[4+1] Annulation reaction of cyclic pyridinium ylides with *in situ* generated azoalkenes for the construction of spirocyclic skeletons

Bao-Xue Quan, ^{a,d} Jun-Rui Zhuo, ^{a,d} Jian-Qiang Zhao, ^{b,*} Ming-Liang Zhang, ^c Ming-Qiang Zhou, ^a Xiao-Mei Zhang^a and Wei-Cheng Yuan^{a,b,*}

^a National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.

^b Institute for Advanced Study, Chengdu University, Chengdu 610106, China

^cHenan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China

^d University of Chinese Academy of Sciences, Beijing, 100049, China

E-mail: yuanwc@cioc.ac.cn E-mail: zhaojianqiang@cdu.edu.cn

Supporting Information

Table of Contents

1. General Information	S1
2 Representative procedure for preparation of 2a and 4a	S1
3 Representative procedure of preparing products 3	S2
4 Representative procedure of preparing products 5	S6
5 Procedure for the scale-up experiment	S8
6. X-ray crystal structure of compound 3s and 5a	S 8
7. Mass spectrometry of key intermediates A and C	S 11
8 ¹ H NMR and ¹³ C NMR spectra	S12

1. General Information

Chemicals were purchased from commercial suppliers and used without further purification unless otherwise stated. Solvents were dried and purified according to the standard procedures before use. Reactions were monitored by TLC. Flash column chromatography was performed on silica gels (200-300 mesh). ¹H NMR and ¹³C NMR (300 and 75 MHz, respectively) spectra were recorded on a Bruker 300 MHz NMR spectrometer in CDCl₃. ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃, δ 7.26 ppm, DMSO-*d*₆ δ 2.50 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, brs = broad singlet, d = doublet, t = triplet, td = triplet of doublets, q = quartet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃, δ 77.00 ppm, DMSO-*d*₆ at 39.51 ppm). HRMS data were obtained on a Bruker Daltonics. Inc mass instrument (ESI). Melting points were recorded on a Buchi Melting Point B-545.

2 Representative procedure for preparation of 2a and 4a

(a) Representative procedure for preparation of 2a

A mixture of indoline-2,3-dione (4.50 g, 30.6 mmol, 1.0 equiv) and K_2CO_3 (8.45 g, 61.2 mmol, 2.0 equiv) in DMF/water (v:v = 10:1) (25 mL) was stirred at room temperature for 24 h, then it was poured into icy water (75 mL) and filtered to collect the red solid product. The filtrate was extract with EtOAc (30 mL × 3), and the organic phase was combined, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography to give 1-methylindoline-2,3-dione (**2a-3**) (4.7 g, yield 95%) as red solid.

To a suspension of 1-methylindoline-2,3-dione (1.1 g, 6.8 mmol, 1.0 eq) in hydrazine hydrate (10 mL) was added Et₃N (1 mL), and the mixture was stirred at reflux for 10 h. When reaction completed, it was cooled down to room temperature and then poured into water (100 mL), extracted EtOAc (50 mL \times 3), dried over Na₂SO₄ and evaporated to give residue which was purified by column chromatography (silica gel) to afford 1-methylindolin-2-one (**2a-2**) (800 mg, yield 80%) as light yellow solid.

A solution of 1-methylindolin-2-one (1.0 g, 6.80 mmol, 1 equiv) in EtOAc (34 mL, 0.2 M) was added CuBr₂ (1.67 g, 7.48 mmol, 1.1 equiv). The mixture was stirred at room temperature in open air for 5 h. Then the reaction mixture was concentrated in vacuo and the residue was purified by column chromatography (silica gel, petrol ether/EtOAc = $50/1 \sim 10/1$) to give 3-bromo-1-methylindolin-2-one (**2a-1**) (826 mg, yield 54%) as brown solid.

A solution of 3-bromo-1-methylindolin-2-one (260 mg, 1.16 mmol, 1.0 equiv) and pyridine (119 mg, 1.51 mmol, 1.3 equiv) in anhydrous EtOAc (4 mL) under Ar was stirred at 60 °C for 8 h. The reaction mixture was cooled down to room temperature and filtered to collect the solid (**2a**) (265 mg, yield 75%) as off-white solid.

Characterizations data of **2a**: ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.07 (d, *J* = 5.8 Hz, 2H), 8.77 (t, *J* = 7.6 Hz, 1H), 8.29-8.25 (m, 2H), 7.59-7.53 (m, 2H), 7.28 (d, *J* = 7.8 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 6.97 (s, 1H), 3.22 (s, 3H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 169.2, 147.4, 144.9, 144.6, 131.6, 128.7, 125.9, 123.4, 121.2, 110.2, 68.8, 27.0. HRMS (ESI) Calcd for C₁₄H₁₃N₂O [M+H]⁺ 225.1022; Found: 225.1023.

(b) Representative procedure for preparation of 4a

To a solution of 2,3-dihydro-1*H*-inden-1-one (2.64 g, 20.0 mmol, 1 equiv) in CHCl₃ (40 mL) was added Br₂ (3.20 g, 20.0 mmol, 1 equiv) at 0 °C dropwise. Reaction mixture was stirred at room temperature for 3 h, quenched with aqueous Na₂S₂O₃ and extracted with EtOAc (30 mL \times 3). The organic phase was combined, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography to give 2-bromo-2,3-dihydro-1*H*-inden-1-one (1.54 g, yield 37%) as brown oil.

A solution of 2-bromo-2,3-dihydro-1*H*-inden-1-one (210 mg, 1.0 mmol, 1.0 equiv) and pyridine (103 mg, 1.3 mmol, 1.3 equiv) in anhydrous EtOAc (4 mL) under argon was stirred at 60 °C for 48 h. The reaction mixture was cooled down to room temperature and filtered to collect the solid (**4a**) (170 mg, yield 59%) as slight yellow solid.

