SUPPLEMENTARY INFORMATION

Photo-induced glycosylation using a diaryldisulfide

as an organo-Lewis photoacid catalyst

Naoto Iibuchi,^a Takahiro Eto,^a Manabu Aoyagi,^a Reiji Kurinami,^a Hayato Sakai,^b Taku Hasobe,^b Daisuke Takahashi^{*a} and Kazunobu Toshima^{*a}

^aDepartment of Applied Chemistry and ^bDepartment of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Page Contents

S2	• • • • General experimental methods
S2	\cdot \cdot \cdot General procedure for photo-induced glycosylations with trichloroacetimidate
	donors using disulfide catalysts
S5	• • • Nanosecond laser flash photolysis
S5	• • • • References

S6 $\cdot \cdot \cdot \cdot ^{1}$ H- and 13 C-NMR spectral charts

General experimental methods

Melting points were determined on a micro hot-stage (Yanako MP-S3). Optical rotations were measured on a JASCO P-2200 polarimeter. ¹H- and ¹³C-NMR spectra were recorded on a JEOL ECA-500 (500 MHz for ¹H, 125 MHz for ¹³C) spectrometer, a JEOL ECS-400 (400 MHz for ¹H) spectrometer or a JEOL ECZ-400S (400 MHz for ¹H, 100 MHz for ¹³C) spectrometer. ¹H-NMR data are reported as follows; chemical shift in parts par million (ppm) downfield or upfield from tetramethylsilane (δ 0.00), CDCl₃ (δ 7.26), integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet and m = multiplet) and coupling constants (Hz). ¹³C-NMR chemical shifts are reported in ppm downfield or upfield from CDCl₃ (δ 77.0). ESI-TOF Mass spectra were measured on a Waters LCT premier XE. Silica gel TLC and column chromatography were performed on Merck TLC 60F-254 (0.25 mm) and Silica Gel 60 N (spherical, neutral, 40-50 µm) (Kanto Chemical Co., Inc.), respectively.

General procedure for photo-induced glycosylations with trichloroacetimidate donors using disulfide catalysts

To a mixture of glycosyl donor (30.0 mg, 1.0 equiv.), glycosyl acceptor (2.0 equiv.) and MS 5Å (30.0 mg, 100 wt% to the glycosyl donor) was added a solution of disulfide **6a-c** or **7** (0.05 equiv.) in toluene (0.8 M to the glycosyl donor). After stirring for 2 h under the photoirradiation using a UV lamp (365 nm, 7 mW/cm²) at 35 °C, the mixture was concentrated in *vacuo*. The purification of the residue by flash column chromatography gave the corresponding glycoside.

The spectral data of the known glycosides 9,¹ 18,¹ 19,¹ 20,¹ 21,¹ 22,¹ 23,¹ 24,² 25,¹ 27,³ 28¹ and 29⁴ was identical with the literature data.

The spectral data of the new compounds 26, 31 and 32 was shown below.

26 BnĊ

Molecular Weight: 530.71

Cyclohexylmethyl 2,3,4-tri-O-benzyl-L-fucopyranoside (26)

To a mixture of glycosyl donor $1ca^5$ (30.0 mg, 51.8 µmol, 1.0 equiv.), glycosyl acceptor 8 (12.8 µL, 104 µmol, 2.0 equiv.) and MS 5Å (30.0 mg, 100 wt% to 1ca) was added a solution of disulfide **6c** (0.7 mg, 2.6 µmol, 0.05 equiv.) in toluene (64.8 µL, 0.8 M to 1ca). After stirring for 2 h under the photoirradiation using a UV lamp (365 nm, 7 mW/cm²) at 35 °C, the mixture was concentrated

in vacuo. The purification of the residue by flash column chromatography (6.6 g, 9/1 *n*-hexane/EtOAc) gave **26** (25.7 mg, 48.4 μ mol, 93% yield, $\alpha/\beta = 10/90$).

