Synthesis of Indolo- and Pyrrolo[1,2-a]quinoxalinones through Palladium-Catalyzed Oxidative Carbonylation of C_2 Position of Indole

Attoor Chandrasekhar and Sethuraman Sankararaman*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India

Supporting information:

S.No	CONTENT	PAGE No
Ι	General procedure for the synthesis of 2-(1 <i>H</i> -indol-1-yl)anilines (1-5)	SI2
II	Spectral data of 1-4	SI2
III	Spectral data of 5-7	SI3
IV	Methylation of iodoanilines	SI3
V	General procedure for the synthesis of 2-(1 <i>H</i> -indol-1-yl)- <i>N</i> -methylanilines and <i>N</i> -methyl-2-(1 <i>H</i> -pyrrol-1-yl)anilines	SI3
VI	Spectral data of 8-30 & 34-39	SI5-SI11
VII	Synthesis and Spectral data of 2-(1 <i>H</i> -indol-1-yl)- <i>N</i> -phenylaniline (31) and spectra	SI11
VIII	Synthesis and Spectral data of 2-(1 <i>H</i> -imidazol-1-yl)- <i>N</i> -methylaniline (32) & 2-(1 <i>H</i> -benzo[d]imidazol-1-yl)- <i>N</i> -methylaniline (33) and spectra	SI12
IX	References	SI13
Х	NMR Spectra of the reaction products	SI14-SI52
XI	NMR Spectra of the substrates	SI53-SI85
XII	Crystal data and structure refinement for '3a'	SI86
XIII	Crystal data and structure refinement for '8a'	SI87
XIV	Crystal data and structure refinement for '35a'	SI88

General procedure for Synthesis of 2-(1*H*-indol-1-yl)anilines (1-5): A1

To a 20 mL oven dried reaction tube were added Indole (1equiv.), *N*,*N*'-Dimethylethylenediamine (DMEDA) (0.2 equiv.), aryl halide (1.1 equiv.) and CuI (0.1 equiv). Then toluene was added to the reaction mixture followed by K_3PO_4 (2.5equiv.). The reaction mixture was stirred under N_2 atmosphere at 110 °C for 24h. The reaction mixture was cooled to room temperature, diluted with ethyl acetate (5 mL), filtered through a Celite pad and washed with additional ethyl acetate (10-20 mL). The filtrate was concentrated and the resulting residue was purified by column chromatography.

Spectral data

2-(1*H*-indol-1-yl)aniline (1): ^{A2}

Pale yellow liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.62-7.60 (m, 1H), 7.19-7.06 (m, 6H), 6.81-6.75 (m, 2H), 6.61 (d, *J* = 2.8 Hz, 1H), 3.16 (br, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 143.0, 136.5, 129.3, 128.76, 128.73, 128.6, 125.0, 122.3, 121.0, 120.2, 118.8, 116.4, 110.8, 103.3.

2-(1*H*-indol-1-yl)-4-methylaniline (2): A2

Light brown liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.62-7.59 (m, 1H), 7.12-7.05 (m, 4H), 6.99-6.97 (m, 1H), 6.93 (d, *J* = 1.6 Hz, 1H), 6.71 (d, *J* = 8.4 Hz, 1H), 6.60 (dd, *J* = 0.4 Hz 3.2 Hz, 1H), 3.00 (br, 2H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.4, 136.5, 129.8, 129.0, 128.7, 128.6, 128.3, 125.0, 122.2, 121.0, 120.2, 116.5, 110.8, 103.2, 20.4.

4-tert-butyl-2-(1H-indol-1-yl)aniline (3):

Brownish yellow liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.63-7.60 (m, 1H), 7.20 (dd, J = 2.4 Hz 8.4 Hz, 1H), 7.168-7.161 (m, 1H), 7.13-7.06 (m, 4H), 6.75 (d, J = 8.4 Hz, 1H), 6.61 (d, J = 3.2 Hz, 1H), 3.04 (br, 2H), 1.22 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 142.1, 140.3, 136.5, 128.8, 128.6, 126.1, 125.5, 124.7, 122.3, 121.0, 120.2, 116.2, 110.9, 103.1, 34.2, 31.6.

2-(5-chloro-1*H*-indol-1-yl)aniline (4): A2

Pale yellow liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.56 (s, 1H), 7.19-7.14 (m, 2H), 7.09-7.04 (m, 2H), 6.98-6.96 (m, 1H), 6.80-6.75 (m, 2H), 6.54 (d, *J* = 2.4 Hz, 1H), 3.14 (br, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 143.0, 134.9, 130.0, 129.7, 129.6, 128.6, 126.0, 124.5, 122.6, 120.4, 118.8, 116.5, 111.9, 102.9.

2-(3-methyl-1*H*-indol-1-yl)aniline (5): ^{A2}

Colorless liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, *J* = 6.8 Hz, 1H), 7.151-7.01 (m, 5H), 6.90 (s, 1H), 6.78-6.72 (m, 2H), 3.13 (br, 2H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.1, 136.8, 129.1, 128.9, 128.7, 126.2, 125.3, 122.3, 119.6, 119.1, 118.7, 116.3, 112.5, 110.7, 9.76.

N-(2-(1*H*-indol-1-yl)phenyl)acetamide (6): ^{A2}

Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, *J* = 6.8 Hz, 1H), 7.65-7.63 (m, 1H), 7.38(t, *J* = 7.2Hz, 1H), 7.18-7.10 (m, 4H), 7.0 (d, *J* = 4.8Hz, 1H), 6.76 (s,1H), 6.68(d, *J* = 2Hz, 1H), 1.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 168.6, 136.8, 134.5, 129.2, 128.8, 128.6, 128.1, 124.7, 123.0, 122.3, 121.4, 120.9, 110.4, 104.5, 24.7.

