## Table of Contents

1. General information ..... 2
2. Setup for photocatalytic reactions ..... 2
3. Synthetic procedures ..... 3
a) Synthesis of $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ ..... 3
b) General procedure $A$ for synthesis of secondary amines ..... 3
c) General procedure B for visible-light-mediated synthesis of imines 5a-50 ..... 3
d) General procedure $\mathbf{C}$ for visible-light-mediated synthesis of imines 7a-7j .....  3
4. Scope and limitations - dehydrogenation of $N$-benzyl anilines 4a-4o .....  4
a) General optimization studies ..... 4
b) Photocatalyst screening ..... 4
c) Solvent screening ..... 5
d) Reagents scope ..... 6
5. Scope and limitations - dehydrogenation of $N$-alkyl aromatic amines 6a-6j .....  7
a) Optimization studies .....  .7
b) Reagents scope ..... 7
6. Mechanistic studies ..... 8
a) ${ }^{1} \mathrm{H}$ NMR of dehydrogenation of $\mathbf{4 a}$ in time (crude samples) .....  8
b) The influence of quencher additives ..... 8
c) Stern-Volmer experiments: Quenching of $\mathrm{Ru}^{2+}$ by arylamines, and $\mathrm{O}_{2}$ ..... 9
d) Proposed mechanism ..... 11
7. Characteristic of the obtained compounds ..... 12
8. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra's ..... 28
9. Bibliography ..... 60

## 1. General information

The reagents were purchased from Sigma Aldrich, Alfa Aesar or ABCR and used without further purification. All reactions involving air-and moisture-sensitive materials were carried out under argon atmosphere in oven-dried glassware with magnetic stirring. Solvents were dried prior to use. THF, PhMe was distilled from Na and benzophenone and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $\mathrm{CaH}_{2}$. Column chromatography was performed with Kiesel gel (230-400 mesh). Analytical TLC was performed with Silica gel 60 F254 aluminum plates (Merck) with visualization by UV light and charring with aqueous $\mathrm{KMnO}_{4}$ or Pancaldi reagent $\left(\left(\mathrm{NH}_{4}\right)_{6} \mathrm{MoO}_{4}, \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}\right)$. NMR analyses were performed with Bruker 400 MHz Avance III, Bruker DRX 500 Avance or Varian 200 MHz spectrometers. Chemical shifts are calibrated using residual solvents signals $\left(\mathrm{CDCl}_{3}: \delta(\mathrm{H})=7.26, \delta(\mathrm{C})=77.16\right)$ or TMS and are reported in ppm. Infrared spectra (IR) were recorded on a FT-IR-1600-Perkin Elmer spectrophotometer and are reported in frequency of absorption $\mathrm{cm}^{-1}$ ). High-resolution mass spectra were in general recorded on ESI-MS-TOF (MicrOTOF II, Bruker, Germany).

## 2. Setup for photocatalytic reactions

The reaction setup is depicted in Figure 1. The reaction setup consists of a self-constructed light source configuration, made up of a rectangular box with a length of 200 mm and height of 40 mm . Inside of the box in central position, commercially available (CFL): DIALL SPIRAL, 23 W, 1450 LM light bulb is placed (light source can be replaced by any other lamp if necessary). Around the light source in distance of 50 mm there are 8 holes for placing a 4 mL reaction vials. Cooling of the setup is performed by W1209 digital temperature control switch connected with a commercially available 50 mm computer fan. During the first experiments the temperature was monitored inside the reactor and did not exceed the desired temperature of $35^{\circ} \mathrm{C}$. Reactor was placed on magnetic plate stirrer and stirring was performed with 400 rpm.


Figure 1 Reaction setup

## 3. Synthetic procedures

a) Synthesis of $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$

Prepared according to the modified literature procedure: ${ }^{1}$ To a 250 mL round-bottomed flask $\mathrm{RuCl}_{3}$ ( $540 \mathrm{mg}, 2.6 \mathrm{mmol}, 1.0$ equiv.), 2, ''-bipyridine ( $2.5 \mathrm{~g}, 16.0 \mathrm{mmol}, 6.1$ equiv.) and EtOH ( 100 mL ) were added. The reaction mixture was heated to reflux for 12 h under argon. After cooling to room temperature, $\mathrm{KPF}_{6}(1.9 \mathrm{~g}, 10.0 \mathrm{mmol}, 3.8$ equiv.) was added, and the solid was collected by vacuum filtration. The red solid was washed with water and then washed through the fritted funnel with acetone to removed excess ruthenium salts. The acetone eluent was diluted with $\mathrm{Et}_{2} \mathrm{O}$ to precipitate the ruthenium complex. The resulting red solid was filtered and dried in vacuo. The product was obtained as an orange solid ( $1.0 \mathrm{~g}, 46 \%$ ). $\left[\mathrm{M}-2\left(\mathrm{PF}_{6}\right)\right]^{2+}$ calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{Ru}, 285.05$; found, 285.2; [M-PF $]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{PRu}$, 714.6; found, 714.7.

## b) General procedure $\mathbf{A}$ for synthesis of secondary amines

To a suspension of $\mathrm{Pd} / \mathrm{C}(1.28 \mathrm{~g}, 1.1 \mathrm{mmol}, 0.1$ equiv.) in isopropyl alcohol ( 40 mL ) aqueous solution $(8 \mathrm{~mL})$ of ammonium formate ( $4.01 \mathrm{~g}, 63.6 \mathrm{mmol}, 6.0$ equiv.) was added. The reaction mixture was stirred for 1 minute to activate $\mathrm{Pd} / \mathrm{C}$. Next, amine ( $10.6 \mathrm{mmol}, 1.0$ equiv.) and aldehyde ( $10.6 \mathrm{mmol}, 1.0$ equiv.) were added and the reaction mixture was stirred at room temperature ( 60 min ). After completing the reaction based on TLC monitoring, the $\mathrm{Pd} / \mathrm{C}$ catalyst was filtered off on celite and the solvent was removed by rotary evaporation. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine solution. The organic phase was collected, dried with anhydrous $\mathrm{MgSO}_{4}$, and concentrated by rotary-evaporation. The residue was purified by silica flash column chromatography.

## c) General procedure B for visible-light-mediated synthesis of imines 5a-50

A vial was charged with $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}(0.00125 \mathrm{mmol}, 0.005$ equiv. $)$, and then $N$-substituted arylamine ( $0.25 \mathrm{mmol}, 1.0$ equiv.) and MS $4 \AA(30 \mathrm{mg})$ were added, followed by addition of 0.8 mL of dry, saturated with oxygen MeCN . The suspension was stirred 16 h under oxygen atmosphere and irradiated using CFL at $35^{\circ} \mathrm{C}$. After specified time the crude was washed with pentane and filtered through the short pad of silica to obtain pure product.
d) General procedure $\mathbf{C}$ for visible-light-mediated synthesis of imines 7a-7j

A vial was charged with $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ ( $0.005 \mathrm{mmol}, 0.02$ equiv.), and then $N$-substituted arylamine ( $0.25 \mathrm{mmol}, 1.0$ equiv.) was added. Subsequently 30 mg of MS $4 \AA$ and anhydrous $\mathrm{Na}_{3} \mathrm{PO}_{4}$ ( $0.25 \mathrm{mmol}, 1.0$ equiv.) was added, followed by addition of 0.8 mL dry, saturated with oxygen MeCN . The suspension was stirred 16 h under oxygen atmosphere and
irradiated using CFL at $35^{\circ} \mathrm{C}$. After specified time the crude was washed with pentane and filtered through the short pad of silica to obtain pure product.

## 4. Scope and limitations - dehydrogenation of $N$-benzyl anilines 4a40

a) General optimization studies


| No | Photocatalyst | Catalyst Loading | Additive | Oxidant | Yield [\%] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | $2 \mathrm{~mol} \%$ | - | $\mathrm{O}_{2}$ | $50^{\text {b }}$ |
| 2 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | $2 \mathrm{~mol} \%$ | - | $\mathrm{O}_{2}$ | 75 |
| 3 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | $2 \mathrm{~mol} \%$ | - | air | trace |
| 4 | $\left.\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{PF}_{6}\right)_{2}$ | $2 \mathrm{~mol} \%$ | - | ${ }^{t} \mathrm{BuO}_{2} \mathrm{H}^{\text {c }}$ | 86 |
| 5 | $\left.\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{PF}_{6}\right)_{2}$ | $2 \mathrm{~mol} \%$ | MS 4 ${ }^{\text {d }}$ | $\mathrm{O}_{2}$ | >99 |
| 6 | $\left[\mathbf{R u}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | $0.5 \mathrm{~mol} \%$ | MS 4 $\AA^{\text {d }}$ | $\mathrm{O}_{2}$ | $>99{ }^{\text {e }}$ |
| 7 | $\left.\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{PF}_{6}\right)_{2}$ | $0.5 \mathrm{~mol} \%$ | MS 4 ${ }^{\text {d }}$ | $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8} \mathrm{~g}$ | - |
| 8 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | $0.5 \mathrm{~mol} \%$ | $\mathrm{MgSO}_{4}{ }^{\mathrm{g}}$ | $\mathrm{O}_{2}$ | $16^{\text {e }}$ |
| 9 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | $0.5 \mathrm{~mol} \%$ | $\mathrm{NaOH}^{\mathrm{g}}$ | $\mathrm{O}_{2}$ | $24^{\text {e }}$ |
| 10 | $\left.\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{PF}_{6}\right)_{2}$ | $0.5 \mathrm{~mol} \%$ | $\mathrm{Na}_{3} \mathrm{PO}_{4}{ }^{\mathrm{g}}$ | $\mathrm{O}_{2}$ | $90^{\text {e }}$ |
| 11 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | $0.5 \mathrm{~mol} \%$ | $\mathrm{K}_{2} \mathrm{CO}_{3} \mathrm{~g}$ | $\mathrm{O}_{2}$ | $42^{\text {e }}$ |