Data for **26a**: Colorless syrup; $R_f 0.39 (15/1 n$ -hexane/EtOAc containing 4% NEt₃); $[\alpha]^{21}_D - 39.9^{\circ}$ (*c* 0.63, CHCl₃); mp 98.0-99.0 °C; ¹H-NMR (400 MHz, CDCl₃) δ 7.41-7.24 (15H, m, ArH), 4.98 and 4.65 (2H, Abq, J = 11.6 Hz, ArCH₂), 4.88 and 4.74 (2H, ABq, J = 11.6 Hz, ArCH₂), 4.80 and 4.66 (2H, ABq, 12.4 Hz, ArCH₂), 4.76 (1H, d, J = 4.4 Hz), 4.02 (1H, dd, J = 4.0 and 10.0 Hz), 3.94 (1H, dd, J = 2.8 and 10.0 Hz), 3.86 (1H, q, J = 6.4 Hz), 3.66 (1H,d, J = 2.8 Hz), 3.37 (1H, dd, J= 7.2 and 9.2 Hz), 3.22 (1H, dd, J = 6.0 and 9.6 Hz), 1.83-1.62 (6H, m), 1.3-1.12 (3H, m), 1.10 (3H, d, J = 6.8 Hz), 0.97-0.84 (2H, m); ¹³C-NMR (500 MHz, CDCl₃) δ 139.2, 139.0, 138.8, 128.4, 128.3, 128.2, 128.3, 128.1, 127.9, 127.5, 127.4×2, 97.6, 79.4, 77.8, 74.8, 73.8, 73.3, 73.1, 66.0, 37.6, 30.3, 30.0, 26.6, 25.9, 25.7, 16.7; HRMS (ESI-TOF) m/z 553.2952 (553.2930 calcd for C₃₄H₄₂O₅Na [M+Na]⁺).

Data for **26β**: White solid; $R_f 0.49 (15/1 n$ -hexane/EtOAc containing 4% NEt₃); $[\alpha]^{22}_D + 13.9^\circ$ (*c* 1.0, CHCl₃); mp 69.0-70.0 °C; ¹H-NMR (400 MHz, CDCl₃) δ 7.38-7.24 (15H, m, ArH), 4.98 and 4.72 (2H, ABq, J = 12.0 Hz, ArCH₂), 4.95 and 4.76 (2H, ABq, J = 10.8 Hz, ArCH₂), 4.79 and 4.70 (2H, ABq, J = 12.0 Hz, ArCH₂), 4.28 (1H, d, J = 8.0 Hz), 3.80 (1H, dd, J = 8.0 and 9.6 Hz), 3.76 (1H, dd, J = 6.0 and 9.6 Hz), 3.54 (1H, d, J = 2.4 Hz), 3.50 (1H, dd, J = 2.8 and 9.6 Hz), 3.42 (1H, q, J = 6.4 Hz), 3.25 (1H, dd, J = 7.2 and 9.6 Hz), 1.87-1.56 (6H, m), 1.29-1.11 (3H, m), 1.17 (3H, J = 6.4 Hz), 1.02-0.91 (2H, m); ¹³C-NMR (500 MHz, CDCl₃) δ 138.8, 138.7, 138.6, 128.5, 128.3, 128.2, 128.1, 127.5×2, 104.1, 82.6, 79.5, 76.7, 76.3, 75.5, 75.1, 74.5, 73.2, 70.2, 38.1, 30.2, 29.9, 26.6, 25.9, 25.8, 16.9; HRMS (ESI-TOF) m/z 553.2940 (553.2930 calcd for C₃₄H₄₂O₅Na [M+Na]⁺).

2-*O*-Benzoyl-3,4-di-*O*-benzyl-6-*O*-(2-*O*-benzoyl-3,4,6-tri-*O*-benzyl-β-D-glucopyranoyl)-β-D-glucopyranosyl fluoride (31)

To a mixture of glycosyl donor $1e\alpha^6$ (30.0 mg, 42.9 µmol, 3.0 equiv.), glycosyl acceptor 30^7 (6.7 mg, 14.3 µmol, 1.0 equiv.) and MS 5Å (30 mg, 100 wt% to $1e\alpha$) was added a solution of disulfide **6c** (0.7 mg, 2.1 µmol, 0.15 equiv.) in toluene/CH₂Cl₂ (1:1, v/v, 108 µL, 0.4 M to $1e\alpha$). After stirring for 8 h under the photoirradiation using a UV lamp (365 nm, 7 mW/cm²) at 25 °C, the mixture was concentrated *in vacuo*. The purification of the residue by flash column chromatography (3/1 *n*-hexane/EtOAc) gave **31** (12.2 mg, 12.2 µmol, 85% yield, β only).

