Supporting information

Aldol sensors-inspired fluorescent probes for measuring protein citrullination

Huihong Chen, Hailong Zhao, Lingling Xiang, Haiting Wu, Yunshi Liang, Xin-An Huang,* Jing Zhang*

Artemisinin Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.

Email: jingzhang@gzucm.edu.cn; xinanhuang@gzucm.edu.cn

Table of Contents

1. Supporting data
2. Experimental procedure
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds
4. Reference

- Supporting data

Table S1. Quantum yields of Napdialyne and Napdialyne-Cit ${ }^{a}$

Compound	$\boldsymbol{\lambda}_{\text {ex }} \mathbf{(n m)}$	Quantum yield (\$F)
Napdialyne	342	0.071
Napdialyne-Cit	319	0.916

${ }^{a}$ The quantum yields of tested compounds were recorded in DMSO with 2-aminopyridine in 0.1 N $\mathrm{H}_{2} \mathrm{SO}_{4}$ as a standard ($\lambda_{\mathrm{ex}}=300 \mathrm{~nm}, \Phi F=0.60$).

Figure S1. Fluorescence intensity change of reaction mixture over time. Reaction condition: Napdialyne ($50 \mu \mathrm{M}$), L-citrulline ($250 \mu \mathrm{M}$), 20% trichloroacetic acid in $\mathrm{ddH}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}, 0-3 \mathrm{~h}$. The reaction mixture was diluted 10 -times with DMSO or IPA before measurement. For DMSO, $\lambda_{\mathrm{ex}}=320 \mathrm{~nm}, \lambda_{\mathrm{em}}=376 \mathrm{~nm}$; For IPA, $\lambda_{\mathrm{ex}}=317 \mathrm{~nm}, \lambda_{\mathrm{em}}=360 \mathrm{~nm}$. L-Cit: L-citrulline; IPA: isopropanol. $\mathrm{n}=3$.

Figure S2. Fluorescence intensity of Napdialyne upon incubation with various analytes. Reaction condition: Napdialyne ($50 \mu \mathrm{M}$), analyte $(250 \mu \mathrm{M}), 20 \%$ trichloroacetic acid in $\mathrm{ddH}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}, 3 \mathrm{~h}$. The reaction mixture was diluted 10 -times with DMSO or IPA before measurement. For DMSO, $\lambda_{\mathrm{ex}}=320 \mathrm{~nm}, \lambda_{\mathrm{em}}=376 \mathrm{~nm}$; For IPA, $\lambda_{\mathrm{ex}}=317 \mathrm{~nm}, \lambda_{\mathrm{em}}=360 \mathrm{~nm}$. Cit: L-citrulline; Arg: L-arginine; Lys: L-lysine; IPA: isopropanol. $\mathrm{n}=2$.

Figure S3. Synthetic routine to probe Napdialyne- N_{3}.

Figure S4. Dose-dependent relationship of fluorescence intensity of Napdialyne- N_{3} upon incubation with different concentrations of L-citrulline. Reaction condition: Napdialyne- N_{3} $\left(50 \mu \mathrm{M}\right.$), L-citrulline (0.5 to 0 mM , 2-fold dilution), 20% trichloroacetic acid in $\mathrm{ddH}_{2} \mathrm{O}, 50$ ${ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$. The reaction mixture was diluted 10 -times with different solvents before measurement. For DMSO, $\lambda_{\mathrm{ex}}=320 \mathrm{~nm}, \lambda_{\mathrm{em}}=376 \mathrm{~nm}$; For IPA, $\lambda_{\mathrm{ex}}=317 \mathrm{~nm}, \lambda_{\mathrm{em}}=360 \mathrm{~nm}$; For ethanol, $\lambda_{\mathrm{ex}}=315 \mathrm{~nm}, \lambda_{\mathrm{em}}=362 \mathrm{~nm}$; For methanol, $\lambda_{\mathrm{ex}}=318 \mathrm{~nm}, \lambda_{\mathrm{em}}=360 \mathrm{~nm}$. L-Cit: L-citrulline; IPA: isopropanol. $\mathrm{n}=2$.