$2 \mathrm{~mol} \%$ of $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}, \mathrm{O}_{2}$ (balloon), MeCN 0.8 mL , temp. $35^{\circ} \mathrm{C}$, reaction time 16 h , CFL 23 W , isolated yield; [b] Blue LED ;
[c] 5 equiv; [d] additive amount: 30 mg ; [e] reaction time 6 h ; [f] catalyst loading $5 \mathrm{~mol} \%$, reaction time 18 h ; [g] 1.0 equiv.
b) Photocatalyst screening


| No | Photocatalyst | Additive | Yield [\%] |
| :---: | :---: | :---: | :---: |
| 1 | $\left[\mathbf{R u}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | MS 4 $\AA$ | $>99$ |
| 2 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right](\mathrm{Cl})_{2}$ | MS 4 $\AA$ | 80 |
| 3 |  | MS 4Å | 45 |
| 4 | Rose Bengal | MS 4A | $>99{ }^{\text {a }}$ |
| 5 | Eosin Y | MS 4Å | $58^{\text {a }}$ |
| 6 | Triphenylpyrylium | MS 4Å | - ${ }^{\text {a }}$ |
| 7 | Methylene Blue | MS 4Å | - ${ }^{\text {a }}$ |

Unless otherwise indicated, all reactions were performed as follows: reaction scale: 0.25 mmol , $0.5 \mathrm{~mol} \%$ of photocatalyst, 30 mg MS $4 \AA, \mathrm{O}_{2}$ (balloon), MeCN 0.8 mL , temp. $35^{\circ} \mathrm{C}$, reaction time 6 h ; CFL 23 W ; isolated yield; [a] catalyst loading $5 \mathrm{~mol} \%$, reaction time 18 h .
c) Solvent screening


| No | Photocatalyst | Additive | Solvent | Yield [\%] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\left[\mathbf{R u}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | MS 4A | MeCN | $>99$ |
| 2 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | MS 4Å | DCE/MeCN (2/1) | 78 |
| 3 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | MS 4Å | DMSO | - |
| 4 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | MS 4Å | DCM | 56 |
| 5 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | MS 4Å | $\mathrm{CHCl}_{3}$ | - |
| 6 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | MS 4Å | MeOH | 42 |
| 7 | $\left.\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right] \mathrm{PF}_{6}\right)_{2}$ | MS 4Å | PhMe | - |
| 8 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | MS 4Å | DIOX | - |
| 9 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | MS 4Å | DCE | 25 |
| 10 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | MS 4Å | AcOEt | - |

Unless otherwise indicated, all reactions were performed as follows: reaction scale: 0.25 mmol , $0.5 \mathrm{~mol} \%$ of photocatalyst, 30 mg MS $4 \AA, \mathrm{O}_{2}$ (balloon), MeCN 0.8 mL , temp. $35^{\circ} \mathrm{C}$, reaction time $6 \mathrm{~h}, \mathrm{CFL}$, isolated yield.

Our optimization studies showed that the best results were achieved using compact fluorescent lamp (CFL 23W) and $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ as a catalyst ( $0.5 \mathrm{~mol} \%$ ) with the addition of molecular sieves (MS 4 $\AA$ ) in acetonitrile at $35^{\circ} \mathrm{C}$ under oxygen atmosphere. In this conditions imine 5a was obtained quantitatively after six hours. Rose Bengal catalyst proved to be also useful catalyst, however more catalyst ( $5 \mathrm{~mol} \%$ ) and longer reaction time ( 16 h ) was needed to get the same results. After given reaction time, reaction was washed with pentane and filtered to give pure product.
${ }^{1} \mathrm{H}$ NMR of crude reaction mixture in optimized reaction conditions after 6h (Ruthenium catalyst):

${ }^{1} \mathrm{H}$ NMR of crude reaction mixture in optimized reaction conditions after 16h (Rose

Bengal):

d) Reagents scope



5a: 100\%
5b: 21\%


5d: 89\%



5e: $25 \%$


5i: $80 \%^{\text {a }}$


5: 100\%



5m: 46\%


5h: 98\%


5k: 100\%


5n: 35\%


51: 100\%


50: -
Unless otherwise indicated, all reactions were performed as follows: reaction scale: 0.25 mmol , $0.5 \mathrm{~mol} \%$ of photocatalyst, 30 mg MS $4 \AA, \mathrm{O}_{2}$ (balloon), MeCN 0.8 mL , temp. $35^{\circ} \mathrm{C}$, reaction time 16h, CFL 23W, isolated yield; [a] reaction time 48h.
5. Scope and limitations - dehydrogenation of N -alkyl aromatic amines 6a-6j
a) Optimization studies


| No | Catalyst | Catalyst loading | Additive | Base | $\begin{gathered} \hline \text { Yield } \\ {[\%]} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | $0.5 \mathrm{~mol} \%$ | MS 4§ | - | - |
| 2 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | $0.5 \mathrm{~mol} \%$ | MS 4Å | $\mathrm{Na}_{3} \mathrm{PO}_{4}$ | 48 |
| 3 | $\left.\left[\mathbf{R u}(\mathrm{bpy})_{3}\right] \mathrm{PFF}_{6}\right)_{2}$ | $2 \mathrm{~mol} \%$ | MS 4 $\AA$ | $\mathrm{Na}_{3} \mathrm{PO}_{4}$ | $>99{ }^{\text {a }}$ |
| 4 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | $0.5 \mathrm{~mol} \%$ | MS 4Å | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | 33 |
| 5 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | $0.5 \mathrm{~mol} \%$ | MS 4Å | NaOH | - |
| 6 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | $0.5 \mathrm{~mol} \%$ | MS 4Å | ${ }^{\text { }}$ BuOK | - |
| 7 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | $0.5 \mathrm{~mol} \%$ | MS 4A | DBU | - |
| 8 | Rose Bengal | $2 \mathrm{~mol} \%$ | MS 4Å | - | - |
| 9 | Rose Bengal | $2 \mathrm{~mol} \%$ | MS 4Å | $\mathrm{Na}_{3} \mathrm{PO}_{4}$ | - ${ }^{\text {a }}$ |
| 10 | Rose Bengal | $5 \mathrm{~mol} \%$ | MS 4A | $\mathrm{Na}_{3} \mathrm{PO}_{4}$ | - ${ }^{\text {a }}$ |

Unless otherwise indicated, all reactions were performed as follows: reaction scale: 0.25 mmol , $2 \mathrm{~mol} \%$ of photocatalyst, 30 mg of MS $4 \AA$, base 1.0 equiv., $\mathrm{O}_{2}$ (balloon), MeCN 0.8 mL , temp. $35^{\circ} \mathrm{C}$, reaction time 6 h , CFL 23 W , isolated yield; [a] reaction time 16 h .
b) Reagents scope





7h: >99\% ${ }^{\text {a }}$



7i: >99\%

Unless otherwise indicated, all reactions were performed as follows: reaction scale: 0.25 mmol , $2 \mathrm{~mol} \%$ of photocatalyst, 30 mg MS $4 \AA, \mathrm{Na}_{3} \mathrm{PO}_{4} 1.0$ equiv., $\mathrm{O}_{2}$ (balloon), MeCN 0.8 mL , temp. $35^{\circ} \mathrm{C}$, reaction time 16 h , CFL 23 W , isolated yield; [a] reaction time 48 h ; [b] NMR yield; [c] isolated yield.

## 6. Mechanistic studies

a) ${ }^{1} \mathrm{H}$ NMR of dehydrogenation of 4 a in time (crude samples)

NMR experiments showed formation of only one product - imine 5a in 100\% conversion after 6 h .

b) The influence of quencher additives

To gain more information about possible mechanistic path of the imine 5a formation, several additional experiments were carried out. Control experiments showed no product formation without light source, photocatalyst or oxygen atmosphere indicating that some chemical quench occurs in the reaction between substrates, photocatalyst and oxygen (entries 2-4). To identify the existence of reactive oxygen intermediates, experiments with addition of different quenchers where investigated next (entries 4-8). Addition of TEMPO (entry 5) or 2,4,6-TTBP (entry 6) blocked reaction pointing likely on the radical mechanism. Additional experiments with benzoquinone demonstrated importance of the superoxide radical anion (entry 7). Furthermore, the addition of tert-butanol to the reaction mixture has no effect (entry 8), indicating no involvement of hydroxide radicals in the reaction mechanism. Moreover, no suppression of the oxidation reaction was observed in the presence of $\mathrm{DABCO}{ }^{1} \mathrm{O}_{2}$ quencher (entry 9).


