Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2019

The UVA response of enolic dibenzoylmethane: Beyond the static approach

Marko Kojić¹, Igor Lyskov², Branislav Milovanović¹, Christel M. Marian³ and Mihajlo Etinski^{*1}

Supporting Information

¹Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16 11000 Belgrade, Serbia

²Chemical and Quantum Physics Group, ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3000, Australia

³Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany

^{*}To whom correspondence should be addressed; E-mail: etinski@ffh.bg.ac.rs

Figure S1: Molar excitation coefficient of $\pi\pi^*$ (black line) and $n\pi^*$ (red line) states simulated by employing the classical (a) and quantum (b) computational protocols with 150 (full line), 100 (dashed line) and 50 (dotted line) points.

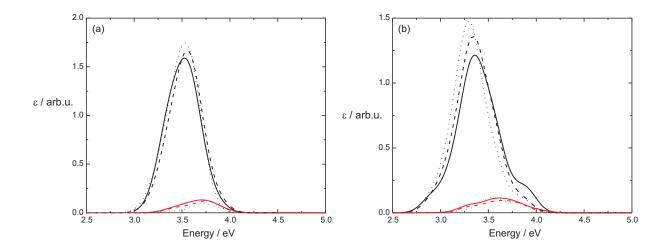


Figure S2: Correlation between the $\pi\pi^*$ excitation energies and the $\Delta(OH)$ coordinates sampled in the classical simulation. The Pearson correlation coefficient is 0.141.

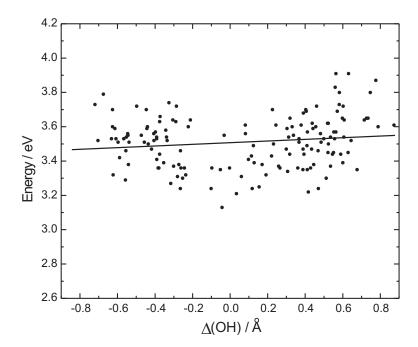


Figure S3: Correlation between the $\pi\pi^*$ excitation energies and the d(CO) coordinate sampled in the classical simulation. The d(CO) coordinate is a sum of two C-O bonds. The Pearson correlation coefficient is -0.274.

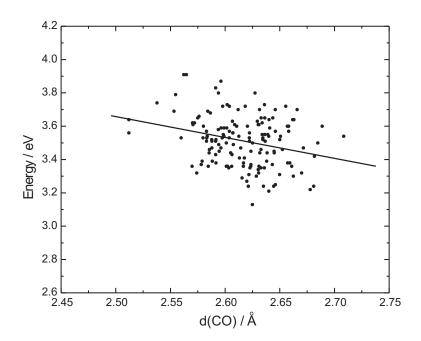


Figure S4: Correlation between the $\pi\pi^*$ excitation energies and the d(C10-C11) coordinates sampled in the classical simulation. The Pearson correlation coefficient is -0.068.

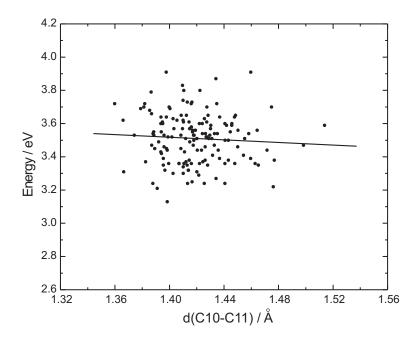


Figure S5: Correlation between the $\pi\pi^*$ excitation energies and the C1-C2-C3 angles sampled in the classical simulation. The Pearson correlation coefficient is -0.005.

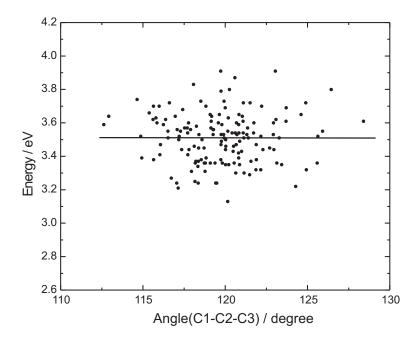


Figure S6: Correlation between the $\pi\pi^*$ excitation energies and the C11-C10-C1-C2 dihedral angles sampled in the classical simulation. The Pearson correlation coefficient is -0.033.

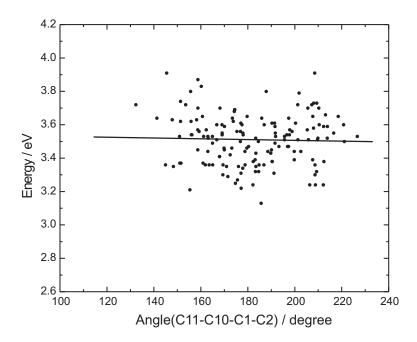
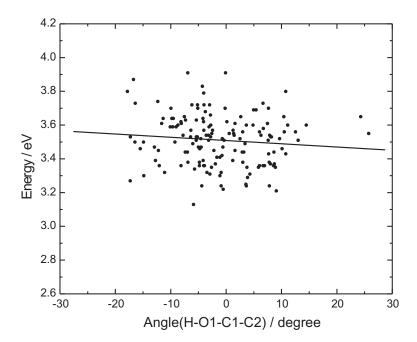



Figure S7: Correlation between the $\pi\pi^*$ excitation energies and the H-O1-C1-C2 dihedral angles sampled in the classical simulation. The Pearson correlation coefficient is -0.101.