Data for **31**: White solid; $R_f 0.57 (3/1 n-hexane/EtOAc)$; $[\alpha]^{28}_{D} + 40.5^{\circ} (c 1.0, CHCl_3)$; mp 160-

162 °C; ¹H-NMR (400 MHz, CDCl₃) δ 7.98-7.95 (4H, m, ArH), 7.58 (1H, t, J = 7.6 Hz, ArH), 7.48-7.41 (3H, m, ArH), 7.37-7.25 (16H, m, ArH), 7.20-7.09 (14H, m, ArH), 5.35 (1H, dd, J = 8.4 Hz and 9.6 Hz), 5.29 (1H, m), 5.13 (1H, dd, J = 52.8 Hz and 5.6 Hz), 4.82 (1H, ABq, J = 11.2 Hz, ArCH₂), 4.74 (1H, ABq, J = 10.8 Hz, ArCH₂), 4.68-4.63 (4H, m, ArCH₂), 4.64 (1H, d, J = 9.6 Hz), 4.59-4.56 (3H, m, ArCH₂), 4.45 (1H, ABq, J = 12.0 Hz, ArCH₂), 4.19 (1H, d, J = 11.2 Hz), 3.84 (1H, dd, J = 9.2 Hz and 9.2 Hz), 3.80-3.68 (7H, m), 3.57 (1H, m); ¹³C-NMR (100 MHz, CDCl₃) δ 165.1, 164.9, 138.1, 137.5, 137.4, 133.4, 132.9, 129.8×2, 129.7, 129.2, 128.4, 128.3, 128.2×2, 127.9×2, 127.8, 127.7, 127.6, 106.6 (d, J = 217.5 Hz), 101.6, 82.6, 81.0, 80.9, 75.3, 75.0, 74.9, 74.5, 74.1, 73.6, 73.5, 72.9, 72.6, 68.7, 68.3; HRMS (ESI-TOF) *m/z* 1025.3923 (1025.3888 calcd for C₆₁H₅₉O₁₂F₁Na [M+Na]⁺).

Methyl 2,3,4-tri-*O*-benzyl-6-*O*-{2-*O*-benzoyl-3,4-di-*O*-benzyl-6-*O*-(2-*O*-benzoyl-3,4,6-tri-*O*-benzyl-β-D-glucopyranoyl)-β-D-glucopyranoyl}-α-D-glucopyranoside (32)

To a solution of glycosyl donor **31** (8.0 mg, 8.0 µmol, 1.0 equiv.) and glycosyl acceptor **16**⁸ (7.4 mg, 16.0 µmol, 2.0 equiv.) in toluene (296 µL) was added MS 5Å (8.0 mg, 100 wt% to **31**) at room temperature under Ar atmosphere. After stirring for 1 h, the resulting mixture was cooled to -40 °C. A solution of Cp₂Hf(OTf)₂ in toluene (104 µL), which was prepared from Cp₂HfCl₂ (7.6 mg, 20.0 µmol, 2.5 equiv.), AgOTf (10.3 mg, 40.0 µmol, 5.0 equiv.) and MS 5Å (72 mg, 900 wt% to **31**), was added to the reaction mixture. After stirring at the same temperature for 2 h, the reaction mixture was neutralized with triethylamine and filtered through a pad of Celite. The filtrate was concentrated in *vacuo*, and the residue was chromatographed on silica gel (2/1 *n*-hexane/EtOAc) gave the glycoside **32** (9.8 mg, 6.8 µmol, 85% yield, β only).