4a


5a

| No | Photocatalyst <br> $[\mathbf{0 . 5 ~ m o l \%} \%$ | Additive <br> $[\mathbf{1 . 0}$ equiv. $]$ | Yield <br> $[\%]$ | Comment |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\left[\mathrm{Ru}(\text { bpy })_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | - | 100 | model reaction |
| 2 | - | - | - | photo-induced reaction |
| 3 | - | -b | - | photo-induced reaction |
| 4 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | -c | - | importance of oxygen intermediates |
| 5 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | TEMPO | 20 | radical mechanism |
| 6 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | $2,4,6-\mathrm{TTBP}$ | - | radical mechanism |
| 7 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | Benzoquinone | - | superoxide radical involvement |
| 8 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | ${ }^{\text {b }} \mathrm{BuOH}$ | 100 | no hydroxide radical dependence |
| 9 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | DABCO | 100 | no ${ }^{1} \mathrm{O}_{2}$ involvement |

Unless otherwise indicated, all reactions were performed as follows: reaction scale: $0.25 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$ of $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}, 30 \mathrm{mg}$ MS $4 \AA, \mathrm{O}_{2}$ (balloon), MeCN 0.8 mL , temp. $35^{\circ} \mathrm{C}$, reaction time $6 \mathrm{~h}, \mathrm{CFL} 23 \mathrm{~W}$, isolated yield; [b] no light; [c] no oxygen.


4b


MeCN, CFL $23 \mathrm{~W}, 35^{\circ} \mathrm{C}$, 6 h


5b

| No | Photocatalyst <br> $[\mathbf{0 . 5 ~ m o l \%} \%$ | Additive <br> $[\mathbf{1 . 0}$ equiv. $]$ | Yield <br> $[\mathbf{\%}]$ | Comment |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | - | 21 | model reaction |
| 2 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | DABCO | - | ${ }^{1} \mathrm{O}_{2}$ involvement |
| 3 | $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ | TEMPO | - | ${ }^{1} \mathrm{O}_{2}$ involvement |

Unless otherwise indicated, all reactions were performed as follows: reaction scale: $0.25 \mathrm{mmol}, 0.5 \mathrm{~mol} \%$ of $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}, 30 \mathrm{mg}$ MS $4 \AA, \mathrm{O}_{2}$ (balloon), MeCN 0.8 mL , temp. $35^{\circ} \mathrm{C}$, reaction time $6 \mathrm{~h}, \mathrm{CFL} 23 \mathrm{~W}$, isolated yield.

## c) Stern-Volmer experiments: Quenching of $\mathbf{R u}^{\mathbf{2 +}}$ by arylamines, and $\mathbf{O}_{\mathbf{2}}$

Stern-Volmer analyses for each of the reaction components (Figure 2, Figure 3) clearly showed that arylamine exhibit strong quench of $\mathrm{Ru}(\text { bpy })_{3}{ }^{2+}$ (Figure 2). Samples were prepared by adding solutions of substrates to $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ solution in MeCN (total volume 2 mL ) and degassed with Ar. The concentration of $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}$ in MeCN was $1.17 \times 10^{-5} \mathrm{M}$. Samples were irradiated at 453 nm , and emission was detected at 608 nm . For oxygen quenching experiment sample was initially degassed with Ar and oxygenated over 30 min by bubbling $\mathrm{O}_{2}$ through the solution.


Figure 2 Stern-Volmer quenching experiments of $R u(b p y)_{3}^{2+}$ for $4 a, 4 b, 5 a$ and oxygen


Figure 3 Stern-Volmer quenching experiments of $R u(b p y)_{3}{ }^{2+}$ for $6 \boldsymbol{a}$ and oxygen

The quenching rates for each of the photocatalysts were determined using following equation:
$\frac{I_{0}}{I}=k_{q} \cdot \tau \cdot[$ quencher $]$
$\mathrm{I}_{0}$ - emission intensity without the quencher
I - emission intensity in the presence of the quencher
$\tau$ - the lifetime of the photocatalyst in the excited state

## Determined quenching rates $\left(k_{\mathrm{q}}\right)$ :

$\tau=890 \mathrm{~ns}$ in acetonitrile ${ }^{2}$
$N$-Benzyl-4-methylaniline 4a:
$N$-Benzylaniline 4b:
Benzal-4-methylaniline 5a:
4-Methyl- $N$-(2-methylbutyl)aniline 6a
Oxygen:
$\mathrm{k}_{\mathrm{q}}=8.87 \cdot 10^{7} \mathrm{~s}^{-1} \cdot \mathrm{M}^{-1}$
$\mathrm{k}_{\mathrm{q}}=5.28 \cdot 10^{7} \mathrm{~s}^{-1} \cdot \mathrm{M}^{-1}$
$\mathrm{k}_{\mathrm{q}}=5.14 \cdot 10^{7} \mathrm{~s}^{-1} \cdot \mathrm{M}^{-1}$
$\mathrm{k}_{\mathrm{q}}=2.16 \cdot 10^{8} \mathrm{~s}^{-1} \cdot \mathrm{M}^{-1}$
$\mathrm{k}_{\mathrm{q}}=6.61 \cdot 10^{7} \mathrm{~s}^{-1} \cdot \mathrm{M}^{-1}$

Stern-Volmer analyses for each of the reaction components clearly showed that starting material ( $N$-Benzyl-4-methylaniline 4a) exhibit strong quench of $\mathrm{Ru}(\mathrm{bpy})_{3}{ }^{2+}$, with quenching rate constant of $\mathrm{k}_{\mathrm{q}}=8.87 \cdot 10^{7} \mathrm{~s}^{-1} \cdot \mathrm{M}^{-1}$ indicating $\mathrm{Ru}^{+}$formation rather than involvement of singlet oxygen reaction pathway. However, it can be seen that not substituted $N$-benzylaniline $\mathbf{4 b}$ indicates much lower quench of $\mathrm{Ru}(\mathrm{bpy}))_{3}^{2+}\left(\mathrm{k}_{\mathrm{q}}=5.69 \cdot 10^{7} \mathrm{~s}^{-1} \mathrm{M}^{-1}\right)$ than oxygen $\left(\mathrm{k}_{\mathrm{q}}=6.61 \cdot 10^{7}\right.$ $\mathrm{s}^{-1} \cdot \mathrm{M}^{-1}$ ) indicating in this case rather type II of the reaction pathway and explain poor results generated by the 4b amine. Aliphatic 4-Methyl-N-(2-methylbutyl)aniline 6a also exhibit strong quench of $\mathrm{Ru}(\mathrm{bpy}){ }_{3}{ }^{2+}$, with quenching rate constant of $\mathrm{k}_{\mathrm{q}}=2.16 \cdot 10^{8} \mathrm{~s}^{-1} \cdot \mathrm{M}^{-1}$.
d) Proposed mechanism

A proposed reaction mechanism for the imine $\mathbf{5 a}$ formation begins with SET to the amine 4a from the excited state of $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}$, generated by the visible light irradiation (Figure 4). This process leads to the formation of cation radical 9 . Subsequent oxidation of $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{+}$ by SET from the oxygen regenerates ruthenium catalyst along with the superoxide radical formation. Subsequent loss of the $\alpha$-proton from the 9 followed by the oxidation of the resulting radical produces the imine 5a. In $N$-alkyl anilines $\alpha$-proton of the cation radical is less acidic than in $N$-benzyl anilines, therefore addition of stronger base facilitate proton loss from 9 intermediate $\left(\mathrm{pKb}\right.$ of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ is $1.65 ; \mathrm{pKb}$ of superoxide is 9.12). ${ }^{3,4}$


Figure 4 Proposed reaction mechanism

## 7. Characteristic of the obtained compounds

## $N$-Benzyl-4-methylaniline (4a)



4a

Prepared according to the general procedure A. The product was obtained as a yellow oil ( $1.25 \mathrm{~g}, 70 \%$, eluent: Hexane/ $\mathrm{AcOEt}=95 / 5$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.36(\mathrm{~m}, 5 \mathrm{H}), 7.05-7.00$ and $6.65-6.60$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right), 4.34(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{5}$

## $N$-Benzylaniline (4b)



4b

Prepared according to the general procedure A. The product was obtained as a white solid ( $1.26 \mathrm{~g}, 76 \%$, eluent: Hexane/AcOEt $=95 / 5$ ). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.42-7.12(\mathrm{~m}, 7 \mathrm{H}), 6.84-6.57(\mathrm{~m}, 3 \mathrm{H}), 4.35$ (s, $2 \mathrm{H})$ and correspond to literature data. ${ }^{5}$

## $N$-Benzyl-3,5-dimethylaniline (4c)



Prepared according to the general procedure A. The product was obtained as a colorless solid $(1.87 \mathrm{~g}, 88 \%$, eluent: Hexane/AcOEt $=$ $9 / 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.48-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.95(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{bs}, 1 \mathrm{H}), 2.28$ $(\mathrm{s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{6}$

## $N$-Benzyl-4-methoxyaniline (4d)



Prepared according to the general procedure A. The product was obtained as a yellow oil ( $1.75 \mathrm{~g}, 89 \%$, eluent: Hexane $/ \mathrm{AcOEt}=95 / 5$ ). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.42-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.84-6.73$ and $6.69-6.55$ (m, 4H, AA'XX'), 4.29 (s, 2H), 3.75 (s, 3H) and correspond to literature data. ${ }^{5}$