Figure S5. Dose-dependent relationship on fluorescence intensity of probe Napdialyne (A) or probe Napdialyne- $\mathrm{N}_{3}(B)$ upon incubation with different concentrations of peptides. Reaction condition: probe ($50 \mu \mathrm{M}$), peptide (0.5 to 0 mM , 2-fold dilution), 20% trichloroacetic acid in $\mathrm{ddH}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}, 3 \mathrm{~h}$. The reaction mixture was diluted 10 -times with DMSO before measurement. For Napdialyne, $\lambda_{\mathrm{ex}}=320 \mathrm{~nm}, \lambda_{\mathrm{em}}=376 \mathrm{~nm}$; For Napdialyne- $\mathrm{N}_{3}, \lambda_{\mathrm{ex}}=317 \mathrm{~nm}$, $\lambda_{\text {em }}=360 \mathrm{~nm} ; \mathrm{n}=3$. Note that this data were collected on BioTek Cytation ${ }^{\mathrm{TM}} 5$ imaging reader.

Biotin-Napdialyne Conjugate

Analyte in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{mM}, 10 \mu \mathrm{~L})$ $+\mathrm{TFA}(10 \mu \mathrm{~L})+\mathrm{H}_{2} \mathrm{O}(10 \mu \mathrm{~L})$	2. Citrulline conjugation Total Volume: $50 \mu \mathrm{~L}(20 \mu \mathrm{~L}$ Biotin-Napdialyne conjugate +10 $\mu \mathrm{L}$ analyte $\left.+10 \mu \mathrm{LTFA}+10 \mu \mathrm{LH} \mathrm{H}_{2} \mathrm{O}\right)$ Reaction condition: Biotin-Napdialyne Conjugate $(0.6 \mathrm{mM})$, analyte $(2 \mathrm{mM}), 20 \% \mathrm{TFA}, 37^{\circ} \mathrm{C}, 3 \mathrm{~h}$. IPA $(450 \mu \mathrm{~L})$
Dilute ten-times with IPA	

Agarose beads $(50 \mu \mathrm{~L})$
3. Beads capture

Reaction condition: Reaction Mixture Dilute $(50 \mu \mathrm{~L})$, agarose beads $(50 \mu \mathrm{~L}), \mathrm{RT}, 1 \mathrm{~h}$.

Centrifugation

- Supernatant group: $30 \mu \mathrm{~L}$ of supernatant was tested for fluorescence intensity.
- Beads group: The collected beads were suspended with IPA $(30 \mu \mathrm{~L})$, and $30 \mu \mathrm{~L}$ of this suspension was tested for fluorescence intensity.

Figure S6. Work-flow of the three-step capture assay by probe Napdialyne- N_{3}.

- Experimental procedure

Methods and materials
All chemicals were used as received unless otherwise stated. L-citrulline was obtained from Bide Pharmatech Ltd. (Shanghai, China). The Peptides were custom-synthesized from GL Biochem Ltd. (Shanghai, China). The streptavidin agarose resin (catalog No. 20347) was purchased from Thermo Scientific (USA). The 96-well plate (black, flat, not treated) was purchased from Corning ${ }^{\circledR}$ (USA). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker 400 NMR spectrometer. Proton chemical shifts of NMR spectra were calibrated with TMS as internals reference. ESI-MS and HRMS spectral data were recorded on Quadrupole LC/MS 6120 and TripleTOFTM 5600^{+}. Fluorescence analysis was performed on Thermo Scientific ${ }^{\mathrm{TM}}$ Varioskan ${ }^{\mathrm{TM}}$ LUX microplate reader unless otherwise stated.