Characterizations data of **4a**: ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.21 (d, *J* = 5.7 Hz, 2H), 8.73 (t, *J* = 7.8 Hz, 1H), 8.28-2.23 (m, 2H), 7.90-7.81 (m, 2H), 7.75 (d, *J* = 7.7 Hz, 1H), 7.59 (t, *J* = 7.6 Hz, 1H), 6.33-6.28 (m, 1H), 4.03 (dd, *J* = 17.1, 8.3 Hz, 1H), 3.75 (dd, *J* = 17.0, 5.8 Hz, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 197.5, 151.0, 146.8, 145.1, 136.8, 132.9, 128.9, 128.4, 127.1, 124.4, 73.3, 34.2. HRMS (ESI) Calcd for C₁₄H₁₂NO [M+H]⁺ 210.0913; Found: 210.0904.

3 Representative procedure of preparing products 3

A mixture of **1** (0.2 mmol, 1 equiv), **2** (0.22 mmol, 1.1 equiv) and K₂CO₃ (0.6 mmol, 3 equiv) in CHCl₃ (6 mL) was stirred at room temperature under nitrogen. When the reaction was completed, water (6 mL) was added, and the mixture was extracted with CH₂Cl₂ (4 mL × 4). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, petrol ether/EtOAc = $20/1 \sim 4/1$) to give **3a** (83.6 mg, yield 97%) as white solid.

1-methyl-5'-phenyl-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-2-one (3a). White solid, m.p.: 217.0-218.7 °C. Yield 97%. ¹H NMR (300 MHz, CDCl₃)

δ 7.70-7.68 (m, 2H), 7.57 (d, J = 8.3 Hz, 2H), 7.41-7.29 (m, 4H), 7.17 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 7.9 Hz, 1H), 6.80-6.76 (m, 2H), 3.82 (d, J = 16.8 Hz, 1H), 3.38 (d, J = 16.8 Hz, 1H), 3.33 (s, 3H), 2.38 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.0, 153.1, 143.7, 143.1, 135.8, 130.5 (2C), 130.2, 129.1, 128.7, 128.1, 127.7,

126.7, 123.4, 122.8, 108.7, 70.5, 45.9, 26.9, 21.6. HRMS (ESI) Calcd for $C_{24}H_{22}N_3O_3S$ [M+H]⁺ 432.1376; Found: 432.1372.

1-methyl-5'-phenyl-2'-(phenylsulfonyl)-2',4'-dihydrospiro[indoline-3,3'-

pyrazol]-2-one (3b). White solid, m.p.: 219.7-220.6 °C. Yield 98%. ¹H NMR (300 MHz, CDCl₃) δ 7.70-7.64 (m, 4H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.42-7.26 (m, 6H), 6.90 (d, *J* = 7.8 Hz, 1H), 6.75-6.64 (m, 2H), 3.83 (d, *J* = 16.8 Hz, 1H), 3.38 (d, *J* = 16.9 Hz, 1H), 3.33 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.9, 153.3, 143.1, 138.6, 132.8, 130.5, 130.3, 130.2, 128.6, 128.4, 127.9, 127.3, 126.7, 123.3, 15. 45.8, 26.0, HPMS (ESI) Calad for Cultur N.O.S. [M+Ult 418, 1220): Found

122.8, 108.7, 70.5, 45.8, 26.9. HRMS (ESI) Calcd for $C_{23}H_{20}N_3O_3S\ [M+H]^+$ 418.1220; Found: 418.1211.

1-methyl-2'-(methylsulfonyl)-5'-phenyl-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-2-one (3c). White solid, m.p.: 225.4-226.0 °C. Yield 81%. ¹H NMR (300 MHz, CDCl₃) δ 7.76-7.73 (m, 2H), 7.46-7.34 (m, 5H), 7.11 (t, J = 7.4 Hz, 1H), 6.89 (d, J = 7.7 Hz, 1H), 3.89 (d, J = 17.3 Hz, 1H), 3.52 (d, J = 17.3 Hz, 1H), 3.27 (s, 3H), 3.21 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.1, 153.5, 142.9, 130.7, 130.2, 130.1, 129.8, 128.8, 126.8, 123.7, 123.3, 108.9, 70.5, 46.5, 40.5,

26.7. HRMS (ESI) Calcd for C₁₈H₁₈N₃O₃S [M+H]⁺ 356.1063; Found: 356.1051.

tert-butyl 1-methyl-2-oxo-5'-phenylspiro[indoline-3,3'-pyrazole]-2'(4'H)carboxylate (3d). White solid, m.p.: 169.0-170.0 °C. Yield 99%. ¹H NMR (300 MHz, CDCl₃) δ 7.80-7.68 (m, 2H), 7.40-7.32 (m, 4H), 7.23 (d, *J* = 7.1 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.85 (d, J = 7.7 Hz, 1H), 3.86-3.74 (m, 1H), 3.51-3.37 (m, 1H), 3.29-3.25 (m, 3H), 1.11 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 175.1, 150.9, 150.0, 142.9, 130.9, 130.8, 130.1, 129.7, 128.5, 126.7, 123.4, 122.4, 108.1,

81.7, 67.9, 46.1, 45.3, 28.2, 27.6, 26.5. HRMS (ESI) Calcd for C₂₂H₂₃NaN₃O₃ [M+Na]⁺ 400.1632; Found: 400.1621.

2'-acetyl-1-methyl-5'-phenyl-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-2-one (3e). White solid, m.p.: 254.5-255.5 °C. Yield 72%. ¹H NMR (300 MHz, CDCl₃) δ 7.75-7.72 (m, 2H), 7.46-7.44 (m, 3H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.17 (d, *J* = 7.3 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 3.82 (d, J = 17.6 Hz, 1H), 3.45 (d, J = 17.6 Hz, 1H), 3.30 (s, 3H), 2.37 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) § 174.5, 167.9, 152.5, 143.5, 130.7, 130.5, 129.7, 129.6, 128.8, 126.6,

123.2, 122.1, 108.5, 67.1, 44.9, 26.7, 21.8. HRMS (ESI) Calcd for C₁₉H₁₈N₃O₂ [M+H]⁺ 320.1394; Found: 320.1379.