$4 e$

Prepared according to the general procedure A. The product was obtained as white powder $(1.92 \mathrm{~g}, 79$ \%, Eluent: Hexane/AcOEt $=$ 9/1). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.42-7.38$ and $6.65-6.56$ (m, 4H, AA'XX'), 4.73 (bs, 1H), 4.38 (s, 2H) correspond to literature data. ${ }^{7}$

## 4-Chloro- N -benzylaniline (4f)



Prepared according to the general procedure A . The product was obtained as a brown solid $(1.42 \mathrm{~g}, 73 \%$, eluent: Hexane/AcOEt $=$ 95/5). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.14-7.08$ and $6.58-6.51\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}\right.$ '), $4.31(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{bs}, 1 \mathrm{H})$ and correspond to literature data. ${ }^{8}$

## 4-Methyl- N -(4-chlorobenzyl)aniline (4h)



Prepared according to the general procedure A. The product was obtained as a yellow oil $(1.52 \mathrm{~g}, 75 \%$, eluent: $\mathrm{Hexane} / \mathrm{AcOEt}=$ 95/5). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.31$ (m, 4H), $\delta 7.10-7.13$ and $6.50-6.60\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right), 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{bs}, 1 \mathrm{H}), 2.25$ $(\mathrm{s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{9}$

## 4-Methyl- $N$-(3-chlorobenzyl)aniline (4i)



Prepared according to the general procedure A . The product was obtained as a colorless oil $(1.80 \mathrm{~g}, 78 \%$, eluent: Hexane/ $\mathrm{AcOEt}=$ 9/1). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.38$ (s, 1H), $7.27(\mathrm{~s}, 3 \mathrm{H}), 7.00$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 2.26$ (s, $3 \mathrm{H})$ and correspond to literature data. ${ }^{8}$

## 4-Methyl- $N$-(3-methylbenzyl)aniline (4j)



4j

Prepared according to the general procedure A. The product was obtained as a brown oil ( $1.75 \mathrm{~g}, 77 \%$, eluent: Hexane/ $\mathrm{AcOEt}=9 / 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.31-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03-7.00$ and $6.59-6.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right), 4.31(\mathrm{~s}, 2 \mathrm{H})$, $3.91(\mathrm{bs}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{10}$

## 4-Methyl- N -(naphthalen-1-ylmethyl)aniline (4k)



4k

Prepared according to the general procedure A. The product was obtained as a brown oil ( $1.50 \mathrm{~g}, 61 \%$, eluent: Hexane $/ \mathrm{AcOEt}=95 / 5$ ). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{t}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.58-7.41$ $(\mathrm{m}, 3 \mathrm{H}), 7.02-7.00$ and $6.73-6.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime}\right), 4.51(\mathrm{~s}, 2 \mathrm{H})$, $4.04(\mathrm{bs}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{11}$

## 4-Methyl- $N$-(4-cyanobenzyl)aniline (4I)



41

Prepared according to the general procedure A. The product was obtained as a white solid $(1.80 \mathrm{~g}, 81 \%$, eluent: Hexane $/ \mathrm{AcOEt}=$ 95/5). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.70-7.58$ and $7.55-7.45$ (m, 4H, AA' XX'), $\delta 7.10-6.81$ and $6.65-6.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right)$, $4.43(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{bs}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{12}$

## 4-Methyl- N -(4-trifluoromethylbenzyl)aniline (4m)



Prepared according to the general procedure A. The product was obtained as a yellow solid $(1.78 \mathrm{~g}, 85 \%$, eluent: Hexane/ $\mathrm{AcOEt}=$ $4 / 1) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.62-7.51$ (m, 4H, AA'XX'), 7.02 - 6.57 (m, 4H, AA'XX'), 4.42 (s, 2H), 4.05 (bs, 1H), 2.27 (s, $3 \mathrm{H})$ and correspond to literature data. ${ }^{13}$

## $N$-(4-Nitrobenzylidene)-4-methylaniline (4n)



4n

Prepared according to the general procedure A . The product was obtained as a white solid ( $1.92 \mathrm{~g}, 79 \%$, eluent: Hexane/AcOEt $=$ from $9 / 1$ to $4 / 1$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.18(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.01$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.53$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{bs}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{7}$

## $N$-(1-Phenyl-ethylidene)-4-methylaniline (40)



4o

Prepared according to the general procedure A. The product was obtained as a yellow oil $\left(2.04 \mathrm{~g}, 96 \%\right.$, eluent: Hexane:AcOEt 9/1). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.45-7.13(\mathrm{~m}, 5 \mathrm{H}), \delta 6.98-6.81$ and 6.60
$-6.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime}\right), 4.46(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H})$ and correspond to literature data. ${ }^{10}$

## Benzal-4-methylaniline (5a)



5a

Prepared according to the general procedure B . The product was obtained as a brown solid ( $49 \mathrm{mg}, 100 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.06(\mathrm{~m}$, $4 \mathrm{H}), 2.36(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{7}$

## Benzylidene phenylamine (5b)



Prepared according to the general procedure B . The product was obtained as a brown solid ( $10 \mathrm{mg}, 21 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~d}, J$ $=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.37(\mathrm{~m}$, $2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{7}$

## 3,5-Dimethyl- $N$-benzylideneaniline (5c)



Prepared according to the general procedure B . The product was obtained as a yellow oil ( $52 \mathrm{mg}, 99 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $8.40(\mathrm{~s}, 1 \mathrm{H}), 8.04-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.39(\mathrm{~m}, 3 \mathrm{H}), 6.97$ (m, 3H), $2.42-2.22(\mathrm{~m}, 6 \mathrm{H})$ and correspond to literature data. ${ }^{14}$

## [4-(Benzylideneamino)phenyl]methanol (5d)



Prepared according to the general procedure B . The product was obtained as a solid ( $47 \mathrm{mg}, 89 \%$ ). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52$ $(\mathrm{s}, 1 \mathrm{H}), 8.02-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-$
$3.80(\mathrm{~m}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{7}$


5e

Prepared according to the general procedure B . The product was obtained as a solid ( $14 \mathrm{mg}, 25 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42$ (s, 1H), $7.93-7.68$ (m, 4H, AA'XX'), 7.57 - 7.49 (m, 3H), 7.25 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$ correspond to literature data. ${ }^{7}$

## 1-(4-Chlorophenyl)- $N$-phenylmethanimine (5f)



Prepared according to the general procedure B . The product was obtained as a yellow oil ( $28 \mathrm{mg}, 52 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $8.44(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.09(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime}$ ) and correspond to literature data. ${ }^{14}$

## $N$-Benzylidenebenzylamine (5g)



5 g

Prepared according to the general procedure B. The product was obtained as an orange oil ( $49 \mathrm{mg}, 99 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 8.43 (s, 1H), $7.90-7.75$ (m, 2H), $7.54-7.20(\mathrm{~m}, 8 \mathrm{H}), 4.86(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 2 \mathrm{H})$ and correspond to literature data. ${ }^{7}$

## N -(4-Chlorobenzylidene)-4-methylaniline (5h)



Prepared according to the general procedure B . The product was obtained as an orange oil ( $56 \mathrm{mg}, 98 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime}\right), 7.38-6.95$ $(\mathrm{m}, 4 \mathrm{H}), 2.54-2.25(\mathrm{~m}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{15}$

## $N$-(3-Chlorobenzylidene)-4-methylaniline (5i)



Prepared according to the general procedure B . The product was obtained as an oil ( $46 \mathrm{mg}, 80 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.48$ (s, 1H), $8.00(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.39(\mathrm{~m}, 2 \mathrm{H})$, $7.35-7.10(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{16}$


5j

Prepared according to the general procedure B. The product was obtained as an oil ( $52 \mathrm{mg}, 99 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.45$ $(\mathrm{s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right), 2.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{17}$

## 1-Napthyliden-p-methylanilin (5k)



5k

Prepared according to the general procedure B . The product was obtained as a yellowish solid ( $49 \mathrm{mg}, 99 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.26-8.08(\mathrm{~m}, 2 \mathrm{H}), 8.03-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.69$ $-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.09(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{11}$

## $N$-(4-Cyanobenzylidene)-4-methylaniline (5I)



5I

Prepared according to the general procedure B . The product was obtained as an oil ( $55 \mathrm{mg}, 99 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $8.51(\mathrm{~s}, 1 \mathrm{H}), 8.13-7.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right), 7.34-7.08(\mathrm{~m}, 4 \mathrm{H})$, $2.39(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{18}$

## $N$-(4-Trifluoromethylbenzylidene)-4-methylaniline (5m)



Prepared according to the general procedure B . The product was obtained as a yellow oil ( $30 \mathrm{mg}, 46 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.02-7.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right), 7.36-6.97$ $(\mathrm{m}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{13}$

## $N$-(4-Nitrobenzylidene)-4-methylaniline (5n)



5n

Prepared according to the general procedure B. The product was obtained as a yellow solid ( $21 \mathrm{mg}, 35 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.37-7.99\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}\right.$ ) , $7.27-7.17$ $(\mathrm{m}, 4 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{19}$

## 4-Methyl- $N$-(2-methylbutyl)aniline (6a)



6a

Prepared according to the general procedure A. The product was obtained as a yellow oil ( $1.49 \mathrm{~g}, 85 \%$, eluent: Hexane $/ \mathrm{AcOEt}=95 / 5$ ). IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3416,3015,2960,2922,2872,1521,1461,806 ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.01-6.57\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right), 3.65(\mathrm{bs}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=12.2,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=12.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.44(\mathrm{~m}, 1 \mathrm{H})$, $1.35-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.07-0.86(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{〔} \mathrm{H}\right\}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.4,129.7$, 126.1, 112.8, 50.3, 34.5, 27.3, 20.5, 17.6, 11.3; HRMS (EI) m/z [M+]: calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}$ 177.1517, found 177.1519.