1. Synthesis of probe Napdial

Napdial-Cit

A solution of selenium dioxide ($278 \mathrm{mg}, 2.5 \mathrm{mmol}$) in 1,4-dioxane (5 mL) and $\mathrm{H}_{2} \mathrm{O}(750 \mu \mathrm{~L})$ was heated to $55^{\circ} \mathrm{C}$ until the selenium dioxide was dissolved. Then 2-acetyl-6methoxunaphthalene ($500 \mathrm{mg}, 2.5 \mathrm{mmol}$) was added in. The reaction mixture was refluxed overnight. After cooling, the precipitate was filtered off, and the filtrate was concentrated. The crude was purified by silica gel column chromatography (petroleum ether : ethyl acetate $=10: 1$), and compound Napdial was obtained as a yellow solid ($370 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.75(\mathrm{~s}, 0.5 \mathrm{H}), 8.81(\mathrm{~s}, 0.5 \mathrm{H}), 8.63(\mathrm{~s}, 0.5 \mathrm{H}), 8.11(\mathrm{t}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=2.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 0.5 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 196.33$, $193.78,190.55,188.11,160.58,160.14,159.94,138.05,137.63,137.45,133.51,132.19$, $131.92,131.80,129.32,128.98,127.90,127.73,127.66,127.43,127.28,125.84,125.61$, $125.53,120.28,119.95,106.75,106.53,91.25,89.57,56.00,55.89$; HRMS: (ESI) [M+H$\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}$calc. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{3}, 215.0708$, observed 215.0707.

To a solution of L-citrulline ($41 \mathrm{mg}, 0.23 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O} /$ TFA ($1: 1,4 \mathrm{~mL}$) was added Napdial ($50 \mathrm{mg}, 0.23 \mathrm{mmol}$). After being stirred under $37^{\circ} \mathrm{C}$ for 10 hours, the reaction mixture was concentrated. The obtained crude was purified by reverse-phase silica gel column chromatography $\left(\mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}=2: 1\right)$ to afford Napdial-Cit as a white solid ($26 \mathrm{mg}, 43 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.35$ (d, $J=$
$2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=2.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}\right) \delta$ 173.1, 171.2, 158.2, 157.1, 135.0, 129.9, 129.1, 128.7, 128.3, 127.8, 125.4, 119.7, 106.4, 64.3, 64.2, 55.7, 53.1, 52.8, 28.1, 27.9, 23.4, 23.0; HRMS: (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{5}$, 372.1559 , observed 372.1562 .
2. Synthesis of probe Napdialyne

The synthesis of probe Napdialyne was based on a combination of previous reports with modifications. ${ }^{1,2}$

A solution of 4'-bromoacetophenone ($1.0 \mathrm{~g}, 5.02 \mathrm{mmol}$), triphenylphosphine ($65 \mathrm{mg}, 0.25$ mmol), palladium chloride ($9 \mathrm{mg}, 0.05 \mathrm{mmol}$), cupric acetate ($9.1 \mathrm{mg}, 0.05 \mathrm{mmol}$), trimethylsilylacetylene (TMSA, $1078 \mu \mathrm{~L}, 7.63 \mathrm{mmol}$) in trimethylamine (25 mL) was refluxed under $100^{\circ} \mathrm{C}$ for 1.5 h . After cooling, the reaction mixture was mixed with water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated on a rotary evaporator. The obtained crude was further purified by silica gel column chromatography (petroleum ether : ethyl acetate $=30: 1$) to yield compound $\mathbf{1}$ as a yellow oil (1.087 g , quantitative yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 197.32, 136.52, 132.20, 128.27, 128.09, 104.20, 98.22, 26.73, 0.00; HRMS: (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{OSi}$, 217.1049, observed 217.0987.

A solution of compound $\mathbf{1}(1.0 \mathrm{~g}, 5.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(690 \mathrm{mg}, 5.04 \mathrm{mmol})$ in $\mathrm{MeOH}(40$ mL) was stirred at room temperature for 15 min . Then the reaction mixture was diluted with water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated on a rotary evaporator to get
compound $\mathbf{2}$ as a yellow solid (666 mg , quantitative yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) δ $7.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.25,136.75,132.28,128.18,126.91,82.76,80.45,26.63$; HRMS: (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}, 145.0653$, observed 145.0602.