2'-benzoyl-1-methyl-5'-phenyl-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-2-one (**3f**). White solid, m.p.: 205.0-206.0 °C. Yield 63%. ¹H NMR (300 MHz, CDCl₃) δ 8.02 (d, *J* = 7.0 Hz, 2H), 7.73-7.71 (m, 2H), 7.51-7.33 (m, 7H), 7.25-7.23 (m, 1H), 7.05 (t, J = 7.6 Hz, 1H), 6.93 (d, J = 7.8 Hz, 1H), 3.86 (d, J = 17.6 Hz, 1H), 3.49 (d, J = 17.5 Hz, 1H), 3.36 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.5, 165.1, 153.3, 143.6, 133.2, 131.3, 130.7, 130.6, 130.3, 129.8, 129.6, 128.8, 127.6, 126.8, 123.2, 122.0, 108.5, 68.4, 44.1, 26.8. HRMS (ESI) Calcd for $C_{24}H_{20}N_3O_2$ [M+H]⁺ 382.1550;

Found: 382.1550.

1-methyl-5'-(o-tolyl)-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-2-one (3g). White solid, m.p.: 204.7-205.1 °C. Yield 98%. ¹H NMR (300 MHz, CDCl₃) δ 7.55 (d, *J* = 8.2 Hz, 2H), 7.36-7.15 (m, 7H), 6.91 (d, *J* = 7.7 Hz, 1H), 6.82-6.75 (m, 2H), 3.90 (d, J = 16.5 Hz, 1H), 3.42-3.34 (m, 4H), 2.62 (s, 3H), 2.39 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.2, 153.8, 143.8, 143.1, 138.2, 135.5, 131.8, 130.2, 129.7, 129.3, 129.0, 128.7, 128.3, 127.6, 125.9, 123.4, 122.8, 108.7, 69.9, 48.0, 26.9, 23.3, 21.6. HRMS (ESI) Calcd for C₂₅H₂₄N₃O₃S [M+H]⁺ 446.1533;

Found: 446.1527.

1-methyl-5'-(p-tolyl)-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-2-one (**3h**). White solid, m.p.: 199.5-200.5 °C, yield 96%. ¹H NMR (300 MHz, CDCl₃) δ 7.59-7.54 (m, 4H), 7.33-7.28 (m, 1H), 7.21-7.14 (m, 4H), 6.89 (d, *J* = 7.8 Hz, 1H), 6.78-6.71 (m, 2H), 3.80 (d, J = 16.7 Hz, 1H), 3.39-3.32 (m, 4H), 2.38 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 174.0, 153.2, 143.6, 143.1, 140.9, 135.8, 130.1, 129.3, 129.0, 128.1, 127.7, 126.7, 123.4, 122.8, 108.7, 70.4, 45.9, 26.8, 21.54, 21.46. HRMS (ESI) Calcd for C₂₅H₂₄N₃O₃S [M+H]⁺ 446.1533; Found: 446.1523.

5'-(3-methoxyphenyl)-1-methyl-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'pyrazol]-2-one (3i). White solid, m.p.: 199.8-200.4 °C. yield 86%. ¹H NMR (300 MHz, $CDCl_3$) δ 7.55 (d, J = 8.3 Hz, 2H), 7.35-7.26 (m, 3H), 7.21-7.15 (m, 3H), 6.96 (dd, J = 8., 1.6 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 6.80-6.73 (m, 2H), 3.84-3,78 (m, 4H), 3.39-3.33 (m, 4H), 2.38 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.0, 159.6, 153.0, 143.7, 143.1, 135.8, 131.7, 130.2, 129.7, 129.1, 128.1, 127.7, 123.4, 122.8, 119.4, 116.4, 111.7, 108.7, 70.5, 55.4, 45.9, 26.9, 21.6. HRMS (ESI) Calcd for C₂₅H₂₄N₃O₄S [M+H]⁺ 462.1482; Found: 462.1462.

Ń−Ts

=0

Мe

5'-(4-methoxyphenyl)-1-methyl-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'-

pyrazol]-2-one (3j). White solid, m.p.: 201.3-202.0 °C. Yield 99%. ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 8.3 Hz, 2H), 7.33-7.28 (m, 1H), 7.15 (d, J = 8.0 Hz, 2H), 6.92-6.88 (m, 3H), 6.78-6.74 (m, 2H), 3.83-3.75 (m, 4H), 3.37-3.32 (m, 4H), 2.37 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.1, 161.4, 152. 9, 143.6, 143.1, 135.8, 130.1, 129.0, 128.4, 128.1, 127.7, 123.4, 123.1, 122.8, 114.0, 108.7, 70.4, 55.4, 45.9, 26.9, 21.6. HRMS (ESI) Calcd for C₂₅H₂₄N₃O₄S [M+H]⁺ 462.1482; Found: 462.1468.

5'-(4-fluorophenyl)-1-methyl-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'-

pyrazol]-2-one (3k). White solid, m.p.: 209.5-210.3 °C. Yield 99%. ¹H NMR (300 MHz, CDCl₃) δ 7.69-7.64 (m, 2H), 7.55 (d, J = 8.1 Hz, 2H), 7.35-7.31 (m, 1H), 7.17 (d, J = 8.0 Hz, 2H), 7.11-7.05 (m, 2H), 6.90 (d, J = 7.9 Hz, 1H), 6.82-6.78 (m, 2H), 3.79 (d, J = 16.8 Hz, 1H), 3.38-3.32 (m, 4H), 2.38 (s, 3H). ¹³C NMR (75 MHz, $CDCl_3$) δ 173.9, 164.0 (d, J = 149.8 Hz, 1C), 152.0, 143.8, 143.1, 135.7, 130.2, 129.1, 128.7 (d, J = 9.0 Hz, 2C), 128.1, 127.7, 126.7 (d, J = 3.0 Hz, 1C), 123.4, 122.9, 115.9 (d, J = 21.8 Hz, 2C), 108.8, 70.6, 45.9, 26.9, 21.6. HRMS (ESI) Calcd for C₂₄H₂₁FN₃O₃S [M+H]⁺ 450.1282; Found: 450.1276.

5'-(4-chlorophenyl)-1-methyl-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'-

pyrazol]-2-one (31). White solid, m.p.: 174.2-175.0 °C. Yield 90%. ¹H NMR (300 MHz, CDCl₃) δ 7.62-7.55 (m, 4H), 7.38-7.31 (m, 3H), 7.18 (d, J = 8.0 Hz, 2H), 6.91 (d, J = 7.8 Hz, 1H), 6.84-6.79 (m, 2H), 3.79 (d, J = 16.7 Hz, 1H), 3.38-3.33 (m, 4H), 2.39 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) & 173.9, 151.9, 143.9, 143.2, 136.5, 135.8, 130.3, 129.2, 129.0, 128.1, 127.9, 127.8, 123.4, 122.9, 108.8, 70.7, 45.8, 26.9, 21.6.HRMS (ESI) Calcd for C₂₄H₂₁ClN₃O₃S [M+H]⁺ 466.0987; Found: 466.0964.