## 4-Methyl- $N$-(ethyl)aniline (6b)



Prepared according to the general procedure A. The product was obtained as a brown oil ( $1.50 \mathrm{~g}, 73 \%$, eluent: Hexane/ $\mathrm{AcOEt}=95 / 5$ ). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.02-6.51\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right), 3.60(\mathrm{bs}, 1 \mathrm{H}), 3.09(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.76-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.09-0.96(\mathrm{t}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{20}$

## $N$-(Cyclohexylmethyl)-4-methylaniline (6c)



6 c

Prepared according to the general procedure A. The product was obtained as a yellowish solid ( $1.50 \mathrm{~g}, 70 \%$, eluent: Hexane/AcOEt = 95/5). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.05-6.48$ (m, 4H, AA$\left.{ }^{\prime} \mathrm{XX}^{\prime}\right), 3.62$ (bs, 1H), 2.97 (d, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.27 ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.75 (m, 5H), $1.66-$ $1.52(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.11(\mathrm{~m}, 3 \mathrm{H}), 1.10-0.90(\mathrm{~m}, 2 \mathrm{H})$ and correspond to literature data. ${ }^{5}$

## $N$-Neopentylaniline (6d)



6d

Prepared according to the general procedure A . The product was obtained as a reddish solid $(1.50 \mathrm{~g}, 80 \%$, eluent: Hexane/ $\mathrm{AcOEt}=95 / 5) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.01-6.58\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime}\right), 3.51(\mathrm{bs}, 1 \mathrm{H}), 2.90(\mathrm{~s}$, $2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H})$ and correspond to literature data. ${ }^{10}$

## $N$-(2-Methyl-1,3-dioxolan-5-ylmethyl)-4-methylaniline (6g)



Prepared according to the general procedure A. The product was obtained as colorless oil ( $1.60 \mathrm{~g}, 72 \%$, eluent: Hexane/AcOEt = 9/1). $[\alpha]^{25}{ }_{\mathrm{D}}=-5.0(\mathrm{c} 1.0, \mathrm{EtOH}) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3384,2986,2932,2878$,

1518, 1070, 614,$511 ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.99-6.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime}\right), 4.35(\mathrm{qd}$, $J=6.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=8.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{bs}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=8.2,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.28(\mathrm{dd}, J=12.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 145.7, 129.7, 127.0, 113.2, 109.4, 74.6, 67.3, 47.0, 26.9, 25.4, 20.4; HRMS (EI) m/z [M+]: calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}$ 221.1416, found 221.1423.

## Synthesis of tert-butyl (2S)-3-methyl-1-[(4-methylphenyl)amino]butan-2-ylcarbamate (6h)



(2S)-2-Amino-3-methyl- $N$-(4-methylphenyl)butanamide ( $6 \mathrm{~h}-1$ )


6h-1

To a cold solution $\left(-15{ }^{\circ} \mathrm{C}\right)$ of $N$-Boc-L-Valine ( 42.0 mmol ) and 4-methylmorpholine ( $4.16 \mathrm{~g}, 4.56 \mathrm{~mL}, 42.0 \mathrm{mmol}, 1.0$ equiv.) in dry THF ( 120 mL ) isobutyl chloroformate ( $5.74 \mathrm{~g}, 5.45 \mathrm{~mL}, 42.0 \mathrm{mmol}$, 1.0 equiv.) in dry THF ( 20 mL ) was added dropwise over 15 min . After the mixture was stirred for another $15 \mathrm{~min}, 4$-methylaniline ( $4.50 \mathrm{~g}, 42.0 \mathrm{mmol}$ ) was added. Then the mixture was allowed to slowly warm to room temperature and stirred for 16h. After evaporation of the solvent in vacuo, the residue was diluted with AcOEt and the organic phase was washed with $10 \%$ aq $\mathrm{Na}_{2} \mathrm{CO}_{3}, 0.1 \mathrm{M} \mathrm{HCl}$, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvents gave crude (2S)-2-amino-3-methyl- $N$-(4-methylphenyl)butanamide $\mathbf{6 h} \mathbf{- 1}$, which was used for the subsequent acid hydrolysis without further purification. The product was obtained as a yellow solid ( $12.00 \mathrm{~g}, 93 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.71$ (bs, $1 \mathrm{H}), 7.35-6.99\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime}\right), 5.62(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{bs}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=12.9$ $\mathrm{Hz}, 3 \mathrm{H}), 2.16(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{t}, J=8.7 \mathrm{~Hz}, 6 \mathrm{H})$ and correspond to literature data. ${ }^{21}$


6h-2
(2S)-2-Amino-3-methyl- $N$-(4-methylphenyl)butanamide $\mathbf{6 h}-\mathbf{1}$ (1,18 g, 4.0 mmol , 1 equiv.) was dissolved in 5 mL HCl ( 4.0 M in dioxane) and the mixture was stirred at room temperature until TLC showed the disappearance of the starting material. Then the mixture was treated with 1 M aq NaOH and extracted with DCM. The organic phase was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Evaporation of the solvent in vacuo gave the crude of $(2 S)$-2-amino-3-methyl- $N$-(4-methylphenyl)butanamide, which was purified by column chromatography. The product was obtained as a yellow solid ( $0.55 \mathrm{~g}, 71 \%$, eluent: $\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{MeOH} 5 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.43$ (bs, 1 H ), 7.67 - 7.13 (m, 4H, AA'XX'), $3.36(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.27(\mathrm{~m}, 4 \mathrm{H}), 1.48(\mathrm{bs}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. and correspond to literature data. ${ }^{21} \mathrm{To}$ a stirred solution of $5.3 \mathrm{~g}(2 \mathrm{~S})$-2-Amino-3-methyl- $N$-(4-methylphenyl)butanamide ( 15.0 mmol , 1.0 equiv) in dry THF ( 60 mL ) under Ar atmosphere lithium aluminium hydride ( $1.65 \mathrm{~g}, 45.0 \mathrm{mmol}, 3.0$ equiv) was added portion-wise at $0^{\circ} \mathrm{C}$. The reaction mixture was then refluxed for 12 h . Thereafter it was cooled and slowly quenched with aq NaOH and residue slurry was filtered through the celite. The filtrate was taken in ethyl acetate, washed with brine, and dried. The product $\mathbf{6 h} \mathbf{- 2}$ was obtained as a white solid ( $2.67 \mathrm{~g}, 55 \%$, eluent: DCM/MeOH 10\%). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.98-6.56(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}$ '), $3.23(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.62(\mathrm{~m}$, $1 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{dd}, J=9.1,6.8 \mathrm{~Hz}, 6 \mathrm{H})$ and correspond to literature data. ${ }^{21}$

## tert-Butyl (2S)-3-methyl-1-[(4-methylphenyl)amino]butan-2-ylcarbamate (6h)



To a stirred solution of (2S)- $N^{1}$-(4-Methylphenyl)-3-methyl-1,2butanediamine $\mathbf{6 h}-2(0.63 \mathrm{~g}, 3.45 \mathrm{mmol}, 1.0$ equiv) in dioxane ( 3 mL ) $1 \mathrm{M} \mathrm{NaOH}(3 \mathrm{~mL})$ was added. The reaction mixture was cooled to $5^{\circ} \mathrm{C}$ and $\mathrm{Boc}_{2} \mathrm{O}(0.75 \mathrm{~g}, 3.62 \mathrm{mmol}, 1.05$ equiv) was added. The reaction mixture was stirred overnight at rt. Thereafter solution was washed with DCM ( $3 \times 10 \mathrm{~mL}$ ) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in vacuo gave the crude $\mathbf{6 h}$, which was purified by column chromatography. The product was obtained as a white solid ( 1.08 g , $59 \%$, eluent: Hexane/ $\mathrm{AcOEt}=9 / 1$ ). $[\alpha]^{25} \mathrm{D}=-16.0(\mathrm{c} 1.0, \mathrm{DCM})$; m.p. $66.7-67.4{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3386,2965,2930,1690,1523,1173,807,507 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 6.99-6.56 (m, 4H, AA'XX'), $4.53(\mathrm{bs}, 1 \mathrm{H}), 3.68(\mathrm{bs}, 1 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}), 3.08-2.96(\mathrm{~m}, 1 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{dd}, J=14.4,6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 156.5,146.2,129.7,126.5,112.8,79.4,55 ., 47.3,30.5,28.3,20.3,19.4,18.0$; HRMS (ESI) m/z [M+H] ${ }^{+}$: calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$ 293.2229, found 293.2229.