N-(2-(1H-indol-1-yl)phenyl)tosylamide (7): A3

Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (dd, *J* = 0.8 Hz, 8.3Hz, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.46-7.40 (m, 3H), 7.23-7.07 (m, 6H), 6.67-6.62 (m, 3H), 6.34 (s, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.2, 136.8, 135.7, 133.9, 129.7, 129.6, 128.9, 128.6, 128.0, 127.2, 125.5, 123.0, 121.8, 121.3, 120.9, 109.8, 104.6, 21.7.

Methylation of iodoanilines: Reported procedure is followed.^B

General procedure for Synthesis of 2-(1*H*-indol-1-yl)-*N*-methylanilines and *N*-methyl-2-(1*H*-pyrrol-1-yl)anilines :

To a 20 mL oven dried reaction tube were added Indole or pyrrole (1 equiv.), N,N'dimethylethylenediamine (DMEDA) (0.2 equiv.), 2-iodo-*N*-methylaniline (1.2 equiv.) and CuI (0.1 equiv). Then toluene was added to the reaction mixture followed by K₃PO₄ (2.5equiv.). The reaction mixture was stirred under N₂ atmosphere at 110 °C for 24h. The reaction mixture was cooled to room temperature, diluted with ethyl acetate (5mL), filtered through a celite pad and

washed with additional ethyl acetate (10-20 mL). The filtrate was concentrated and the resulting residue was purified by column chromatography.

Spectral data

2-(1*H*-indol-1-yl)-*N*-methylaniline (8):

Color less oil, ¹H NMR (400 MHz, CDCl₃): δ 7.62-7.60 (m, 1H), 7.29-7.24 (m, 1H), 7.10-7.07 (m, 4H), 7.03-7.00 (m, 1H), 6.71-6.67 (m, 2H), 6.61 (d, *J* = 2.8 Hz, 1H), 3.50 (br, 1H), 2.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.7, 136.6, 129.6, 128.9, 128.6, 128.4, 124.5, 122.3, 121.0, 120.2, 116.6, 110.89, 110.86, 103.2, 30.3; HRMS (ESI, m/z) Calcd for C₁₅H₁₄N₂Na 245.1049 (M+Na), found 245.1058.

2-(1*H*-indol-1-yl)-*N*,4-dimethylaniline (9):

Colorless liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, *J* = 6.8 Hz, 1H), 7.10-7.01 (m, 5H), 6.92 (s, 1H), 6.63 (d, *J* = 8.4 Hz, 1H), 6.60 (d, *J* = 2.8 Hz, 1H), 3.35 (br, 1H), 2.65 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.4, 136.6, 130.0, 129.0, 128.9, 128.6, 126.0, 124.5, 122.2, 121.0, 120.2, 111.0, 110.8, 103.1, 30.6, 20.3; HRMS (ESI, m/z) Calcd for C₁₆H₁₇N₂ 237.1386 (M+H), found 237.1386.

2-(1*H*-indol-1-yl)-4-isopropyl-*N*-methylaniline (10):

Pale orange oil, ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, *J* = 7.2 Hz, 1H), 7.16-7.04 (m, 5H), 6.97 (s, 1H), 6.66 (d, *J* = 8.4 Hz, 1H), 6.60 (d, *J* = 2.8 Hz, 1H), 3.37 (br, 1H), 2.78 (m, 1H), 2.66 (s, 3H), 1.16 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 143.6, 137.5, 136.7, 129.0, 128.6, 127.4, 126.3, 124.5, 122.2, 121.0, 120.2, 111.0, 110.9, 103.1, 33.1, 30.6, 24.36, 24.30; HRMS (ESI, m/z) Calcd for C₁₈H₂₁N₂ 265.1705 (M+H), found 265.1697.

4-tert-butyl-2-(1H-indol-1-yl)-N-methylaniline (11):

Colorless liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, *J* = 6.8 Hz, 1H), 7.30 (dd, *J* = 2.0 Hz, 8.4 Hz, 1H), 7.17-7.03 (m, 5H), 6.68 (d, *J* = 8.8 Hz, 1H), 6.61 (d, *J* = 2.8 Hz, 1H), 3.39 (br, 1H), 2.67 (s, 3H), 1.22 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 143.3, 139.8, 136.7, 129.0, 128.6, 126.2, 125.5, 124.2, 122.2, 121.0, 120.2, 110.9, 110.6, 103.1, 34.0, 31.6, 30.5; HRMS (ESI, m/z) Calcd for C₁₉H₂₃N₂ 280.1888 (M+H), found 280.1887.

2-(1*H*-indol-1-yl)-*N*,4,6-trimethylaniline (12):

Pale red oil, ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, *J* = 8.0 Hz, 1H), 7.12-7.04 (m, 4H), 6.94 (s, 1H), 6.82 (s, 1H), 6.58 (d, *J* = 2.8 Hz, 1H), (br, 1H), 2.25-2.24 (m, 6H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.5, 137.4, 131.9, 129.9, 129.2, 128.8, 128.6, 128.4, 127.3, 122.2, 120.8, 120.1, 110.8, 102.9, 34.7, 20.4, 18.8; HRMS (ESI, m/z) Calcd for C₁₇H₁₉N₂ 251.1548 (M+H), found 251.1563.