1-methyl-2'-tosyl-5'-(4-(trifluoromethyl)phenyl)-2',4'-dihydrospiro[indoline-

3,3'-pyrazol]-2-one (3m). White solid, m.p.:213.0-214.5 °C. Yield 96%. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.78 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H}), 7.64 \text{ (d, } J = 8.3 \text{ Hz}, 2\text{H}), 7.57 \text{ (d, } J$ = 8.2 Hz, 2H), 7.36 – 7.31 (m, 1H), 7.18 (d, J = 8.2 Hz, 2H), 6.91 (d, J = 7.8 Hz, 1H), 6.84 - 6.77 (m, 2H), 3.82 (d, J = 16.9 Hz, 1H), 3.40 (d, J = 16.9 Hz, 1H), 3.32 (s, 3H), 2.38 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.8, 151.5, 144.0, 143.2, 135.7, 133.8, 131.9 (q, J = 32.3 Hz, 1C), 130.4, 129.2, 128.1 127.6, 126.9, 125.6 (q, J = 3.0 Hz, 2C), 123.7 (q, J = 270.8 Hz, 1C), 123.3, 122.9, 108.8, 70.8, 45.6, 26.8, 21.5. HRMS (ESI) Calcd for C₂₅H₂₁F₃N₃O₃S [M+H]⁺ 500.1250; Found:

1-methyl-5'-(3-nitrophenyl)-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-2-one (3n). White solid, m.p.:211.0-212.2 °C. Yield 92%. ¹H NMR (300 MHz, CDCl₃) δ 8.41 (s, 1H), 8.25 (d, J = 8.2 Hz, 1H), 8.05 (d, J = 7.9 Hz, 1H), 7.62-7.58 (m, 3H), 7.38-7.33 (m, 1H), 7.21 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 7.8 Hz, 1H), 6.86-6.84 (m, 2H), 3.85 (d, J = 16.9 Hz, 1H), 3.45 (d, J = 17.0 Hz, 1H), 3.33 (s, 3H), 2.39 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.7, 150.6, 148.4, 144.2, 143.2, 135.6, 132.3, 132.2, 130.5, 129.8, 129.3, 128.1, 127.7, 124.7, 123.4, 123.1, 121.4, 108.9, 70.9, 45.7, 26.9, 21.6. HRMS (ESI) Calcd for C₂₄H₂₁N₄O₅S [M+H]⁺

477.1227; Found: 477.1223.

5'-(2,4-dimethylphenyl)-1-methyl-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'-

pyrazol]-2-one (30). White solid, m.p.:159.1-160.0 °C. Yield 89%. ¹H NMR (300 MHz, CDCl₃) δ 7.54 (d, J = 8.2 Hz, 2H), 7.34-7.30 (m, 1H), 7.17-7.10 (m, 4H), 7.00 (d, J = 7.9 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 6.81-6.74 (m, 2H), 3.88 (d, J =16.5 Hz, 1H), 3.40-3.33 (m 4H), 2.60 (s, 3H), 2.38 (s, 3H), 2.33 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.2, 153.8, 143.7, 143.1, 139.9, 138.1, 135.6, 132.6, 130.1, 128.9, 128.7, 128.3, 127.7, 126.5, 123.4, 122.7, 108.7, 69.8, 48.0, 26.8, 23.2, 21.5, 21.2. HRMS (ESI) Calcd for $C_{26}H_{26}N_3O_3S$ [M+H]⁺ 460.1689; Found: 460.1692.

Мe

1-methyl-5'-(naphthalen-2-yl)-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'pyrazol]-2-one (3p). White solid, m.p.: 225.7-226.7 °C. Yield 89%. ¹H NMR (300 MHz, CDCl₃) δ 8.03 (dd, J = 8.6, 1.5 Hz, 1H), 7.87-7.80 (m, 4H), 7.60 (d, J = 8.3 Hz, 2H), 7.56-7.46 (m, 2H), 7.36-7.30 (m, 1H), 7.18 (d, J = 8.1 Hz, 2H), 6.92 (d, J = 7.9 Hz, 1H), 6.79-7.77 (m, 2H), 3.93 (d, J = 16.7 Hz, 1H), 3.53 (d, J = 16.7 Hz, 1H), 3.35 (s, 3H), 2.38 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.0, 153.2, 143.8, 143.1, 135.8, 134.1, 132.7, 130.2, 129.1, 128.5, 128.4, 128.1, 127.8, 127.7, 127.3, 127.1, 126.7, 123.5, 123.4, 122.8, 108.7, 70.6, 45.8, 26. 9, 21.6. HRMS (ESI) Calcd for C₂₈H₂₄N₃O₃S [M+H]⁺ 482.1533; Found: 482.1520.

1-methyl-5'-(thiophen-2-yl)-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-2-one (3q). White solid, m.p.:218.0-219.0 °C. Yield 93%. ¹H NMR (300 MHz, CDCl₃) δ 7.53 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 5.0 Hz, 1H), 7.34-7.29 (m, 1H), 7.17-7.14 (m, 3H), 7.04-7.02 (m, 1H), 6.89 (d, *J* = 7.8 Hz, 1H), 6.79-6.75 (m, 2H), 3.81 (d, J = 16.5 Hz, 1H), 3.37-3.31 (m, 4H), 2.37 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) § 173.7, 148.7, 143.7, 143.1, 135.7, 133.8, 130.2, 129.1, 129.0, 128.8, 128.1, 127.5, 127.4, 123.4, 122.8, 108.7, 70.5, 46.5, 26.8, 21.5. HRMS (ESI) Calcd for C₂₂H₂₀N₃O₃S₂ [M+H]⁺ 438.0941; Found: 438.0941.