A solution of compound $2(250 \mathrm{mg}, 1.74 \mathrm{mmol})$, triphenylphosphine ($23 \mathrm{mg}, 0.087 \mathrm{mmol}$), palladium chloride ($15.5 \mathrm{mg}, 0.087 \mathrm{mmol}$), cupric acetate ($16 \mathrm{mg}, 0.087 \mathrm{mmol}$), and 2-bromo-6-methoxynaphthalene ($1650 \mathrm{mg}, 6.96 \mathrm{mmol}$) in triethylamine $(25 \mathrm{~mL})$ was refluxed under $100^{\circ} \mathrm{C}$ for 2 h . After cooling, the reaction mixture was diluted with water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated on a rotary evaporator. The obtained crude was purified by $\mathrm{Al}_{2} \mathrm{O}_{3}$ column chromatography (petroleum ether : ethyl acetate $=20: 1$) to yield compound $\mathbf{3}$ as a white solid ($195 \mathrm{mg}, 39 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~s}, 1 \mathrm{H})$, 7.97 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.74$ (dd, $J=4.8,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.65$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57$ (d, $J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (dd, $J=2.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.63$ (s, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.37, 158.57, 136.02, 134.42, 131.69, 131.63, 129.44, $128.88,128.45,128.43,128.30,126.96,119.58,117.47,105.84,93.49,88.38,55.37,26.62$; HRMS: (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}_{2}, 301.1229$, observed 301.1230.

A solution of compound $\mathbf{3}(200 \mathrm{mg}, 0.67 \mathrm{mmol})$ and iodine ($338 \mathrm{mg}, 1.33 \mathrm{mmol}$) in a mixture of DMSO and $\mathrm{H}_{2} \mathrm{O}\left(20 \mathrm{~mL}\right.$, DMSO/ $\left.\mathrm{H}_{2} \mathrm{O}=4 / 1\right)$ was refluxed under $100^{\circ} \mathrm{C}$ for 2 h . After cooling, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three times. The combined organic layers were washed sequentially with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution (1 $\mathrm{mol} / \mathrm{L}, 20 \mathrm{~mL}$) and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated on a rotary evaporator. The crude was stirred with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a white slurry, which was filtered to give the final compound Napdialyne as a light yellow solid ($130 \mathrm{mg}, 62 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.72$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=2.4,8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , d_{6}-DMSO) δ 195.97, 158.94, 134.74, 133.49, 132.01, 131.71, 130.21, 129.98, 128.98, 128.49, $127.71,127.65,120.04,116.94,106.62,93.63,90.03,88.95,55.83$; HRMS: (ESI) [M+H$\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}$calc. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{3}, 315.1021$, observed 315.1005.

To a solution of L-citrulline ($56 \mathrm{mg}, 0.318 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O} / \mathrm{TFA}(1: 1,8 \mathrm{~mL})$ was added Napdialyne ($100 \mathrm{mg}, 0.318 \mathrm{mmol}$). After being stirred under $37^{\circ} \mathrm{C}$ for 10 hours, the reaction mixture was concentrated. The obtained crude was recrystallized with MeOH , and the obtained solid (unpure) was dissolved in MeOH and further precipitated from petroleum ether. And the obtained solid was further mixed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a white slurry, which was filtered to afford Napdialyne-Cit as a white solid ($46 \mathrm{mg}, 31 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , d_{6}-DMSO) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{dd}, J=1.2$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.34(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{dd}, J=2.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~m}$, $2 \mathrm{H}), 2.67(\mathrm{~s}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) δ 173.03, 170.26, 158.71, 157.04, 134.71, 134.66, 134.55, 132.41, 131.68, 129.89, 129.00, 128.51, 127.71, 123.43, 119.97, 106.58, 91.19, 88.89, 63.90, 63.71, 55.82, 54.24, 53.94, 28.44, 23.61, 23.46; HRMS: (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5}, 472.1872$, observed 472.1859.
3. Synthesis of probe Napdialyne- N_{3}