4-fluoro-2-(1*H*-indol-1-yl)-*N*-methylaniline (13):

Pale yellow liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, *J* = 8.0 Hz, 1H), 7.13-7.08 (m, 3H), 7.03-6.98 (m, 2H), 6.88 (dd, *J* = 8.8 Hz, 2.8 Hz, 1H), 6.64-6.61 (m, 2H), 3.36 (br, 1H), 2.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 155.7, 153.3, 142.4, 136.4, 128.7, 128.6, 124.7, 124.6, 122.6, 121.1, 120.5, 116.0, 115.8, 115.6, 115.4, 111.3, 111.2, 110.7, 103.8, 30.8; HRMS (ESI, m/z) Calcd for C₁₅H₁₄N₂F 241.1141 (M+H), found 241.1145.

4-chloro-2-(1*H*-indol-1-yl)-*N*-methylaniline (14):

Colorless liquid, ¹H NMR (400 MHz, CDCl₃): δ 7.62-7.60 (m, 1H), 7.23 (dd, *J* = 8.8 Hz, 2.8 Hz, 1H), 7.14-7.06 (m, 4H), 7.02-7.00 (m, 1H), 6.63-6.61 (m, 2H), 3.51 (d, *J* = 3.6 Hz, 1H), 2.66 (d, *J* = 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 144.4, 136.4, 129.4, 128.7, 128.5, 128.3, 125.1, 122.6, 121.1, 120.7, 120.5, 111.7, 110.7, 103.9, 30.4; HRMS (ESI, m/z) Calcd for C₁₅H₁₄N₂Cl 257.0846 (M+H), found 257.0873.

3-(1H-indol-1-yl)-4-(methylamino)benzonitrile (15):

Colorless oil, ¹H NMR (400 MHz, CDCl₃): δ 7.719-7.69 (m, 1H), 7.62 (d, *J* = 8.4 Hz, 1H), 7.44 (s, 1H), 7.21-7.19 (m, 2H), 7.11 (d, *J* = 8.4 Hz, 1H), 7.04 (d, *J* = 8.4 Hz, 1H), 6.77 (d, *J* = 8.8 Hz, 1H), 6.73 (d, *J* = 3.2 Hz, 1H), 4.18 (d, *J* = 3.6 Hz, 1H), 2.82 (d, *J* = 5.2 Hz, 3H), ¹³C NMR (100 MHz, CDCl₃): δ 148.9, 136.3, 134.1, 132.2, 128.8, 128.2, 124.3, 122.9, 121.3, 120.8, 119.5, 110.6, 110.4, 104.5, 98.4, 29.8; HRMS (ESI, m/z) Calcd for C₁₆H₁₃N₃Na 270.1002 (M+Na), found 270.1009.

N-methyl-2-(5-methyl-1*H*-indol-1-yl)aniline (16):

Colorless oil, ¹H NMR (400 MHz, CDCl₃): δ 7.40 (s, 1H), 7.28-7.24 (m, 1H), 7.09-7.05 (m, 2H), 6.92 (s, 2H), 6.71-6.67 (m, 2H), 6.52 (d, *J* = 2.8 Hz, 1H), 3.53 (br, 1H), 2.67 (s, 3H), 2.38 (s, 3H);

¹³C NMR (100 MHz, CDCl₃): δ 145.7, 135.0, 129.5, 129.0, 128.4, 128.2, 127.8, 124.7, 123.9, 120.6, 116.6, 110.8, 110.5, 102.7, 30.3, 21.5; HRMS (ESI, m/z) Calcd for $C_{16}H_{17}N_2$ 237.1386 (M+H), found 237.1396.

2-(5-methoxy-1*H*-indol-1-yl)-N-methylaniline (17):

Colorless oil, ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.22 (m, 1H), 7.07-7.05 (m, 3H), 6.90 (d, J = 8.8 Hz, 1H), 6.75-6.67 (m, 3H), 6.51 (d, J = 2.8 Hz, 1H), 3.76 (s, 3H), 2.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.6, 145.5, 131.8, 129.5, 129.4, 129.0, 128.4, 124.8, 116.8, 112.5, 111.6, 111.1, 102.9, 102.6, 55.9, 30.4; HRMS (ESI, m/z) Calcd for C₁₆H₁₇N₂O 253.1337 (M+H), found 237.1343.

2-(5-chloro-1*H*-indol-1-yl)-*N*-methylaniline (18):

Colorless oil, ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 2.0 Hz, 1H), 7.30-7.26 (m, 1H), 7.11 (d, *J* = 2.0 Hz, 1H), 7.07-7.02 (m, 2H), 6.92 (d, *J* = 8.4 Hz, 1H), 6.73-6.69 (m, 2H), 6.54 (d, *J* = 3.2 Hz, 1H), 2.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.4, 135.0, 130.2, 129.9, 129.6, 128.4, 126.0, 124.1, 122.6, 120.4, 116.8, 111.9, 111.2, 102.9, 30.4; HRMS (ESI, m/z) Calcd for C₁₅H₁₄N₂Cl 257.0841 (M+H), found 257.0839.

2-(6-chloro-1*H*-indol-1-yl)-*N*-methylaniline (19):

Light brown oil, ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 8.4 Hz, 1H), 7.32-7.27 (m, 1H), 7.10-7.01 (m, 4H), 6.77-6.71 (m, 2H), 6.58 (d, J = 3.2 Hz, 1H), 2.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.3, 137.1, 130.0, 129.6, 128.5, 128.4, 127.1, 124.1, 121.8, 121.0, 117.1, 111.4, 110.8, 103.4, 30.5; HRMS (ESI, m/z) Calcd for C₁₅H₁₄N₂Cl 257.0840 (M+H), found 257.0842.