1,5'-dimethyl-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-2-one (3r). White solid, m.p.: 193.0-194.5 °C. Yield 85%. ¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, J = 8.2 Hz, 2H), 7.33-7.26 (m, 1H), 7.15 (d, J = 8.0 Hz, 2H), 6.87-6.80 (m, 3H), 3.42 (d, J = 18.2 Hz, 1H), 3.27 (s, 3H), 2.90 (d, J = 17.2 Hz, 1H), 2.38 (s, 3H), 2.06 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.1, 154.3, 143.5, 142.9, 135.9, 130.0, 129.0, 127.9, 127.8, 123.2, 122.7, 108.6, 69.9, 49.6, 26.7, 21.5, 15.8. HRMS (ESI) Calcd for C₁₉H₂₀N₃O₃S [M+H]⁺ 370.1220; Found: 370.1223.

1-ethyl-5'-phenyl-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-2-one (3s). White solid, m.p.: 216.5-217.5 °C. Yield 99%. ¹H NMR (300 MHz, CDCl₃) δ 7.70 7.67 (m, 2H), 7.56 (d, J = 8.2 Hz, 2H), 7.41-7.36 (m, 3H), 7.34-7.28 (m, 1H), 7.16 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 7.8 Hz, 1H), 6.75-6.74 (m, 2H), 4.03-3.91 (m, 1H), 3.85-3.70 (m, 2H), 3.38 (d, *J* = 16.8 Hz, 1H), 2.38 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 153.0, 143.6, 142.2, 135.8, 130.4, 130.1,

129.0, 128.6, 128.0, 127.9, 126.7, 123.6, 122.6, 108.8, 70.5, 45.8, 35.3, 21.5, 12.2. HRMS (ESI) Calcd for C₂₅H₂₄N₃O₃S [M+H]⁺ 446.1533; Found: 446.1525.

5'-phenyl-1-propyl-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-2-one (3t). White solid, m.p.: 175.0-176.0 °C. Yield 82%. ¹H NMR (300 MHz, CDCl₃) δ 7.70-7.67 (m, 2H), 7.58 (d, J = 8.2 Hz, 2H), 7.41-7.36 (m, 3H), 7.33-7.27 (m, 1H), 7.17 (d, J = 8.2 Hz, 2H), 6.91 (d, J = 7.8 Hz, 1H), 6.77-6.73 (m, 2H), 3.90-3.79 (m, 2H), 3.72-3.63 (m, 1H), 3.38 (d, J = 16.7 Hz, 1H), 2.38 (s, 3H), 1.89 -1.77 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.9, 153.0, 143.7, 142.6, 135.8, 130.4, 130.0, 129.1, 128.6, 128.1, 128.0, 126.7, 123.5, 122.5,

108.9, 70.5, 46.1, 42.3, 21.6, 20.5, 11.4. HRMS (ESI) Calcd for C₂₆H₂₆N₃O₃S [M+H]⁺ 460.1689; Found: 460.1697.

1-isopropyl-5'-phenyl-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-2-one (3u). White solid, m.p.:215.4-216.2 °C. Yield 99%. ¹H NMR (300 MHz, CDCl₃) δ 7.71-7.67 (m, 2H), 7.55 (d, J = 8.3 Hz, 2H), 7.41-7.40 (m, 3H), 7.31-7.25 (m, 1H), 7.15 (d, J = 8.1 Hz, 2H), 7.06 (d, J = 8.0 Hz, 1H), 6.73-6.71 (m, 2H), 4.76-4.66(m, 1H), 3.82 (d, J = 16.7 Hz, 1H), 3.38 (d, J = 16.7 Hz, 1H), 2.38 (s, 3H), 1.60-1.56 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 153.0, 143.6, 141.9, 135.9, 130.5, 130.4, 129.8, 129.0, 128.6, 128.1, 128.0, 126.7, 123.7, 122.2, 110.3, 70.4, 45.9,

44.6, 21.5, 19.3, 18.9. HRMS (ESI) Calcd for C₂₆H₂₆N₃O₃S [M+H]⁺ 460.1689; Found: 460.1700.

1-allyl-5'-phenyl-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-2-one (3v). White solid, m.p.: 173.0-174.0 °C. Yield 99%. ¹H NMR (300 MHz, CDCl₃) δ 7.70-7.67 (m, 2H), 7.58 (d, *J* = 8.2 Hz, 2H), 7.41-7.40 (m, 3H), 7.31-7.25 (m, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.89 (d, *J* = 7.9 Hz, 1H), 6.79-6.78 (m, 2H), 6.00-5.87 (m, 1H), 5.43 (d, *J* = 17.2 Hz, 1H), 5.30 (d, *J* = 10.1 Hz, 1H), 4.56 (dd, *J* = 16.4, 4.7 Hz, 1H), 4.34 (dd, *J* = 16.5, 5.7 Hz, 1H), 3.83 (d, *J* = 16.7 Hz, 1H), 3.41 (d, *J* = 16.7 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.8, 153.0, 143.7,

142.2, 135. 8, 131.0, 130.5, 130.4, 130.0, 129.1, 128.6, 128.1, 127.8, 126.7, 123.4, 122.8, 118.0, 109.7, 70.5, 46.2, 43.0, 21.6. HRMS (ESI) Calcd for $C_{26}H_{24}N_3O_3S$ [M+H]⁺ 458.1533; Found: 458.1537.

1,5-dimethyl-5'-phenyl-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-2-one (3w). White solid, m.p.: 130.1-131.0 °C. Yield 99%. ¹H NMR (300 MHz, CDCl₃) δ 7.73-7.70 (m, 2H), 7.49-7.41 (m, 5H), 7.14-7.08 (m, 3H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.32 (s, 1H), 3.82 (d, *J* = 16.7 Hz, 1H), 3.37-3.30 (m, 4H), 2.37 (s, 3H), 1.99 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.9, 153.2, 143.5, 140.8, 137.4, 135.8, 132.1, 130.5, 130.4, 128.9, 128.7, 128.0, 126.9,

126.7, 124.4, 108.4, 70.6, 45.7, 26.9, 21.4, 20.5. HRMS (ESI) Calcd for $C_{25}H_{24}N_3O_3S$ [M+H]⁺ 446.1533; Found: 446.1527.