## Synthesis of tert-butyl (2S)-1-[(4-methylphenyl)amino]butan-2-ylcarbamate (6i)


tert-Butyl $N$-[(1S)-1-Methyl-2-oxo-2-(4-toluidino)ethyl]carbamate


6i-1 (6i-1)

To a cold solution $\left(-15^{\circ} \mathrm{C}\right)$ of $N$-Boc-L-alanine ( $8.0 \mathrm{~g}, 42.0 \mathrm{mmol}$ ) and 4-methylmorpholine ( $4.16 \mathrm{~g}, 4.56 \mathrm{~mL}, 42.0 \mathrm{mmol}, 1.0$ equiv.) in dry THF ( 120 mL ) isobutyl chloroformate ( $5.74 \mathrm{~g}, 5.45 \mathrm{~mL}, 42.0 \mathrm{mmol}$, 1.0 equiv.) in dry THF ( 20 mL ) was added dropwise over 15 min . After the mixture was stirred for another 15 min , 4-methylaniline ( $4.50 \mathrm{~g}, 42.0 \mathrm{mmol}, 1.0$ equiv.) was added. Then the mixture was allowed to slowly warm to room temperature and stirred 16 h . After evaporation of the solvent in vacuo, the residue was diluted with AcOEt and the organic phase was washed with $10 \%$ aq $\mathrm{Na}_{2} \mathrm{CO}_{3}, 0.1 \mathrm{M} \mathrm{HCl}$, and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvents gave crude $N$-Boc- $(R)$-amino amide, which was purified by column chromatography. The product was obtained as a white solid $(5.50 \mathrm{~g}, 49 \%$, eluent: Hexane/AcOEt 95/5). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.13(\mathrm{~m}, 4 \mathrm{H}$, AA' ${ }^{\prime} X^{\prime}$ ), $5.02(\mathrm{bs}, 1 \mathrm{H}), 4.31(\mathrm{bs}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.36(\mathrm{~m}, 12 \mathrm{H})$ and correspond to literature data. ${ }^{21}$

## (2S)- $N^{1}$-(4-methylphenyl)-1,2-propanediamine (6i-2)


tert-Butyl $N$-[(1S)-1-Methyl-2-oxo-2-(4-toluidino)ethyl]carbamate 6i-1 $(2.78 \mathrm{~g}, 10.0 \mathrm{mmol}, 1$ equiv.) was solved in 10 mL of Dioxane $/ \mathrm{HCl}$ solution (4.05 M in dioxane). The mixture was stirred at room temperature until TLC showed the disappearance of the starting material. Then the mixture was treated with 1 M aq. NaOH and extracted with DCM . The organic phase was washed with brine and dried
over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in vacuo gave the crude of (2S)-2-amino- N -(4-methylphenyl)propanamide, which was purified by column chromatography. The product was obtained as a yellow solid ( $2.4 \mathrm{~g}, 71 \%$, eluent: $\mathrm{DCM} / \mathrm{MeOH} 5 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~s}$, $1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.36(\mathrm{~m}, 12 \mathrm{H})$ and correspond to literature data. ${ }^{21}$ To a stirred solution of $5.3 \mathrm{~g}(2 S)$-2-amino-3-methyl- $N$-(4-methylphenyl)butanamide ( $15.0 \mathrm{mmol}, 1.0$ equiv) in dry THF ( 60 mL ) and under Ar atmosphere lithium aluminium hydride ( $1.65 \mathrm{~g}, 45.0 \mathrm{mmol}, 3.0$ equiv.) was slowly added at $0^{\circ} \mathrm{C}$. The reaction mixture was then refluxed for 12 h . Thereafter it was cooled and slowly quenched with 1 M NaOH and residue slurry was filtered through celite. The filtrate was taken in ethyl acetate, washed with brine, and dried. The product $\mathbf{6 i - 2}$ was obtained as a white solid ( $2.67 \mathrm{~g}, 55 \%$, eluent: DCM/MeOH $10 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 7.02-6.51\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime}\right) 3.25-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$, $1.23-1.08(\mathrm{~m}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{21}$

## tert-Butyl (2S)-1-[(4-methylphenyl)amino]butan-2-ylcarbamate (6i)


$6 i$

To a stirred solution of (2S)- N -(4-methylphenyl)-1,2-propanediamine 6i-2 ( $0.78 \mathrm{~g}, 4.76 \mathrm{mmol}, 1.0$ equiv) in dioxane ( 5 mL ) and $1 \mathrm{M} \mathrm{NaOH}(5 \mathrm{~mL})$ was added. The reaction mixture was cooled to $5{ }^{\circ} \mathrm{C}$ and $\mathrm{Boc}_{2} \mathrm{O}(1.09 \mathrm{~g}$, $5.00 \mathrm{mmol}, 1.05$ equiv.) was added portion-wise. The reaction mixture was stirred overnight at rt . Thereafter solution was washed with DCM ( $3 \times 10 \mathrm{~mL}$ ) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in vacuo gave the crude $\mathbf{6 i}$, which was purified by column chromatography. The product was obtained as a yellowish solid $(0.78 \mathrm{~g}, 62 \%$, eluent: Hexane/AcOEt $=95 / 5) ;[\alpha]^{25}{ }_{\mathrm{D}}=-14.0(\mathrm{c} 1.0, \mathrm{DCM})$. m.p. $93.3-94.1^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ 3378, 2976, 2870, 1693, 1522, 1168, 1054, 807; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.96$ - 6.52 (m, 4H, AA'XX'), 4.60 (bs, 1H), 3.90 (bs, 2H), 3.11 (m, 1H), 3.04 (m, 1H), 2.22 (s, 3H), 1.44 (s, $9 \mathrm{H}), 1.18(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 155.8,145.7,129.7,126.3$, 112.8, 79.6, 50.6, 46.3, 28.2, 19.0, 19.0; HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]^{+}$: calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ 287.1735, found 287.1729.

## 2-Methylbutyraldehyde-4-methylaniline (7a)



Prepared according to the general procedure C . The product was obtained as a yellow oil ( $44 \mathrm{mg}, 100 \%$ ). IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3269,2965$, 2873, 1687, 1520, 1302, 815; ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.68$ (d, J $=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-6.95\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime}\right), 2.48-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H})$, $1.58-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-0.94(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$

## $N$-(Cyclohexylmethylene)-4-methylaniline (7c)



7c

Prepared according to the general procedure C . The product was obtained as a solid ( $45 \mathrm{mg}, 89 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.70$ (d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.13-6.93$ (m, 4H, AA$\left.{ }^{\prime} \mathrm{XX}^{\prime}\right), 2.33$ (s, 3H), $2.03-$ $1.66(\mathrm{~m}, 6 \mathrm{H}), 1.41-1.27(\mathrm{~m}, 4 \mathrm{H})$ and correspond to literature data. ${ }^{22}$

## N-tert-Butyl-1-phenylmethanimine (7d)



Prepared according to the general procedure C . The product was obtained as an oil ( $44 \mathrm{mg}, 100 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.15$ -7.05 and $6.95-6.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H})$ and correspond to literature data. ${ }^{7}$

## Indole (7e)



Prepared according to the general procedure C. The product was obtained as a brown solid ( $13 \mathrm{mg}, 43 \%$, eluent: Hexane/AcOEt $=95 / 5$ ). ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.11(\mathrm{~m}$, $3 \mathrm{H}), 6.70-6.51(\mathrm{~m}, 1 \mathrm{H})$ and correspond to literature data. ${ }^{7}$

## 5-Methylindole (7f)


$7 f$ Prepared according to the general procedure C . The product was obtained as a brown solid ( $25 \mathrm{mg}, 76 \%$ ), eluent: Hexane/AcOEt = 95/5). ${ }^{1} \mathrm{H}$ NMR ( 200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.21$ $-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~m}, 1 \mathrm{H}), 6.49(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{7}$


7g

Prepared according to the general procedure C . The product was obtained as an oil ( $58 \mathrm{mg}, 99 \%$ ). $[\alpha]^{25}=7.6$ (c 1.0, EtOH; IR $\left(\mathrm{CHCl}_{3}\right.$, $\mathrm{cm}^{-1}$ ) 3384, 3380, 2986, 2932, 2878, 1518, 1070, 614; ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.00\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right)$, $4.83-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=8.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.50-$ $1.43(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.85,136.5,129.9,120.8,110.6,77.7,67.7$, 26.8, 25.7, 21.2; HRMS (EI) m/z [M+]: calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$ 219.1261, found 219.1259.

## tert-Butyl (2S)-3-methyl-1-[(4-methylphenyl)imino]butan-2-ylcarbamate (7h)



7h Prepared according to the general procedure C . The product was obtained as an oil ( $73 \mathrm{mg}, 99 \%$ ). $[\alpha]^{25}{ }_{\mathrm{D}}=11.4$ (c 1.0, DCM); IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3386,2965,2930,1698,1523,1365,1173,807 ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.15-6.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right), 5.74$ (bs, 1H), 4.39 (bs, 1H), $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.07-$ $0.98(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 200.3, 162.1, 135.6, 129.65, 120.4, 114.2, 82.4, 28.7, 28.0, 20.9, 19.0, 18.9, 18.1; HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$ 313.1892, found 313.1895.

## tert-Butyl (2S)-1-[(4-methylphenyl)imino]butan-2-ylcarbamate (7i)


$7 i$ $\mathrm{cm}^{-1}$ ) 3347, 2977, 1708 1505, 1366, 1169, 1057, 816; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.11-6.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}\right.$ ), 5.74 (bs, $1 \mathrm{H}), 4.43(\mathrm{bs}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.28(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{\{1} \mathrm{H}\right\}$ NMR ( $\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $162.8,155.3,148.2,135.6,129.6,120.5,79.4,49.9,28.4,20.9,18.5$; HRMS (ESI) m/z $[\mathrm{M}+\mathrm{Na}]^{+}$: calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$ 285.1579, found 285.1568.