N-methyl-2-(3-methyl-1*H*-indol-1-yl)aniline (20):

Pale yellow oil, ¹H NMR (400 MHz, CDCl₃): δ 7.56-7.54 (m, 1H), 7.27-7.23 (m, 1H), 7.10-7.06 (m, 3H), 6.99-6.97 (m, 1H), 6.88 (s, 1H), 6.73-6.68 (m, 2H), 2.67 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.6, 136.9, 129.3, 129.0, 128.4, 126.4, 124.9, 122.2, 119.6, 116.1, 116.8, 112.5, 111.0, 110.7, 30.4, 9.7; HRMS (ESI, m/z) Calcd for C₁₆H₁₇N₂ 237.1386 (M+H), found 237.1387.

N-methyl-2-(1H-pyrrolo[2,3-b]pyridin-1-yl)aniline (21):

White solid, Mp: 75-80 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, *J* = 4.4 Hz, 1H), 7.99 (d, *J* = 7.6 Hz, 1H), 7.38-7.31 (m, 2H), 7.19 (d, *J* = 7.6 Hz, 1H), 7.14-7.11 (m, 1H), 6.87-6.81 (m, 2H), 6.66-6.65 (d, *J* = 3.6 Hz, 1H), 3.98 (br, 1H), 2.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 148.1, 145.5, 143.9, 129.8, 129.7, 129.3, 128.4, 124.3, 120.9, 117.2, 116.5, 111.7, 101.6, 30.5; HRMS (ESI, m/z) Calcd for C₁₄H₁₃N₃Na 246.1002 (M+H), found 246.1009.

N-methyl-2-(5-nitro-1*H*-indol-1-yl)aniline (22):

Yellow solid, Mp: 136-138 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.54 (s, 1H), 7.97 (d, *J* = 9.2 Hz, 1H), 7.34-7.32 (m, 1H), 7.25 (d, *J* = 3.2 Hz, 1H), 7.07 (d, *J* = 7.6 Hz, 1H), 7.03 (d, *J* = 9.2 Hz, 1H), 6.78-6.72 (m, 3H), 2.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.3, 142.3, 139.5, 132.2, 130.4, 128.2, 127.8, 123.2, 118.2, 117.9, 116.9, 111.3, 110.9, 105.6, 30.3; HRMS (ESI, m/z) Calcd for C₁₅H₁₄N₃O₂ 268.1081 (M+H), found 268.1084.

2-(5-chloro-1*H*-indol-1-yl)-*N*,4-dimethylaniline (23):

Pale yellow oil, ¹H NMR (400 MHz, CDCl₃): δ 7.56 (s, 1H), 7.13-7.03 (m, 3H), 6.94-6.90 (m, 2H), 6.68 (d, *J* = 8.4 Hz, 1H), 6.53 (d, *J* = 3.2 Hz, 1H), 2.65 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.8, 135.0, 130.35, 130.32, 129.6, 128.9, 126.8, 126.0, 124.3, 122.6, 120.3, 111.9, 111.7, 102.8, 30.8, 20.3; HRMS (ESI, m/z) Calcd for C₁₆H₁₅N₂Cl 271.0997 (M+H), found 271.0996.

4-tert-butyl-2-(5-chloro-1H-indol-1-yl)-N-methylaniline (24):

Light orange oil, ¹H NMR (400 MHz, CDCl₃): δ 7.56 (s, 1H), 7.30 (dd, J = 1.2 Hz, 8.4 Hz, 1H), 7.14-7.13 (m, 1H), 7.08 (s, 1H), 7.03 (d, J = 8.8 Hz, 1H), 6.93 (d, J = 8.8 Hz, 1H), 6.68 (d, J = 8.4 Hz, 1H), 6.53 (d, J = 2.8 Hz, 1H), 3.51 (br, 1H), 2.64 (s, 3H), 1.21 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 142.9, 140.2, 135.1, 130.3, 129.6, 126.5, 125.9, 125.3, 123.9, 122.6, 120.3, 112.0, 111.1, 102.7, 34.0, 31.6, 30.6; HRMS (ESI, m/z) Calcd for C₁₉H₂₂N₂Cl 313.1486 (M+H), found 313.1479.

2-(5-chloro-1*H*-indol-1-yl)-*N*,4,6-trimethylaniline (25):

Orange oil, ¹H NMR (400 MHz, CDCl₃): δ 7.55 (s, 1H), 7.14 (d, *J* = 3.2 Hz, 1H), 7.057-7.031 (m, 1H), 6.98-6.95 (m, 2H), 6.80 (s, 1H), 6.52 (d, *J* = 2.8 Hz, 1H), 2.25 (s, 3H), 2.19 (s, 6H); ¹³C NMR

(100 MHz, CDCl₃): δ 135.8, 132.1, 130.5, 130.4, 129.4, 128.9, 128.1, 127.7, 127.3, 125.8, 122.5, 120.2, 111.9, 102.6, 34.5, 20.4, 18.7; HRMS (ESI, m/z) Calcd for C₁₇H₁₈N₂Cl 285.1153 (M+H), found 285.1155.

