6a: (tert-butyl (S)-(3-((4-chlorobenzyl)amino)-3-oxo-2-phenyl-2-((trifluoromethyl)

thio)propyl)(hydroxy)carbamate): Prepared following the method described above and obtained as a white solid. (38.0 mg, 0.075 mmol, 75%). m.p. = 116 - 118 °C. R_f (heptanes/EtOAc = 1/1) = 0.35. ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 8.06 (s, 1H), 7.42 - 7.35 (m, 2H), 7.36 - 7.26

(m, 5H), 7.15 (d, J = 8.4 Hz, 2H), 6.82 – 6.68 (m, 1H), 4.57 (d, J = 15.2 Hz, 1H), 4.51 – 4.36 (m, 3H), 1.30 (s, 9H). ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 171.4, 155.6, 135.6, 135.6, 133.7, 129.5, 129.4 (q, J = 310.4 Hz), 129.2, 129.0, 128.8, 128.1, 82.3, 64.9, 58.1, 44.1, 28.1. ¹⁹F NMR (282 MHz, δ , CDCl₃, 298 K): -36.1. HRMS (ESI): calcd *m/z* for C₂₂H₂₄ClF₃N₂O₄S: 522.1436 [M+NH₄]⁺; found: 522.1434.

Compound 6b: (tert-butyl (S)-(3-((4-methoxybenzyl)amino)-3-oxo-2-phenyl-2-((trifluoromethyl)

thio)propyl)(hydroxy)carbamate): Prepared following the method described above and obtained as a colourless oil. (35.9 mg, 0.071 mmol, 71%). R_f (heptanes/EtOAc = 1/1) = 0.25. ¹H NMR (300 MHz, δ , CDCl₃, 298 K): 8.13 (s, 1H), 7.42 - 7.35 (m, 2H), 7.34 - 7.28 (m, 3H), 7.20 - 7.11 (m,

2H), 6.88 - 6.79 (m, 2H), 6.69 - 6.58 (m, 1H), 4.60 (d, J = 15.2 Hz, 1H), 4.46 - 4.35 (m, 3H), 3.78 (s, 3H), 1.30 (s, 9H). ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 171.4, 159.4, 155.3, 135.5, 129.5, 129.4 (q, J = 310.6 Hz), 129.1, 128.9, 128.8, 128.1, 114.2, 82.0, 64.8, 55.4, 44.4, 32.0, 28.1. ¹⁹F NMR (282 MHz, δ , CDCl₃, 298 K): -36.0. HRMS (ESI): calcd *m*/*z* for C₂₂H₂₄ClF₃N₂O₄S: 518.1931 [M+NH₄]⁺; found: 518.1931.

4.4 KAHA Ligation with *N*-Fmoc-Leu α-oxo-acid 7

2a (0.1 mmol, e.r. = 93:7) was dissolved in DCM (1 mL) and TFA (0.5 mL) was added. After stirring for 30 min at room temperature, the solvent was removed under reduced pressure, giving a colourless oily residue, which was dried for 1 h under high vacuum and directly used for the next step. *N*-Deprotected **2a** was dissolved in *t*BuOH/THF/H₂O (1/1/1; 1.5 mL), **8** (prepared following a reported procedure⁶, 0.11 mmol) was added and the mixture was stirred for 20 h at room temperature. After completion of the reaction, water (20 mL) and EtOAc (30 mL) were added and the phases were separated. The aqueous phase was washed three times with EtOAc (15 mL), the combined organic phases were dried over Na₂SO₄, filtered and concentrated *in vacuo*. **7** was isolated by column chromatography (silica gel, DCM/MeOH) as a colourless oil.

N-protected dipeptide 7: ((S)-3-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-

methylpentanamido)-2-phenyl-2-((trifluoromethyl)thio) propanoic acid): Obtained as a colourless oil (41.8 mg, 0.070 mmol, 70%, d.r. = 13:1). R_f (DCM/MeOH = 20/1) = 0.15. ¹H NMR (300 MHz, δ, CDCl₃, 298 K): 7.80 – 7.72 (m, 2H), 7.59 – 7.51 (m, 2H), 7.43 – 7.34 (m, 4H), 7.33 – 7.28 (m,

⁶ T. Nanjo, N. Kato, Y. Takemoto, Org. Lett, 2018, 20, 5766-5769

2H), 7.23 – 7.09 (m, 2H), 7.04 – 6.87 (m, 1H), 5.49 – 5.32 (m, 1H), 4.76 – 4.62 (m, 1H), 4.47 – 4.36 (m, 1H), 4.19 – 4.15 (m, 1H), 3.91 – 3.77 (m, 1H), 1.46 – 1.36 (m, 2H), 1.26 – 1.25 (m, 1H), 0.90 – 0.74 (m, 6H). ¹³C NMR (75 MHz, δ , CDCl₃, 298 K): 175.6, 170.9, 143.8, 143.6, 141.4, 130.0 (q, J = 310.3 Hz), 128.6, 128.0, 127.6, 127.3, 127.2, 125.4, 125.1, 120.2, 73.0, 69.6, 67.8, 66.9, 47.1, 24.6, 22.8, 22.0. ¹⁹F NMR (282 MHz, δ , CDCl₃, 298 K): -36.6. HRMS (ESI): calcd *m/z* for C₃₁H₃₁F₃N₂O₅S: 601.1979 [M+H]⁺; found: 601.1980.

5. Copies of NMR Spectra of New Compounds

S 22

S 31

-10 -20

S 37

S 40

S 41

275,158

550,227

358,824

844,733

50,01

100,00

42,48

100,00

n.a

32,617

2

Total:

ation Results						
Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
	min	mAU*min	mAU	%	%	n.a.
	35,483	17,172	23,894	92,97	93,23	n.a.
	39,525	1,298	1,736	7,03	6,77	n.a.
		18,471	25,630	100,00	100,00	
	Peak Name	Peak Name Retention Time min 35,483 39,525	Retention Time Area min mAU*min 35,483 17,172 39,525 1,298 18,471 18,471	Retention Time Area Height Peak Name Retention Time mAU*min MAU Min MAU*min MAU MAU 35,483 17,172 23,894 39,525 1,298 1,736 18,471 25,630 18,471 25,630 14,471 14,471	Attor Results Retention Time Area Height Relative Area Peak Name Retention Time mAU*min mAU % 35,483 17,172 23,894 92,97 39,525 1,298 1,736 7,03 18,471 25,630 100,00 100,00	Alton Results Retention Time Area Height Relative Area Relative Height Peak Name Retention Time MAU*min mAU % % Main 35,483 17,172 23,894 92,97 93,23 39,525 1,298 1,736 7,03 6,77 18,471 25,630 100,00

119,554

160,510

100,00

100,00

Total:

43,636

120,122

Total:

100,00

100,00

S 50

integ.	ration nesares						
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		33,860	16,538	27,140	8,88	13,16	n.a.
2		35,350	169,644	179,159	91,12	86,84	n.a.
Total:			186,183	206,299	100,00	100,00	

Integr	ration Results						
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		41,650	17,647	22,936	9,41	14,73	n.a.
2		43,047	169,868	132,787	90,59	85,27	n.a.
Total:			187,515	155,724	100,00	100,00	