Data for **32**: Colorless foam; $R_f 0.52$ (2/1 *n*-hexane/EtOAc); $[\alpha]^{28}_D + 25.1^\circ$ (*c* 0.40, CHCl₃); ¹H-NMR (400 MHz, CDCl₃) δ 7.93 (2H, d, J = 8.4Hz, ArH), 7.87 (2H, d, J = 8.8 Hz, ArH), 7.47-6.92 (50H, m, ArH), 5.32-5.23 (2H, m), 4.84 (1H, ABq, J = 11.2 Hz, ArCH₂), 4.79 (1H, ABq, J = 11.2 Hz, ArCH₂), 4.71 (1H, ABq, J = 11.2 Hz, ArCH₂), 4.69 (1H, ABq, J = 12.0 Hz, ArCH₂), 4.67 (1H, d, J = 7.6 Hz), 4.65-4.61 (5H, m, ArCH₂), 4.58-4.53 (4H, m, ArCH₂), 4.47 (1H, ABq, J = 11.2 Hz, ArCH₂), 4.47 (1H, d, J = 3.2 Hz), 4.33 (1H, d, J = 7.6 Hz), 4.30 (1H, ABq, J = 11.6 Hz, ArCH₂), 4.14-4.10 (2H, m), 3.88 (1H, d, J = 7.2 Hz), 3.83-3.74 (4H, m), 3.71-3.67 (2H, m), 3.52-3.42 (4H, m), 3.38 (1H, dd, J = 9.6 Hz and 3.2 Hz), 3.32 (1H, dd, J = 9.6 Hz and 9.6 Hz), 3.17 (3H, s, OMe); ¹³C-NMR (100 MHz, CDCl₃) δ 164.9, 164.8, 138.9, 138.2, 138.1×2, 137.9, 137.7,

137.6, 133.0, 132.9, 129.9, 129.6×2, 128.3, 128.2×2, 128.1, 127.9, 127.8×2, 127.6, 127.4, 127.3, 101.1, 100.7, 98.0, 82.8, 82.6, 81.8, 79.6, 77.9, 77.7, 75.4, 75.3, 75.2, 74.9, 74.8, 74.5, 73.8, 73.5, 73.4, 69.3, 68.6, 67.8, 67.2, 55.2; HRMS (ESI-TOF) *m*/*z* 1469.6080 (1469.6025 calcd for C₈₉H₉₀O₁₈Na [M+Na]⁺).

Nanosecond laser flash photolysis

Nanoseecond teansient absorption measurements were carried out using Unisoku TSP-2000 flash spectrometer. Surelite-I Nd-YAG (Q-switched) laser was employed for the flash photoirradiation. A 150 W Xenon arc and halogen lamps were used as the monitor light source. The measurements were performed in toluene at room temperature, and excitation wavelength was 355 nm (thrid-harmonic generation (THG) wavelength of Nd-YAG laser).

References

- 1. R. Iwata, K. Uda, D. Takahashi and K. Toshima, Chem. Commun., 2014, 50, 10695.
- 2. T. Kimura, T. Eto, D. Takahashi and K. Toshima, Org. Lett., 2016, 18, 3190.
- K.Toshima, H. Nagai, K. Kasumi, K. Kawahara and S. Matsumura, *Tetrahedron Lett.*, 2004, 60, 5331.
- 4. Y. Okada, T. Mukae, K. Okajima, M. Taira, M. Fujita and H. Yamada, Org. Lett., 2007, 9, 1573.
- 5. B. Wegmann and R. R. Schmidt, Carbohydr. Res., 1988, 184, 254.
- 6. Y. Okada, O. Nagata, M. Taira and H. Yamada, Org. Lett., 2007, 9, 2755.
- 7. T. Doi, M. Sugiki, H. Yamada and T. Takahashi, *Tetrahedron Lett.*, 1999, 49, 2141.
- 8. N. Tanaka, I. Ogawa, S. Yoshugase and J. Nokami, Carbohydr. Res., 2008, 343, 2675.

¹H- and ¹³C-NMR spectral charts

¹H-NMR spectrum of 26α

¹³C-NMR spectrum of 26α

¹H-NMR spectrum of 26β

¹³C-NMR spectrum of 26β

¹H-NMR spectrum of **31**

¹³C-NMR spectrum of **31**

¹H-NMR spectrum of **32**

¹³C-NMR spectrum of **32**