2-(5-methoxy-1*H*-indol-1-yl)-*N*,4-dimethylaniline (26):

Colorless oil, ¹H NMR (400 MHz, CDCl₃): δ 7.085-7.064 (m, 3H), 6.92-6.90 (m, 2H), 6.75 (d, *J* = 8.8 Hz, 1H), 6.62 (d, *J* = 8 Hz, 1H), 6.51 (d, *J* = 2.8 Hz, 1H), 3.78 (s, 3H), 3.38 (br, 1H), 2.66 (s, 3H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.6, 143.4, 131.9, 129.9, 129.5, 129.0, 128.8, 126.0, 124.6, 112.4, 111.6, 111.0, 102.8, 102.6, 56.0, 30.6, 20.2; HRMS (ESI, m/z) Calcd for C₁₇H₁₉N₂O 267.1492 (M+H), found 267.1497.

2-(5-methoxy-1*H*-indol-1-yl)-*N*,4,6-trimethylaniline (27):

Colorless oil, ¹H NMR (400 MHz, CDCl₃): δ 7.08 (d, *J* = 2.8 Hz, 1H), 7.05 (s, 1H), 6.97-6.93 (m, 2H), 6.81 (s, 1H), 6.75 (s, 1H), 6.50 (d, *J* = 2.8 Hz, 1H), 3.78 (s, 3H), 2.71 (br, 1H), 2.25 (d, *J* = 2.0 Hz, 6H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.5, 143.1, 132.7, 131.8, 130.1, 129.6, 128.8, 128.7, 127.7, 127.3, 112.4, 111.5, 102.6, 102.4, 55.9, 34.7, 20.4, 18.8; HRMS (ESI, m/z) Calcd for C₁₈H₂₁N₂O 281.1648 (M+H), found 281.1663.

4-tert-butyl-2-(5-methoxy-1H-indol-1-yl)-N-methylaniline (28):

Light brown oil, ¹H NMR (400 MHz, CDCl₃): δ 7.37 (dd, J = 1.6 Hz, 8.4 Hz 1H), 7.19-7.16 (m, 3H), 7.02 (d, J = 8.8 Hz, 1H), 6.86-6.84 (m, 1H), 6.75 (d, J = 8.4 Hz, 1H), 6.61 (d, J = 2.4 Hz, 1H), 3.88 (s, 3H), 3.50 (br, 1H), 2.76 (s, 3H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 154.6, 143.2, 139.8, 131.9, 129.5, 129.0, 126.1, 125.4, 124.3, 112.5, 111.7, 110.6, 102.7, 102.6, 56.0, 34.0, 31.6, 30.6; HRMS (ESI, m/z) Calcd for C₂₀H₂₅N₂O 309.1961 (M+H), found 309.1964.

N,4-dimethyl-2-(3-methyl-1*H*-indol-1-yl)aniline (29):

White solid, Mp: 55-57 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, *J* = 7.6 Hz, 1H), 7.09-7.05 (m, 3H), 6.99-6.97 (m, 1H), 6.89 (s, 1H), 6.86 (s, 1H), 6.62 (d, *J* = 8 Hz, 1H), 3.40 (br, 1H), 2.65 (s, 3H), 2.30 (s, 3H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.5, 136.9, 129.7, 129.0, 128.9, 126.4, 126.0, 124.8, 122.2, 119.5, 119.0, 112.3, 111.0, 110.7, 30.6, 20.3, 9.7; HRMS (ESI, m/z) Calcd for C₁₇H₁₉N₂ 251.1543 (M+H), found 251.1543.

N,4-dimethyl-2-(1*H*-pyrrolo[2,3-b]pyridin-1-yl)aniline (30):

Colorless oil, ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, *J* = 4.4 Hz, 1H), 7.98 (d, *J* = 8 Hz, 1H), 7.29 (d, *J* = 3.4 Hz, 1H), 7.17 (d, *J* = 8 Hz, 1H), 7.13-7.10 (m, 1H), 7.01 (s, 1H), 6.77 (d, *J* = 8.4 Hz, 1H), 6.63 (d, *J* = 3.6 Hz, 1H), 3.74 (br, 1H), 2.77 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 148.1, 143.9, 143.4, 130.2, 129.8, 129.2, 129.0, 126.6, 124.2, 120.9, 116.4, 111.8, 101.4, 30.8, 20.3; HRMS (ESI, m/z) Calcd for C₁₅H₁₆N₃ 238.1349 (M+H), found 251.1339.

N-methyl-2-(1*H*-pyrrol-1-yl)aniline (34):

Colorless oil, ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.26 (m, 1H), 7.14 (d, *J* = 8 Hz, 1H), 6.80 (s, 2H), 6.75-6.71 (m, 2H), 6.34 (s, 2H), 3.84 (br, 1H), 2.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.9, 129.1, 127.2, 127.0, 122.0, 116.3, 110.6, 109.4, 30.4; HRMS (ESI, m/z) Calcd for C₁₁H₁₃N₂ 173.1073 (M+H), found 173.1077.

N,4-dimethyl-2-(1*H*-pyrrol-1-yl)aniline (35):

Colorless oil, ¹H NMR (400 MHz, CDCl₃): δ 7.01 (d, *J* = 8 Hz, 1H), 6.88 (s, 1H), 6.70 (d, *J* = 1.2 Hz, 2H), 6.55 (d, *J* = 8.4 Hz, 1H), 6.25 (s, 2H), 3.60 (br, 1H), 2.69 (s, 3H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.6, 129.4, 127.6, 127.2, 125.9, 122.0, 110.8, 109.3, 30.7, 20.2; HRMS (ESI, m/z) Calcd for C₁₂H₁₅N₂ 187.1232 (M+H), found 187.1230.