## 3,4-dihydroisoquinoline (7j)



7j

Prepared according to the general procedure C. The product was obtained as a pale yellow oil ( $14 \mathrm{mg}, 43 \%$ ), eluent: Hexane/AcOEt $=2 / 3$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.15(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.76(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$ and correspond to literature data. ${ }^{28}$

## 1,3-Diphenyl-3-(4-methylphenylamino)propan-1-one (8a)



To a suspension of $N$-benzyl- $N$-(4-methylphenyl)amine ( $39.50 \mathrm{mg}, 0.200$ mmol, 1.00 equiv.), $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}(3.40 \mathrm{mg}, 0.004 \mathrm{mmol}, 0.02$ equiv.) and molecular sieves $4 \AA$ in $\mathrm{MeOH}(1 \mathrm{~mL})$, respectively 1styrenyloxytrimethylsilane ( $77.00 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.00$ equiv.) and $\mathrm{Zn}(\mathrm{OTf})_{2}(14.50 \mathrm{mg}, 0.040 \mathrm{mmol} ; 0.20$ equiv.) were added. Stirring was continued for 18 h at $35^{\circ} \mathrm{C}$ under oxygen atmosphere and irradiated using 23 W CFL. Solvent was evaporated and residue was submitted to column chromatography (eluent: Hexane/ $\mathrm{AcOEt}=9 / 1$ ) to afford pure product as yellow oil ( $36 \mathrm{mg}, 57 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.41-7.62$ (m, 5H), $7.19-7.37$ (m, 3H), 6.92 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 6.51 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), $4.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{23}$

## 5-[(4-Methoxy-phenylamino)-phenyl-methyl]-5H-furan-2-one (8b)



To a suspension of $N$-benzyl- $N$-(4-methylphenyl)amine ( $39.50 \mathrm{mg}, 0.200$ $\mathrm{mmol}, 1.00$ equiv. $),\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}(3.40 \mathrm{mg}, 0.004 \mathrm{mmol}, 0.02$ equiv.) and molecular sieves $4 \AA$ in $\mathrm{MeCN}(1 \mathrm{~mL})$, respectively 2(trimethylsiloxy)furan ( $37.50 \mathrm{mg}, 0.240 \mathrm{mmol}, 1.20$ equiv.) and $\mathrm{Zn}(\mathrm{OTf})_{2}$ ( $14.50 \mathrm{mg}, 0.040 \mathrm{mmol} ; 0.20$ equiv.) were added. Stirring was continued for 48 h at $35^{\circ} \mathrm{C}$ under oxygen atmosphere and irradiated using 23 W CFL. Solvent was evaporated and residue was submitted to column chromatography (eluent: Hexane $/ \mathrm{AcOEt}=8 / 2$ ) to afford pure product as yellow oil ( $23 \mathrm{mg}, 41 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.28-7.43(\mathrm{~m}, 6 \mathrm{H}), 6.9(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{dd}, J=2.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dt}, J=1.8,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{24}$

## 1-(4-Methylphenyl)-2-phenyl-2,3-dihydro-1H-pyridin-4-one (8c)



8c Suspension of $N$-benzyl- $N$-(4-methylphenyl)amine (39.50, 0.200 mmol , 1.00 equiv.), $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}(3.40 \mathrm{mg}, 0.004 \mathrm{mmol}, 0.02$ equiv.) and 4 $\AA$ molecular sieves in $\mathrm{MeCN}(1 \mathrm{~mL})$, was stirred at $35^{\circ} \mathrm{C}$ and irradiated using 23 W CFL. After 6h lamp was turned off and respectively trans-1-methoxy-3-trimethylsiloxy-1,3-butadiene ( $41.50 \mathrm{mg}, 2.400 \mathrm{mmol}, 1.20$ equiv.) and $\mathrm{Zn}(\mathrm{OTf})_{2}$ ( $14.50 \mathrm{mg}, 0.040 \mathrm{mmol} ; 0.20$ equiv.) were added. Stirring at rt. was continued for 18 h at darkness. Solvent was evaporated and residue was submitted to column chromatography (eluent: Hexane/ $\mathrm{AcOEt}=7 / 3$ ) to afford pure product as yellow oil ( $47 \mathrm{mg}, 89 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.62$ (dd, $J=1.2,7,6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.23-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.25-5.27(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{dd}, J=7.2,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{ddd}, J=$
1.2, 3.2, $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 190.1, 148.7, 142.4, 138.1, 134.3, 130.0, 128.9, 127.8, 126.2, 118.9, 102.3, 61.9, 43.4, 20.7; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3029$, 1647, 1590, 1575, 1512, 1308, 1275, 1206; HR-EI-MS m/z [M] : calc. for: $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}$ 286.1208, found: 286.1200.

## 2-Phenyl-2-(4-methylphenylamino)acetonitrile (8d)



To a suspension of $N$-benzyl- $N$-(4-methylphenyl)amine ( $39.50 \mathrm{mg}, 0.200$ $\mathrm{mmol}, 1.00$ equiv. $),\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}(3.40 \mathrm{mg}, 0.004 \mathrm{mmol}, 0.02$ equiv.) and $4 \AA$ molecular sieves in $\mathrm{MeCN}(1 \mathrm{~mL})$, respectively trimethylsilyl cyanide ( $24.00 \mathrm{mg}, 0.240 \mathrm{mmol}, 1.20$ equiv.) and $\mathrm{Zn}(\mathrm{OTf})_{2}(14.50 \mathrm{mg}, 0.040 \mathrm{mmol} ; 0.20$ equiv.) were added. Stirring was continued for 18 h at $35^{\circ} \mathrm{C}$ under oxygen atmosphere and irradiated using 23 W CFL. Solvent was evaporated and residue was submitted to column chromatography (eluent: Hexane/AcOEt $=8 / 2$ ) to afford pure product as white solid ( 28 mg , $63 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.59-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.09$ (d, $J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{25}$

## 2,4-Diphenyl-6-methylquinoline (8e)



8 e

A mixture of $N$-substituted arylamine ( $0.25 \mathrm{mmol}, 1.0$ equiv.), phenylacetylene ( $125 \mu \mathrm{~L}, 1.12 \mathrm{mmol}, 4.5$ equiv.), $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}(0.004$ $\mathrm{mmol}, 0.02 \mathrm{mmol}$ ), $\mathrm{Bi}(\mathrm{OTf})_{3}(32 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.2$ equiv.) and 30 mg MS $4 \AA$ in 0.8 mL dry, saturated with oxygen MeCN was stirred for 48 h under oxygen atmosphere at $80{ }^{\circ} \mathrm{C}$ and irradiated using 23 W CFL. Afterward, the reaction mixture was quenched by addition $200 \mu \mathrm{~L} N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine. Thereafter solution was washed with $\operatorname{DCM}(3 \times 10 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in vacuo gave the crude of 2,4-diphenyl-6-methylquinoline, which was purified by column chromatography. The product was obtained as a yellowish solid $(55.0 \mathrm{mg}, 73 \%$, Hexane/DCM = 4/1). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.22-8.11(\mathrm{~m}, 3 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}$, $1 \mathrm{H}), 7.60-7.49(\mathrm{~m}, 8 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H})$ and correspond to literature data. ${ }^{26}$

## 3,3'-Bis-indolyl(phenyl)methane (8f)



A suspension of $N$-benzyl- $N$-(4-methylphenyl)amine ( 39.50 mg , $0.200 \mathrm{mmol}, 1.00$ equiv. $)$, $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]\left(\mathrm{PF}_{6}\right)_{2}(3.40 \mathrm{mg}, 0.004 \mathrm{mmol}$,
0.02 equiv.), indole ( $58.50 \mathrm{mg}, 0.500 \mathrm{mmol} ; 2.50$ equiv.), $\mathrm{Zn}(\mathrm{OTf})_{2}$ ( $14.50 \mathrm{mg}, 0.040 \mathrm{mmol}$; 0.20 equiv.) and molecular sieves $4 \AA$ in $\operatorname{MeCN} / \mathrm{DCE}(v / v: 1 / 2 ; 1 \mathrm{~mL})$, was stirred for 18 h at $35^{\circ} \mathrm{C}$ under oxygen atmosphere and irradiated using 23 W CFL. Solvent was evaporated and residue was submitted to column chromatography (eluent: Hexane $/ \mathrm{AcOEt}=8 / 2$ ) to afford pure product as red-brown solid ( $33 \mathrm{mg}, 51 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.88(\mathrm{~s}, 2 \mathrm{H}), 7.32-$ $7.42(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H})$ and correspond to literature data. ${ }^{27}$
8. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra's








(1) ${ }^{4} \mathrm{O}_{\mathrm{a}}$
$\iiint$



0.8


[)$^{40} \mathrm{~T}^{\mathrm{an}}$

$$
\iiint
$$


$\mathrm{O}_{4}^{\mathrm{H}} \mathrm{in}^{102}$

$$
\iiint
$$


(I) $\mathrm{H}_{40}^{\mathrm{H}}$



$$
\psi_{i}^{0}
$$



$$
\operatorname{cog}_{51}^{\mathrm{N}} \mathrm{~m}
$$

$$
j \|_{i}
$$





$$
\iiint \int
$$




5 $1 /$
$\int$



Na
f II \|\|




$+\left.\right|_{0} ^{2}$

|  | \% | + |
| :---: | :---: | :---: |




$$
\iiint J
$$


$\iiint \int$






[^0]





