Supporting Information to

Photoelectrocatalytic Degradation of Emerging Contaminants at WO₃/BiVO₄ Photoanodes in Aqueous Solution.

Vito Cristino^(a), Luisa Pasti^(a)*, Nicola Marchetti^(a), Serena Berardi^(a), Carlo Alberto Bignozzi^(a) Alessandra Molinari^(a), Francesco Passabi^(a), Stefano Caramori^{*(a)}, Lucia Amidani^(b), Michele Orlandi,^(c) Nicola Bazzanella,^(c) Alberto Piccioni^(d), Jagadesh Kopula Kesavan^(d), Federico Boscherini^(d) and Luca Pasquini^(d)

- (a) Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
- (b) Helmholtz-Zentrum dresden-Rossendorf, c/o European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France.
- (c) Physics Department of the Trento University, Via Sommarive 14, 38123, Povo, Trento, Italy
- (d) Department of Physics and Astronomy, University of Bologna, Viale C. Berti Pichat 6/2, 40127, Bologna, Italy.

Figure S1. X ray diffractogram confirming the monoclinic crystal structure of $BiVO_4$ (blue arrows). Diffraction peaks assigned to WO_3 (red arrows) and to the underlying ohmic support (Fluorine doped Tin Oxide, black arrows) are also well evident. No V (V) oxide was detected within the sensitivity of this technique.

Figure S2. XRD of BiVO₄ powder

Figure S3. Wide area $(3x3 \ \mu m)$ AFM imaging of WO₃ (A) and WO₃/BiVO₄ (B) thin films. In (A) the presence of relatively large and monodisperse particles is evident compared to (B), where a smoother appearance is due to the presence of smaller particles, covering and filling the voids between the WO₃ ones.

(A)

(C)

Figure S4: (A) Cross sectional view of the $WO_3/BiVO_4$ heterojunction; (B) Thin film surface with spots sampled by EDS analysis (C) showing the elemental contributions of Bi, W and O as the only significant constituents of the interface.

Figure S5. Generator/Collector experiments in oxygen detection with WO₃/BiVO₄ biased at 0.65 V vs SCE under AM 1.5 G illumination. 0.5 M Na₂SO₄ at pH 7.

Figure S6. Detection of H_2O_2 through I_3^- formation following addition of excess NaI to photoelectrolyzed 0.5 M Na₂SO₄.

Figure S7. J/V curves in phosphate and borate buffers compared to Na_2SO_4 . The electrolyte concentration was 0.5 M in all cases.

Figure S8. Oxygen evolution in phosphate buffer determined during constant potential electrolysis. At the same voltage (0.65 V vs SCE) at which in the Na₂SO₄ electrolytes 0.5 mA/cm² are obtained, here ca. 2 mA/cm² are observed, consistent with the JV curves of Figure S6. Saturation of the solution with dissolved oxygen thus occurs within the first 30 minutes of photoelectrolysis. Reference IrO₂ is here galvanostatically biased at a current of $2mA/cm^2$

Figure S9. Detection of H_2O_2 through I_3^- formation following addition of excess NaI to photoelectrolyzed 0.5 M phosphate buffer. The peak centred at 356 nm, evident in Figure S5 was absent in this case.

Figure S10. ESR spectra of BiVO₄ (A) and WO₃ (B) suspensions in water during λ > 420 nm illumination in the presence of DMPO as a spin trap. The very weak signal in Figure 3 A is a triplet, probably resulting from the coupling with N in a decomposition of DMPO produced under illumination.

Figure S11. J/V curves of $WO_3/BiVO_4$ under front AM 1.5 G illumination in the presence of different organic hole scavengers at pH 7. The concentration of the sodium salts was always 0.5 M. Methanol was present in 20% V/V in sodium sulphate.

Figure S12. IPCE spectra (front illumination mode) recorded in the presence of sacrificial agents at neutral pH at 1.2 V vs SCE. Upon excitation of the semiconductor $IPCE = \varphi_{e/h}\varphi_{tr}\varphi_{if}$, $(\varphi_{e/h}, \varphi_{tr})$ and φ_{if} are the quantum yield of charge generation, charge transport, and interfacial charge injection respectively); $\varphi_{e/h} = 1$ (every absorbed photon results in the creation of an electron/hole pair) and if $\varphi_{if} \approx 1$ in the presence of good hole scavengers, it follows that the maximum IPCE is essentially determined by the efficiency of charge transport across the interpenetrated junction.