4-isopropyl-*N*-methyl-2-(1*H*-pyrrol-1-yl)aniline (36):

Pale orange oil, ¹H NMR (400 MHz, CDCl₃): δ 7.15 (dd, J = 2.4 Hz, 8.8 Hz, 1H), 7.02 (d, J = 2 Hz, 1H), 6.81 (t, J = 2 Hz, 2H), 6.67 (d, J = 8.4 Hz, 1H), 6.34 (t, J = 2 Hz, 2H), 3.71 (br, 1H), 2.86 (m, 1H), 2.81 (s, 3H), 1.24 (s, 3H), 1.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.8, 137.3, 128.2, 126.8, 125.0, 122.0, 110.7, 109.3, 33.1, 30.6, 24.3; HRMS (ESI, m/z) Calcd for C₁₄H₁₉N₂ 215.1543 (M+H), found 215.1553.

4-chloro-*N*-methyl-2-(1*H*-pyrrol-1-yl)aniline (37):

Pale yellow oil, ¹H NMR (400 MHz, CDCl₃): δ 7.23 (dd, J = 2.4 Hz, 8.8 Hz, 1H), 7.12 (d, J = 2 Hz, 1H), 6.77 (t, J = 2 Hz, 2H), 6.62 (d, J = 8.4 Hz, 1H), 6.34 (t, J = 2 Hz, 2H), 3.85 (br, 1H), 2.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.6, 128.8, 127.8, 126.9, 121.8, 120.7, 111.4, 109.9, 30.4; HRMS (ESI, m/z) Calcd for C₁₁H₁₂N₂Cl 207.0684 (M+H), found 207.0687.

4-fluoro-N-methyl-2-(1H-pyrrol-1-yl)aniline (38):

Colorless oil, ¹H NMR (400 MHz, CDCl₃): δ 7.03-6.98 (m, 1H), 6.91 (dd, J = 2.8 Hz, 8.8 Hz, 1H), 6.79 (t, J = 2 Hz, 2H), 6.64-6.60 (m, 1H), 6.34 (t, J = 2 Hz, 2H), 3.70 (br, 1H), 2.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 155.6, 153.3, 141.4, 127.3, 127.2, 121.8, 115.3, 115.1, 114.4, 114.1, 111.1, 111.0, 109.8, 30.9; HRMS (ESI, m/z) Calcd for C₁₁H₁₂N₂F 191.0979 (M+H), found 191.0979.

4-(methylamino)-3-(1*H*-pyrrol-1-yl)benzonitrile (39):

Light orange oil, ¹H NMR (400 MHz, CDCl₃): δ 7.53 (dd, J = 2.0 Hz, 8.8 Hz, 1H), 7.37 (d, J = 2 Hz, 1H), 6.73 (t, J = 2 Hz, 2H), 6.67 (d, J = 8.8 Hz, 1H), 6.36 (t, J = 2 Hz, 2H), 4.42 (br, 1H), 2.84 (d, J = 5.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 148.3, 133.6, 130.6, 126.8, 121.7, 119.6, 110.5, 110.3, 98.1, 29.9; HRMS (ESI, m/z) Calcd for C₁₂H₁₁N₃Na 220.0851 (M+H), found 207.0862.

Synthesis of 2-(1*H*-indol-1-yl)-*N*-phenylaniline (31):

First 2-iodoaniline converted into 1-iodo-2-nitrosobenzene.^D 1-iodo-2-nitrosobenzene treated with phenylboronic acid to get 2-iodo-*N*-phenylaniline.^E 2-(1*H*-indol-1-yl)-*N*-phenylaniline was synthesized from 2-iodo-*N*-phenylaniline using general procedure IV.^A

Spectral data of 31:

Light orange oil, ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 6.4 Hz, 1H), 7.34 (d, J = 8.4 Hz, 1H), 7.23-7.07 (m, 8H), 6.93 (d, J = 8.0 Hz, 2H), 6.89-6.85 (m, 2H), 6.61 (d, J = 2.4 Hz, 1H), 5.33 (br, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 141.7, 140.5, 136.7, 129.4, 128.9, 128.8, 127.1, 122.6, 122.5, 121.1, 120.5, 120.2, 120.0, 116.1, 110.7, 103.8; HRMS (ESI, m/z) Calcd for C₁₅H₁₆N₃ 285.1392 (M+H), found 285.1397.

Synthesis of 2-(1*H*-imidazol-1-yl)-*N*-methylaniline (32) & 2-(1*H*-benzo[d]imidazol-1-yl)-*N*-methylaniline (33):

Compound **32** and **33** are synthesized by methylation^B of corresponding anilines. 2-(1H-imidazol-1-yl)aniline and 2-(1H-benzo[d]imidazol-1-yl)aniline were prepared using reported procedure.^F

Spectral data

2-(1*H*-imidazol-1-yl)-*N*-methylaniline (32):

White solid, Mp: 78-80 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.59 (s, 1H), 7.35-7.31 (m, 1H), 7.26-7.23 (m, 1H), 7.09-7.08 (m, 2H), 6.76-6.73 (m, 2H), 3.65 (br, 1H), 2.79 (d, *J* = 3.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.6, 130.3, 130.1, 127.1, 127.0, 123.0, 120.5, 116.6, 111.0, 30.3; HRMS (ESI, m/z) Calcd for C₁₀H₁₂N₃ 174.1031 (M+H), found 174.1053.