1

$$
\mathbb{O}_{t_{0}} \ln ^{n+2}
$$




Tc
$\iint$


$$
\mathcal{O}_{7 d} \operatorname{lox}_{d}
$$

f ff

Ce



$$
\mathrm{OV}_{20}
$$

$$
\text { j } 11
$$



$$
\begin{aligned}
& \text { (19) }
\end{aligned}
$$







|  |  |
| :---: | :---: |



$\begin{array}{lllllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30\end{array}$

$$
\mathbb{N}_{\pi}
$$

$\qquad$


2


$$
\iint
$$

 1 $\downarrow$

| 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |




[^1]$\int(\square)$




Cols
"


9. Bibliography
(1) Dai, J. J.; Zhang, W. M.; Shu, Y. J.; Sun, Y. Y.; Xu, J.; Feng, Y. S.; Xu, H. J. Deboronative cyanation of potassium alkyltrifluoroborates via photoredox catalysis. Chem. Commun. 2016, 52, 6793.
(2) Montalti, M., Credi, A., Prodi, L., Gandolfi, M. Handbook of Photochemistry. CRC Press 2006.
(3) Bielski, B. H. J.; Cabelli, D. E.; Arudi, R. L.; Ross, A. B. Reactivity of Ho2/O-2 Radicals in Aqueous-Solution. Journal of Physical and Chemical Reference Data 1985, 14, 1041.
(4) (a) Nicholas, A. M. d. P.; Arnold, D. R. Thermochemical parameters for organic radicals and radical ions. Part 1. The estimation of the pKa of radical cations based on thermochemical calculations. Can. J. Chem. 1982, 60, 2165. (b) Walton, J. C. Radical-Enhanced Acidity: Why Bicarbonate, Carboxyl, Hydroperoxyl, and Related Radicals Are So Acidic. J Phys Chem A 2017, 121, 7761. (c) Wenzel, T. J. Douglas A. Skoog, Donald M. West, F. James Holler, and Stanley R. Crouch: Fundamentals of analytical chemistry, 9th ed., international ed. Analytical and Bioanalytical Chemistry 2013, 405, 7903.
(5) Sun, H. B.; Gong, L.; Tian, Y. B.; Wu, J. G.; Zhang, X.; Liu, J.; Fu, Z.; Niu, D. Metal- and Base-Free Room-Temperature Amination of Organoboronic Acids with N-Alkyl Hydroxylamines. Angew. Chem., Int. Ed. 2018, 57, 9456.
(6) Shafir, A.; Buchwald, S. L. Highly selective room-temperature copper-catalyzed C-N coupling reactions. J. Am. Chem. Soc. 2006, 128, 8742.
(7) Riemer, D.; Schilling, W.; Goetz, A.; Zhang, Y.; Gehrke, S.; Tkach, I.; Holloczki, O.; Das, S. CO2-Catalyzed Efficient Dehydrogenation of Amines with Detailed Mechanistic and Kinetic Studies. ACS Catal. 2018, 8, 11679.
(8) Sakai, N.; Takeoka, M.; Kumaki, T.; Asano, H.; Konakahara, T.; Ogiwara, Y. Indiumcatalyzed reduction of secondary amides with a hydrosiloxane leading to secondary amines. Tetrahedron Lett. 2015, 56, 6448.
(9) Castillo, J. C.; Jimenez, E.; Portilla, J.; Insuasty, B.; Quiroga, J.; Moreno-Fuquen, R.; Kennedy, A. R.; Abonia, R. Application of a catalyst-free Domino Mannich/Friedel-Crafts alkylation reaction for the synthesis of novel tetrahydroquinolines of potential antitumor activity. Tetrahedron 2018, 74, 932.
(10) Li, Y.; Li, B.; Zheng, J.; Zeng, W.; Chen, L. Efficient Ruthenium(II)-Catalyzed Direct Reductive Amination of Aldehydes under Mild Conditions Using Hydrosilane as the Reductant-. Synthesis 2016, 49, 1349.
(11) Li, T.; Cui, X. X.; Sun, L. L.; Li, C. B. Economical and efficient aqueous reductions of high melting-point imines and nitroarenes to amines: promotion effects of granular PTFE. RSC Adv. 2014, 4, 33599.
(12) Gopalaiah, K.; Saini, A. A Solvent-Free Process for Synthesis of Imines by Iron-Catalyzed Oxidative Self- or Cross-Condensation of Primary Amines Using Molecular Oxygen as Sole Oxidant. Catalysis Letters 2016, 146, 1648.
(13) Neuvonen, H.; Neuvonen, K.; Fulop, F. Substituent cross-interaction effects on the electronic character of the $\mathrm{C}=\mathrm{N}$ bridging group in substituted benzylidene anilines--models for molecular cores of mesogenic compounds. A 13C NMR study and comparison with theoretical results. J. Org. Chem. 2006, 71, 3141.
(14) Fertig, R.; Irrgang, T.; Freitag, F.; Zander, J.; Kempe, R. Manganese-Catalyzed and BaseSwitchable Synthesis of Amines or Imines via Borrowing Hydrogen or Dehydrogenative Condensation. ACS Catal. 2018, 8, 8525.
(15) Schmeyers, J.; Toda, F.; Boy, J.; Kaupp, G. Quantitative solid-solid synthesis of azomethines. J. Chem. Soc., Perkin Trans. 2 1998, 989.
(16) Singsardar, M.; Laru, S.; Mondal, S.; Hajra, A. Visible-Light-Induced Regioselective Cross-Dehydrogenative Coupling of 2 H-Indazoles with Ethers. J. Org. Chem. 2019, 84, 4543.
(17) Ren, R.; Ma, J. Lamellar Ni/Al-SBA-15 fibers: preparation, characterization, and applications as highly efficient catalysts for amine and imine syntheses. RSC $A d v .2 \mathbf{2 0 1 5}, 5$, 74802.
(18) Krzeszewski, M.; Thorsted, B.; Brewer, J.; Gryko, D. T. Tetraaryl-, pentaaryl-, and hexaaryl-1,4-dihydropyrrolo[3,2-b]pyrroles: synthesis and optical properties. J. Org. Chem. 2014, 79, 3119.
(19) Rothenberg, G.; Downie, A. P.; Raston, C. L.; Scott, J. L. Understanding Solid/Solid Organic Reactions. J. Am. Chem. Soc. 2001, 123, 8701.
(20) Byun, E.; Hong, B.; De Castro, K. A.; Lim, M.; Rhee, H. One-pot reductive mono-Nalkylation of aniline and nitroarene derivatives using aldehydes. J. Org. Chem. 2007, 72, 9815.
(21) R. Katritzky, H. H., J. Wang Syntheses of Optically Active Tetrahydro-1H-pyrrolo[1,2-a]imidazol-2-ones and Hexahydroimidazo[1,2-a]pyridin-2(3H)-ones. J. Org. Chem. 2002, 67, 4951.
(22) Esteruelas, M. A.; Honczek, N.; Oliván, M.; Oñate, E.; Valencia, M. Direct Access to POP-Type Osmium(II) and Osmium(IV) Complexes: Osmium a Promising Alternative to Ruthenium for the Synthesis of Imines from Alcohols and Amines. Organometallics 2011, 30, 2468.
(23) Morimoto, N.; Takeuchi, Y.; Nishina, Y. Ionic amino acids: Application as organocatalysts in the aza-Michael reaction. J Mol Catal a-Chem 2013, 368, 31.
(24) Deng, H. P.; Wei, Y.; Shi, M. Axially Chiral Phosphine-Oxazoline Ligands in Silver(I)Catalyzed Asymmetric Mannich Reaction of Aldimines with Trimethylsiloxyfuran. Adv. Synth. Catal. 2009, 351, 2897.
(25) Das, B.; Ramu, R.; Ravikanth, B.; Reddy, K. (Bromodimethyl)sulfonium Bromide Catalyzed One-Pot Synthesis of $\alpha$-Aminonitriles. Synthesis 2006, 2006, 1419.
(26) Zhang, L. J.; Wu, B.; Zhou, Y. Q.; Xia, J.; Zhou, S. L.; Wang, S. W. Rare-Earth Metal Chlorides Catalyzed One-pot Syntheses of Quinolines under Solvent-free Microwave Irradiation Conditions. Chinese Journal of Chemistry 2013, 31, 465.
(27) Armstrong, E. L.; Grover, H. K.; Kerr, M. A. Scandium triflate-catalyzed nucleophilic additions to indolylmethyl Meldrum's acid derivatives via a gramine-type fragmentation: synthesis of substituted indolemethanes. J. Org. Chem. 2013, 78, 10534.
(28) Džambaski, Z.; Bondžić, B. P. Org. Biomol. Chem., Dehydrogenative C(sp3)-H bond functionalization of tetrahydroisoquinolines mediated by organic oxidants under mild conditions. 2019, 17, 6420.


[^0]:    $\begin{array}{llllllllllllllll}160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

[^1]:    $\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