5-fluoro-1-methyl-5'-phenyl-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'pyrazol]-2-one (3x). White solid, m.p.: 180.7-182.0 °C. Yield 98%. ¹H NMR (300 MHz, CDCl₃) δ 7.70-7.67 (m, 2H), 7.57 (d, *J* = 8.3 Hz, 2H), 7.42-7.40 (m, 3H), 7.19 (d, *J* = 8.2 Hz, 2H), 7.02 (td, *J* = 8.8, 2.4 Hz, 1H), 6.82 (dd, *J* = 8.6, 4.0 Hz, 1H), 6.40 (dd, *J* = 7.5, 2.5 Hz, 1H), 3.82 (d, *J* = 16.8 Hz, 1H), 3.39-3.31 (m, 4H), 2.39 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.7, 158.9 (d, *J* = 241.5

Hz, 1C), 153.1, 144.1, 139.1, 135.6, 130.6, 130.2, 129.2, 128.7, 128.6, 126.7, 116.4 (d, J = 23.3 Hz, 1C), 111.7 (d, J = 24.8 Hz, 1C), 109.3 (d, J = 7.5 Hz, 1C), 70.5, 45.8, 27.0, 21.5. HRMS (ESI) Calcd for C₂₄H₂₁FN₃O₃S [M+H]⁺ 450.1282; Found: 450.1282.

6-chloro-1-methyl-5'-phenyl-2'-tosyl-2',4'-dihydrospiro[indoline-3,3'pyrazol]-2-one (3y). White solid, m.p.: 212.3-213.0 °C. Yield 75%. ¹H NMR (300 MHz, CDCl₃) δ 7.68-7.61 (m, 4H), 7.42-7.39 (m, 3H), 7.21 (d, *J* = 8.2 Hz, 2H), 6.90 (s, 1H), 6.80-6.73 (m, 2H), 3.80 (d, *J* = 16.7 Hz, 1H), 3.39-3.31 (m, 4H), 2.40 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.1, 152.9, 144.4, 144.0, 136.1, 135.8, 130.6, 130.4, 129.2, 128.7, 128.1, 126.8, 126.5, 124.4, 122.7,

109.5, 70.1, 45.9, 27.0, 21.6. HRMS (ESI) Calcd for $C_{24}H_{21}ClN_3O_3S$ [M+H]⁺ 466.0987; Found: 466.0993.

4 Representative procedure of preparing products 5

To a mixture of **1** (0.2 mmol, 1 equiv) and **4** (0.22 mmol, 1.1 equiv) in CHCl₃ (6 mL), DIPEA (0.6 mmol, 3 equiv) was added. Then the mixture was stirred at room temperature under nitrogen. When reaction completed, water (6 mL) was added, and the mixture was extracted with CH₂Cl₂ (4 mL × 4). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, petrol ether/EtOAc = $20/1 \sim 4/1$) to give **5** as white solid.

5'-phenyl-2'-tosyl-2',4'-dihydrospiro[indene-2,3'-pyrazol]-1(3H)-one (5a). White solid, m.p.: 170.0-171.0 °C, yield 99%. ¹H NMR (300 MHz, CDCl₃) δ 7.90-7.86 (m, 3H), 7.71-7.60 (m, 3H), 7.49-7.44 (m, 2H), 7.37-7.30 (m, 5H), 4.06 (d, *J* = 17.5 Hz, 1H), 3.55 (d, *J* = 16.8 Hz, 1H), 3.41 (d, *J* = 17.4 Hz, 1H),

3.24 (d, J = 16.8 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 201.4, 152.5, 150.4, 144.0, 136.2, 136.1, 134.3, 130.6, 130.2, 129.2, 128.5, 128.2, 128.1, 126.5, 124.8, 74.1, 47.5, 42.9, 21.6. HRMS (ESI) Calcd for C₂₄H₂₁N₂O₃S [M+H]⁺ 417.1267; Found: 417.1257.

5'-phenyl-2'-tosyl-2',3,4,4'-tetrahydro-1H-spiro[naphthalene-2,3'pyrazol]-1-one (5b). White solid, m.p.: 178.7-179.6 °C. Yield 99%. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 8.12 \text{ (d, } J = 7.7 \text{ Hz}, 1\text{H}), 7.95 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H}), 7.61$ -7.52 (m, 3H), 7.40-7.28 (m, 7H), 3.47 (d, J = 16.8 Hz, 1H), 3.32-3.12 (m, 4H), 2.42-2.37 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 193.1, 150.6, 143.5, 142.5,

137.0, 134.2, 130.7, 130.1, 129.0, 128.7, 128.6, 128.4, 128.2, 127.2, 126.4, 75.3, 43.3, 33.7, 26.4, 21.6.HRMS (ESI) Calcd for C₂₅H₂₃N₂O₃S [M+H]⁺ 431.1424; Found: 431.1417.

5'-phenyl-2'-tosyl-2',4',8,9-tetrahydrospiro[benzo[7]annulene-6,3'-

pyrazol]-5(7H)-one (5c). White solid, m.p.: 119.8-120.3 °C. Yield 52%. ¹H NMR (300 MHz, CDCl₃) δ 7.88 (d, J = 8.3 Hz, 2H), 7.72-7.65 (m, 3H), 7.49-7.29 (m, 7H), 7.15 (d, J = 7.1 Hz, 1H), 3.56-3.42 (m, 2H), 2.80-2.68 (m, 3H), 2.41 (s, 3H), 2.12-1.99 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 207.0, 151.1,

143.7, 138.4, 137.1, 136.8, 132.3, 130.9, 130.1, 129.8, 129.2, 128.5, 128.3, 127.9, 127.2, 126.5, 76.3, 41.6, 31.0, 29.8, 21.9, 21.6. HRMS (ESI) Calcd for C₂₆H₂₅N₂O₃S [M+H]⁺ 445.1580; Found: 445.1587.