2-(1H-benzo[d]imidazol-1-yl)-N-methylaniline (33):

White crystalline solid, Mp: 157-159 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.97 (s, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.43-7.39 (m, 1H), 7.35-7.28 (m, 2H), 7.20-7.15 (m, 2H), 6.84-6.79 (m, 2H), 3.54 (br, 1H), 2.78 (d, J = 4.8 Hz, 3H); 145.2, 143.68, 143.62, 134.2, 130.7, 128.1, 123.7, 122.8, 120.9, 120.6, 116.8, 111.2, 110.9, 30.2; HRMS (ESI, m/z) Calcd for C₁₄H₁₄N₃ 224.1188 (M+H), found 224.1187.

References:

- A. 1) Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684. 2)
 Wang, X.; Li, N.; Li, Z.; Rao, H. J. Org. Chem. 2017, 82, 10158. 3) Wang, L.; Guo, W.;
 Zhang, X. X; Xia, X.-D.; Xiao, W. –J. Org. Lett. 2012, 14, 740.
- B. Nakamura, I.; Sato, Y.; Konta, S.; Terada, M. Tetrahedron Letters. 2009, 50, 2075.
- C. Baumann, M.; Baxendale, I. R. J. Org. Chem. 2015, 80, 10806.
- D. Purkait, A.; Roy, S. K.; Srivastava, H. K.; Jana, C. K. Org. Lett. 2017, 19, 2540.
- E. Roscales, S.; Csaky, A. G.; Org, Lett. 2018, 20, 1667.
- F. Wang, X.; Jin, Y.; Zhao, Y.; Zhu, L.; Fu, H. Org, Lett. 2012, 14, 452.