A solution of 6-bromo-2-naphthol ($2.0 \mathrm{~g}, 8.97 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1240 \mathrm{mg}, 8.97 \mathrm{mmol})$ and 1,2dibromoethane ($3863 \mu \mathrm{~L}, 44.83 \mathrm{mmol}$) in acetonitrile (30 mL)was refluxed for 8 h under $95^{\circ} \mathrm{C}$. After cooling to room temperature, the reaction mixture was mixed with water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated on a rotary evaporator. The obtained crude was further purified by silica gel column chromatography (petroleum ether : ethyl acetate $=10: 1$) to yield compound 4 as a yellow oil $(1.46 \mathrm{~g}, 50 \%$ yield $) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92$ (s, 1H), 7.67 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=1.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (dd, $J=2.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.31,132.85,130.27,129.78,129.68,128.75,128.41$, 119.75, 117.44, 107.03, 67.85, 28.89; HRMS: (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrO}, 328.9177$, observed 328.9129 .

A solution of compound $\mathbf{4}(750 \mathrm{mg}, 2.29 \mathrm{mmol})$ and sodium azide $(164 \mathrm{mg}, 2.52 \mathrm{mmol})$ in a mixture of DMSO (10 mL) was heated under $50^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three times. The combined organic layers were washed brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated on a rotary evaporator to get compound $\mathbf{5}$ as a white solid (890 mg , quantitative yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{dd}, J=2.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=2.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}$, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.45,132.83$, 130.24, 129.75, 129.68, 128.72, 128.40, 119.73, 117.40, 106.79, 66.95, 50.09; HRMS: (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrN}_{3} \mathrm{O}, 292.0085$, observed 292.0023.

A solution of compound $\mathbf{2}(500 \mathrm{mg}, 3.47 \mathrm{mmol})$, tetrakis(triphenylphosphine) palladium (320 $\mathrm{mg}, 0.278 \mathrm{mmol})$, and compound $\mathbf{5}(1210 \mathrm{mg}, 4.16 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ and diisopropylamine (20 mL) was refluxed under $100^{\circ} \mathrm{C}$ for 5 h . After cooling to room temperature, the reaction mixture was diluted with water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated on a rotary evaporator. The obtained crude was purified by silica gel column chromatography (petroleum ether : $\mathrm{DCM}=1: 1$) to yield compound $\mathbf{6}$ as a yellow solid (440 $\mathrm{mg}, 36 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{dd}, J=2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{t}, J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.36, 157.13, 136.07, 134.21, $131.69,131.65,129.69,129.01,128.69,128.35,128.31,127.01,119.55,117.86,106.84$, 93.33, 88.54, 66.98, 50.09, 26.63; HRMS: (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}, 356.1399$, observed 356.1394.

A solution of compound $6(130 \mathrm{mg}, 0.366 \mathrm{mmol})$ and iodine ($186 \mathrm{mg}, 0.732 \mathrm{mmol}$) in a mixture of DMSO and $\mathrm{H}_{2} \mathrm{O}\left(20 \mathrm{~mL}, \mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}=4 / 1\right)$ was refluxed under $100{ }^{\circ} \mathrm{C}$ for 4 h . After cooling to room temperature, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three times. The combined organic layers were washed sequentially with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution ($1 \mathrm{~mol} / \mathrm{L}, 20 \mathrm{~mL}$) and brine. Then it was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated on a rotary evaporator. The obtained crude was mixed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a white slurry, which was filtered to give the final compound 7 (Napdialyne- $\mathbf{N}_{\mathbf{3}}$) as a light yellow solid ($130 \mathrm{mg}, 65 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.14$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.62(\mathrm{dd}, J=1.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=2.4,8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{t}, J=4.8 \mathrm{~Hz}$, 2 H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, d_{6}-DMSO) δ 195.97, 157.49, 134.60, 133.51, 132.03, 131.72, $130.24,130.19,129.06,128.65,127.85,127.56,119.95,117.17,107.65,93.54,90.04,89.04$, 67.41, 49.97; HRMS: (ESI) [M+H- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}$calc. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}, 370.1192$, observed 370.1149 .