5'-phenyl-2'-(phenylsulfonyl)-2',4'-dihydrospiro[indene-2,3'-pyrazol]-

1(3H)-one (5d). White solid, m.p.: 189.0-189.4 °C. Yield 80%. ¹H NMR (300 MHz, CDCl₃) δ 8.03-8.00 (m, 2H), 7.87 (d, J = 7.7 Hz, 1H), 7.72-7.45 (m, 8H), 7.41-7.33 (m, 3H), 4.08 (d, J = 17.5 Hz, 1H), 3.57 (d, J = 16.8 Hz, 1H), 3.43 (d, J = 17.5 Hz, 1H), 3.25 (d, J = 16.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 201.3, 152.7, 150.4, 139.2, 136.1, 134.3, 133.1, 130.5, 130.3, 128.6, 128.5, 128.2, 126.6, 124.8, 74.1, 47.6, 43.0. HRMS (ESI) Calcd for C₂₃H₁₉N₂O₃S [M+H]⁺ 403.1111; Found: 403.1121.

2'-(methylsulfonyl)-5'-phenyl-2',4'-dihydrospiro[indene-2,3'-pyrazol]-1(3H)-one (5e). White solid, m.p.: 187.5-188.4 °C. Yield 85%. ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, J = 7.6 Hz, 1H), 7.71-7.66 (m, 3H), 7.48-7.41 (m, 5H),

4.03 (d, J = 17.3 Hz, 1H), 3.70 (d, J = 17.2 Hz, 1H), 3.45 (d, J = 17.4 Hz, 1H), 3.36-3.30 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 202.2, 153.1, 150.8, 136.3, 133.6, 130.6, 130.4, 128.7, 128.2, 126.7, 126.5, 124.9, 74.0, 47.7, 44.2, 40.9. HRMS (ESI) Calcd for C18H17N2O3S [M+H]⁺ 341.0954; Found: 341.0947.

5'-(3-methoxyphenyl)-2'-tosyl-2',4'-dihydrospiro[indene-2,3'-pyrazol]-1(3H)-one (5f). White solid, m.p.: 178.2-179.0 °C. Yield 90%. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.93-7.82 \text{ (m, 3H)}, 7.69 \text{ (t, } J = 7.1 \text{ Hz}, 1\text{H}), 7.49-7.43$ (m, 2H), 7.32-7.20 (m, 4H), 7.13 (d, J = 7.7 Hz, 1H), 6.92 (dd, J = 8.1, 1.7 Hz, 1H), 4.07 (d, J = 17.4 Hz, 1H), 3.81 (s, 3H), 3.55 (d, J = 16.7 Hz, 1H), 3.41 (d, J = 17.5 Hz, 1H), 3.22 (d, J = 16.8 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 201.3, 159.6, 152.4, 150.4, 144.0, 136.2 136.1, 134.3,

131.9, 129.6, 129.3, 128.3, 128.1, 126.6, 124.8, 119.2, 116.2, 111.6, 74.1, 55.4, 47.7, 43.0, 21.6. HRMS (ESI) Calcd for C₂₅H₂₃N₂O₄S [M+H]⁺ 447.1373; Found: 447.1373.

5'-(4-methoxyphenyl)-2'-tosyl-2',4'-dihydrospiro[indene-2,3'pyrazol]-1(3H)-one (5g). White solid, m.p.: 202.1-203.5 °C. Yield 81%. ¹H NMR (300 MHz, CDCl₃) δ 7.89-7.85 (m, 3H), 7.66 (t, J = 6.7 Hz, 1H), 7.55 (d, J = 8.9 Hz, 2H), 7.48-7.43 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.87 (d, J = 8.9 Hz, 2H), 4.07 (d, J = 17.4 Hz, 1H), 3.81 (s, 3H), 3.53 (d, J = 16.7 Hz, 1H), 3.41 (d, J = 17.5 Hz, 1H), 3.21 (d, J =

16.7 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 201.4, 161.2, 152.3, 150.5, 143.9, 136.3, 136.0, 134.4, 129.2, 128.2 (4C), 128.1, 126.6, 124.8, 123.3, 114.0, 74.0, 55.3, 47.7, 42.9, 21.6. HRMS (ESI) Calcd for C₂₅H₂₃N₂O₄S [M+H]⁺ 447.1373; Found: 447.1371.

5'-(4-chlorophenyl)-2'-tosyl-2',4'-dihydrospiro[indene-2,3'-pyrazol]-1(3*H***)-one (5h). White solid, m.p.: 220.7-221.6 °C. Yield 91%. ¹H NMR (300 MHz, CDCl₃) \delta 7.86 (d,** *J* **= 8.2 Hz, 3H), 7.72-7.67 (m, 1H), 7.55-7.44 (m, 4H), 7.33-7.31 (m, 4H), 4.08 (d,** *J* **= 17.5 Hz, 1H), 3.53 (d,** *J* **= 16.8 Hz, 1H), 3.42 (d,** *J* **= 17.5 Hz, 1H), 3.21 (d,** *J* **= 16.8 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) \delta 201.2, 151.4, 150.4, 144.1, 136.2,**

136.1 (2C), 134.2, 129.3, 129.1, 128.8, 128.2, 128.1, 127.8, 126.6, 124.8, 74.2, 47.4, 42.9, 21.6. HRMS (ESI) Calcd for $C_{24}H_{20}ClN_2O_3S$ [M+H]⁺ 451.0878; Found: 451.0877.

5'-(3-nitrophenyl)-2'-tosyl-2',4'-dihydrospiro[indene-2,3'-pyrazol]-1(3*H***)-one (5i). White solid, m.p.: 211.5-212.4 °C. Yield 82%. ¹H NMR (300 MHz, CDCl₃) \delta 8.35 (s, 1H), 8.24-8.22 (m, 1H), 8.01 (d,** *J* **= 7.8 Hz, 1H), 7.90-7.87 (m, 3H), 7.72 (t,** *J* **= 7.5 Hz, 1H), 7.59-7.46 (m, 3H), 7.34 (d,** *J* **= 8.1 Hz, 2H), 4.13 (d,** *J* **= 17.4 Hz, 1H), 3.62 (d,** *J*

= 17.0 Hz, 1H), 3.47 (d, J = 17.2 Hz, 1H), 3.31 (d, J = 16.9 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.9, 150.4, 150.1, 148.5, 144.4, 136.3, 136.0, 134.2, 132.5, 132.1, 129.7, 129.4, 128.4, 128.3, 126.6, 125.0, 124.6, 121.3, 74.6, 47.3, 43.0, 21.7. HRMS (ESI) Calcd for C₂₄H₂₀N₃O₅S [M+H]⁺ 462.1118; Found: 462.1108.