Figure S1. 400 MHz ¹H NMR spectrum of 1a in DMSO-d₆

SI14

Figure S5. 400 MHz ¹H NMR spectrum of **2a** in DMSO-d₆

Figure S7. 500 MHz ¹H NMR spectrum of 2b in CDCl₃

Figure S8. 100 MHz ¹³C NMR spectrum of 2b in CDCl₃

Figure S9. 400 MHz ¹H NMR spectrum of 3a in DMSO-d₆

Figure S11. 500 MHz ¹H NMR spectrum of 4a in DMSO-d₆

Figure S13. 500 MHz ¹H NMR spectrum of 4b in CDCl₃

Figure S16. 125 MHz ¹³C NMR spectrum of 5a in DMSO-d₆

Figure S17. 400 MHz ¹H NMR spectrum of 5b in CDCl₃

Figure S18. 100 MHz ¹³C NMR spectrum of 5b in CDCl₃

Figure S19. 400 MHz ¹H NMR spectrum of 8a in CDCl₃

Figure S23. 400 MHz ¹H NMR spectrum of 10a in CDCl₃

Figure S24. 100 MHz ¹³C NMR spectrum of 10a in CDCl₃

Figure S27. 400 MHz ¹H NMR spectrum of 12a in CDCl₃

Figure S28. 100 MHz ¹³C NMR spectrum of 12a in CDCl₃

Figure S29. 400 MHz ¹H NMR spectrum of 13a in CDCl₃

Figure S31. 400 MHz ¹H NMR spectrum of 14a in CDCl₃

Figure S33. 400 MHz ¹H NMR spectrum of 15a in CDCl₃

Figure S35. 400 MHz ¹H NMR spectrum of 16a in CDCl₃

Figure S39. 400 MHz ¹H NMR spectrum of 18a in CDCl₃

Figure S41. 400 MHz ¹H NMR spectrum of 19a in CDCl₃

Figure S45. 400 MHz ¹H NMR spectrum of 21a in CDCl₃

Figure S47. 400 MHz ¹H NMR spectrum of 23a in CDCl₃

Figure S51. 400 MHz ¹H NMR spectrum of 25a in CDCl₃

Figure S53. 400 MHz ¹H NMR spectrum of 26a in CDCl₃

Figure S55. 400 MHz ¹H NMR spectrum of 27a in CDCl₃

Figure S63. 400 MHz ¹H NMR spectrum of 31a in CDCl₃

Figure S65. 400 MHz ¹H NMR spectrum of 34a in CDCl₃

Figure S71. 400 MHz ¹H NMR spectrum of 37a in CDCl₃

Figure S73. 400 MHz ¹H NMR spectrum of 38a in CDCl₃

Figure S75. 400 MHz ¹H NMR spectrum of **39a** in DMSO-d6

Figure S77. 400 MHz ¹H NMR spectrum of 26c in CDCl₃

Figure S81. 400 MHz ¹H NMR spectrum of 8 in CDCl₃

Figure S85. 400 MHz ¹H NMR spectrum of 10 in CDCl₃

Figure S89. 400 MHz ¹H NMR spectrum of 12 in CDCl₃

Figure S97. 400 MHz ¹H NMR spectrum of 16 in CDCl₃

Figure S101. 400 MHz ¹H NMR spectrum of 18 in CDCl₃

Figure S105. 400 MHz ¹H NMR spectrum of 20 in CDCl₃

Figure S107. 400 MHz ¹H NMR spectrum of 21 in CDCl₃

Figure S111. 400 MHz ¹H NMR spectrum of 23 in CDCl₃

Figure S113. 400 MHz ¹H NMR spectrum of 24 in CDCl₃

Figure S123. 400 MHz ¹H NMR spectrum of 29 in CDCl₃

Figure S125. 400 MHz ¹H NMR spectrum of 30 in CDCl₃

Figure S131. 400 MHz ¹H NMR spectrum of 33 in CDCl₃

Figure S133. 400 MHz ¹H NMR spectrum of 34 in CDCl₃

XII. Table 1. Crystal data and structu	, <u> </u>	
Identification code	ACS1313	
Empirical formula	C19 H18 N2 O	
Formula weight	290.35	Bart and a start and a start a
Temperature	296(2) K	
Wavelength	0.71073 Å	് ^{ന്} ് 3a ് സ്
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.6986(5) Å	$\alpha = 81.323(3)^{\circ}.$
	b = 11.3012(5) Å	$\beta = 89.730(3)^{\circ}.$
	c = 14.4283(6) Å	$\gamma = 61.927(2)^{\circ}$.
Volume	1517.23(12) Å ³	
Z	4	
Density (calculated)	1.271 Mg/m ³	
Absorption coefficient	0.079 mm ⁻¹	
F(000)	616	
Crystal size	0.300 x 0.250 x 0.200	mm ³
Theta range for data collection	2.072 to 25.000°	
Index ranges	-12<=h<=12, -13<=k	<=13, -17<=l<=17
Reflections collected	35239	
Independent reflections	5347 [R(int) = 0.0414]
Completeness to theta = 25.000°	100.0 %	
Absorption correction	Semi-empirical from	equivalents
Max. and min. transmission	0.7457 and 0.7027	
Refinement method	Full-matrix least-squa	ares on F ²
Data / restraints / parameters	5347 / 0 / 407	
Goodness-of-fit on F ²	1.027	
Final R indices [I>2sigma(I)]	R1 = 0.0446, wR2 = 0	0.1081
R indices (all data)	R1 = 0.0708, WR2 = 0	0.1287
Extinction coefficient	0.0068(11)	
Largest diff. peak and hole	0.181 and -0.170 e.Å ⁻	3

XII. Table 1. Crystal data and structure refinement for '3a'

XIII.	Table 2.	Crystal	data	and	structure	refinement	t for	'8a'
-------	----------	---------	------	-----	-----------	------------	-------	------

Identification code	1328B	Q_cs ca		
Empirical formula	C16 H12 N2 O	a		
Formula weight	248.28	~~		
Temperature	293(2) K	o ca ca		
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	$P2_1/n$			
Unit cell dimensions	$a = 7.480(6) \text{ Å}$ $\alpha = 9$			
	b = 10.122(7) Å	β= 96		
	c = 15.888(11) Å	$\gamma = 90$		
Volume	1196.0(15) Å ³			
Z	4			
Density (calculated)	1.379 Mg/m ³			
Absorption coefficient	0.088 mm ⁻¹			
F(000)	520			
Crystal size	0.150 x 0.150 x 0.100 m	0.150 x 0.150 x 0.100 mm ³		
Theta range for data collection	3.150 to 24.999°			
Index ranges	-8<=h<=8, -12<=k<=12	, - 18<=l<=18		
Reflections collected	18307			
Independent reflections	2094 [R(int) = 0.0334]	2094 [R(int) = 0.0334]		
Completeness to theta = 24.999°	99.5 %			
Absorption correction	Semi-empirical from eq	Semi-empirical from equivalents		
Max. and min. transmission	0.7462 and 0.6786			
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²		
Data / restraints / parameters Goodness-of-fit on F ²	2094 / 0 / 173 1.068	2094 / 0 / 173 1.068		
Final R indices [I>2sigma(I)]	R1 = 0.0422, wR2 = 0.1	R1 = 0.0422, $wR2 = 0.1050$		
R indices (all data)	R1 = 0.0555, wR2 = 0.1	R1 = 0.0555, wR2 = 0.1197		
Extinction coefficient	n/a			
Largest diff. peak and hole	0.159 and -0.145 e.Å ⁻³			

<i>α</i> = 90°.
β=96.16(3)°.
$\gamma = 90^{\circ}$.

XIV.	. Table 3.	Crystal	data and	structure	refinement for	r '35a'
------	------------	---------	----------	-----------	----------------	----------------

Identification code	ACS1461			
Empirical formula	C13 H12 N2 O	Q		
Formula weight	212.25	9		
Temperature	296(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	$P2_1/c$			
Unit cell dimensions	a = 6.9280(2) Å	α= 90		
	b = 10.4940(3) Å	β= 10		
	c = 15.3990(4) Å	$\gamma = 90$		
Volume	1090.96(5) Å ³			
Z	4			
Density (calculated)	1.292 Mg/m ³			
Absorption coefficient	0.084 mm ⁻¹			
F(000)	448			
Crystal size	0.200 x 0.150 x 0.100 m	0.200 x 0.150 x 0.100 mm ³		
Theta range for data collection	3.017 to 24.995°			
Index ranges	-8<=h<=8, -12<=k<=12,	-18<=l<=18		
Reflections collected	27684			
Independent reflections	1967 [R(int) = 0.2297]			
Completeness to theta = 24.995°	99.7 %			
Absorption correction	Mnulti-scan			
Max. and min. transmission	0.7456 and 0.5782			
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²		
Data / restraints / parameters Goodness-of-fit on F ²	1967 / 1 / 149 1.092	1967 / 1 / 149 1.092		
Final R indices [I>2sigma(I)]	R1 = 0.0622, wR2 = 0.16	R1 = 0.0622, $wR2 = 0.1624$		
R indices (all data)	R1 = 0.0738, wR2 = 0.13	R1 = 0.0738, $wR2 = 0.1800$		
Extinction coefficient	0.27(3)			
Largest diff. peak and hole	0.246 and -0.248 e.Å ⁻³			

 $\alpha = 90^{\circ}.$ $\beta = 102.9760(10)^{\circ}.$ $\gamma = 90^{\circ}.$