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Figure S1.  X ray diffractogram confirming the monoclinic crystal structure of BiVO4 (blue arrows). 
Diffraction peaks assigned to WO3 (red arrows) and to the underlying ohmic support (Fluorine 
doped Tin Oxide, black arrows) are also well evident. No V (V) oxide was detected within the 
sensitivity of this technique.      
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Figure S2. XRD of BiVO4 powder



Figure S3. Wide area (3x3 µm) AFM imaging of WO3 (A) and WO3/BiVO4 (B) thin films. In (A) 
the presence of relatively large and monodisperse particles is evident compared to (B), where a 
smoother appearance is due to the presence of smaller particles, covering and filling the voids 
between the WO3 ones.  
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Figure S4: (A) Cross sectional view of the WO3/BiVO4 heterojunction; (B) Thin film surface with 
spots sampled by EDS analysis (C) showing the elemental contributions of Bi, W and O as the only 
significant constituents of the interface.     
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Figure S5. Generator/Collector experiments in oxygen detection with WO3/BiVO4 biased at 0.65 V 
vs SCE under AM 1.5 G illumination. 0.5 M Na2SO4 at pH 7.  
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Figure S6. Detection of H2O2 through I3
- formation following addition of excess NaI to 

photoelectrolyzed 0.5 M Na2SO4. 
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Figure S7. J/V curves in phosphate and borate buffers compared to Na2SO4. The electrolyte 
concentration was 0.5 M in all cases. 
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Figure S8. Oxygen evolution in phosphate buffer determined during constant potential electrolysis. 
At the same voltage (0.65 V vs SCE) at which in the Na2SO4 electrolytes 0.5 mA/cm2 are obtained, 
here ca. 2 mA/cm2 are observed, consistent with the JV curves of Figure S6. Saturation of the 
solution with dissolved oxygen thus occurs within the first 30 minutes of photoelectrolysis. 
Reference IrO2 is here galvanostatically biased at a current of 2mA/cm2
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Figure S9. Detection of H2O2 through I3
- formation following addition of excess NaI to 

photoelectrolyzed 0.5 M phosphate buffer. The peak centred at 356 nm, evident in Figure S5 was 
absent in this case.  

Figure S10. ESR spectra of BiVO4 (A) and WO3 (B) suspensions in water during λ> 420 nm 
illumination in the presence of DMPO as a spin trap. The very weak signal in Figure 3 A is a triplet, 
probably resulting from the coupling with N in a decomposition of DMPO produced under 
illumination.   
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Figure S11. J/V curves of WO3/BiVO4  under front AM 1.5 G  illumination in the presence of 
different organic hole scavengers at pH 7. The concentration of the sodium salts was always 0.5 M. 
Methanol was present in 20% V/V in sodium sulphate.   

Figure S12. IPCE spectra (front illumination mode) recorded in the presence of sacrificial agents at 
neutral pH at 1.2 V vs SCE. Upon excitation of the semiconductor ,   (φe/h,  φtr and 𝐼𝑃𝐶𝐸 =  𝜑𝑒/ℎ𝜑𝑡𝑟𝜑𝑖𝑓

φif  are the quantum yield of charge generation, charge transport, and interfacial charge injection 
respectively); φe/h = 1 (every absorbed photon results in the creation of an electron/hole pair) and if  
φif ≈ 1 in the presence of  good hole scavengers, it follows that the maximum IPCE is essentially 
determined by the efficiency of charge transport across the interpenetrated  junction.    