4. Fluorescence measurement

4.1 Fluorescence measurement using probe Napdial

For a typical experiment, a solution of Napdial, L-citrulline (2-fold dilution) and trichloroacetic acid $(40 \mu \mathrm{~L})$ in $\mathrm{ddH}_{2} \mathrm{O}(160 \mu \mathrm{~L})$ was incubated at $50^{\circ} \mathrm{C}$ for 3 h in 96 -well plates. The final concentration for Napdial was $100 \mu \mathrm{M}$. Then $10 \mu \mathrm{~L}$ of reaction mixture was taken out, and diluted with $\mathrm{MeOH}(90 \mu \mathrm{~L})$ before measurement.

4.2 Fluorescence measurement using probe Napdialyne

For a typical experiment, a solution of Napdialyne ($10 \mu \mathrm{~L}$), L-citrulline ($10 \mu \mathrm{~L}, 2$-fold dilution) and trichloroacetic acid $(40 \mu \mathrm{~L})$ in $\mathrm{ddH}_{2} \mathrm{O}(140 \mu \mathrm{~L})$ to incubated at $50^{\circ} \mathrm{C}$ for 3 h in 96 -well plates. The final concentration for Napdialyne was $50 \mu \mathrm{M}$. Then $10 \mu \mathrm{~L}$ of reaction mixture was taken out, and diluted with different solvents $(90 \mu \mathrm{~L})$ before measurement.
4.3 Fluorescence measurement using Napdialyne- N_{3} with DBCO-PEG4-biotin
 Napdialyne- $\mathrm{N}_{3}(30 \mu \mathrm{~L}, 10 \mathrm{mM}$ in DMSO) in $\mathrm{MeOH}(130 \mu \mathrm{~L})$ was rotated at room temperature for 3 h in 1.5 mL centrifuge tube. Then $20 \mu \mathrm{~L}$ of this reaction solution was taken out, and mixed with $10 \mu \mathrm{~L}$ of analyte, $10 \mu \mathrm{~L}$ of TFA and $10 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$. The mixture was allowed to incubate at $37^{\circ} \mathrm{C}$ for 3 h . Then it was diluted 10 -times with IPA $(450 \mu \mathrm{~L})$. After that, $50 \mu \mathrm{~L}$ of this dilute was taken out, and mixed with agarose beads ($50 \mu \mathrm{~L}$). The mixture was rotated at room temperature for 1 h , and centrifuged to separate liquid and beads. $30 \mu \mathrm{~L}$ of the supernatant was analyzed by fluorescence measurement, and designed as "supernatant" group. The beads were further diluted with $30 \mu \mathrm{~L}$ of IPA, and $30 \mu \mathrm{~L}$ of this IPA dilute was analyzed by fluorescence measurement, and designed as "beads" group.

- $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds

Solvent: d_{6}-DMSO
$\begin{array}{lllllllllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{c}100 \\ \mathrm{f} 1 \\ (\mathrm{ppm})\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

Solvent: CDCl_{3}

- Reference

1 Q.-H. Gao, Z. Fei, Y.-P. Zhu, M. Lian, F.-C. Jia, M.-C. Liu, N.-F. She and A.-X. Wu, Tetrahedron, 2013, 69, 22-28.
2 N. Mase, T. Ando, F. Shibagaki, A. Sugita, T. Narumi, M. Toda, N. Watanabe and F. Tanaka, Tetrahedron Lett., 2014, 55, 1946-1948.