5'-(2,4-dimethylphenyl)-2'-tosyl-2',4'-dihydrospiro[indene-2,3'pyrazol]-1(3*H***)-one (5**j). White solid, m.p.: 88.9-90.5 °C. Yield 52%. ¹H NMR (300 MHz, CDCl₃) δ 7.88 (d, *J* = 8.3 Hz, 3H), 7.70 (t, *J* = 7.1 Hz, 1H), 7.50-7.45 (m, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.11-7.06 (m, 2H), 6.98 (d, *J* = 7.7 Hz, 1H), 4.10 (d, *J* = 17.4 Hz, 1H), 3.61 (d, *J* = 16.5 Hz, 1H), 3.42 (d, *J* = 17.5 Hz, 1H), 3.27 (d, *J* = 16.6 Hz, 1H), 2.53 (s, 3H),

2.43 (s, 3H), 2.32 (s, 3H). ^{13}C NMR (75 MHz, CDCl₃) δ 201.7, 153.1, 150.5, 144.0, 139.7, 138.2, 136.1, 136.0, 134.5, 132.6, 129.2, 128.6, 128.4, 128.1, 126.6, 126.4, 124.8, 73.2, 49.8, 42.6, 23.2, 21.6, 21.2. HRMS (ESI) Calcd for C_{26}H_{25}N_2O_3S [M+H]^+ 445.1580; Found: 445.1588.

5 Procedure for the scale-up experiment

A mixture of **1a** (1.0 g, 2.72 mmol, 1 equiv), **2a** (0.92 g, 3.0 mmol, 1.1 equiv) and K_2CO_3 (1.13 g, 8.16 mmol, 3 equiv) in CHCl₃ (50 mL) was stirred at room temperature under nitrogen for 48 h. When reaction completed, water (50 mL) was added, and the mixture was extracted with CH₂Cl₂ (25 mL × 4). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, petrol ether/EtOAc = $20/1 \sim 4/1$) to give **3a** (1.12 g, yield 95%) as white solid.

6. X-ray crystal structure of compound 3s and 5a

Crystal data and structure refinement for 3s

Identification code	3s
Empirical formula	$C_{25}H_{23}N_3O_3S$

Formula weight	445.52		
Temperature/K	293(2)		
Crystal system	monoclinic		
Space group	P2 ₁ /n		
a/Å	8.3770(5)		
b/Å	23.6227(13)		
c/Å	12.1418(7)		
α/°	90		
β/°	109.819(7)		
γ/°	90		
Volume/Å ³	2260.4(2)		
Z	4		
$\rho_{calc}g/cm^3$	1.309		
μ/mm^{-1}	1.533		
F(000)	936.0		
Crystal size/mm ³	0.15 imes 0.13 imes 0		
Radiation	CuK^{α} ($\lambda = 1.54184$)		
2Θ range for data collection/° 7.484 to 134.16			
Index ranges	$\text{-10} \le h \le 6, \text{-26} \le k \le 28, \text{-14} \le l \le 14$		
Reflections collected	8914		
Independent reflections	4023 [$R_{int} = 0.0309, R_{sigma} = 0.0410$]		
Data/restraints/parameters	4023/0/291		
Goodness-of-fit on F ²	1.050		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0453, wR_2 = 0.1112$		
Final R indexes [all data]	$R_1 = 0.0599, wR_2 = 0.1235$		
Largest diff. peak/hole / e Å ⁻³ 0.21/-0.32			

Crystal data and structure refinement for 5a

Identification code	5a
Empirical formula	$C_{24}H_{20}N_{2}O_{3}S \\$
Formula weight	416.48
Temperature/K	293(2)
Crystal system	monoclinic

Space group	$P2_1/n$	
a/Å	11.3284(5)	
b/Å	8.7436(6)	
c/Å	20.6742(9)	
$\alpha/^{\circ}$	90	
β/°	96.103(4)	
γ/°	90	
Volume/Å ³	2036.18(18)	
Z	4	
$\rho_{calc}g/cm^3$	1.359	
μ/mm^{-1}	1.650	
F(000)	872.0	
Crystal size/mm ³	$0.19\times 0.14\times 0.12$	
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)	
2Θ range for data collection/° 8.54 to 134.106		
Index ranges	$\text{-13} \leq h \leq \text{13}, \text{-10} \leq k \leq 8, \text{-18} \leq l \leq \text{24}$	
Reflections collected	7291	
Independent reflections	3620 [$R_{int} = 0.0335$, $R_{sigma} = 0.0467$]	
Data/restraints/parameters	3620/0/273	
Goodness-of-fit on F ²	1.030	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0476, wR_2 = 0.1197$	
Final R indexes [all data]	$R_1 = 0.0669, wR_2 = 0.1362$	
Largest diff. peak/hole / e Å ⁻³ 0.26/-0.29		

7. Mass spectrometry of key intermediates A and C

¹H NMR and ¹³C NMR spectra of 4a

¹H NMR and ¹³C NMR spectra of **3a**

¹H NMR and ¹³C NMR spectra of 3g

ppm

¹H NMR and ¹³C NMR spectra of **3h**

S21

¹H NMR and ¹³C NMR spectra of **3i**

¹H NMR and ¹³C NMR spectra of **3**j

¹H NMR and ¹³C NMR spectra of **3**k

S24

¹H NMR and ¹³C NMR spectra of **3**l

S25

¹H NMR and ¹³C NMR spectra of **3n**

¹H NMR and ¹³C NMR spectra of **30**

S29

 $\sum_{i=1}^{n} \frac{1}{i} \frac{1}{i}$

7.6956 7.6799 7.6701 7.5968 7.5696

--0.0040

100 ppm

¹H NMR and ¹³C NMR spectra of **3**w

¹H NMR and ¹³C NMR spectra of **3z**

¹H NMR and ¹³C NMR spectra of **5d**

¹H NMR and ¹³C NMR spectra of **5**e

¹H NMR and ¹³C NMR spectra of **5f**

¹H NMR and ¹³C NMR spectra of **5h**

¹H NMR and ¹³C NMR spectra of **5**i

