Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2019

Supporting information

Synthesis of silver loaded ZnO nanorods and their enhanced photocatalytic activity and photoconductivity study

Prashant V. Pimpliskar,^a Shrinivas C. Motekar,^b Govind G. Umarji^{a,c}, Wonyoung Lee^c and Sudhir S. Arbuj,^{a,*}

^aCentre for Materials for Electronics Technology, Off Pashan Road, Panchvati, Pune-411008, India, Tel:+91 20 25899273: Fax: +91 20 25898180, E-mail: sudhir1305@gmail.com / sudhir@cmet.gov.in.
^bDepartment of Chemistry, Sunderrao Solanke Mahavidhyalaya, Majalgaon, Beed-431131, Maharashtra, India.
^cEnergy Conversion Lab, School of Mechanical Engineering, Sungkyunkwan University, Suwon-16419, South Korea.

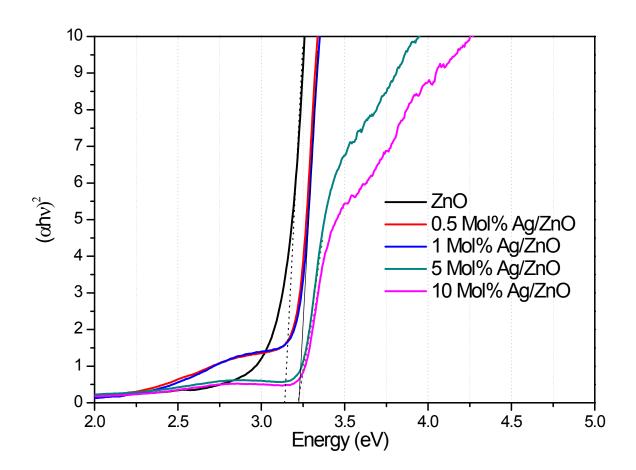


Figure S1: Tauc plot for ZnO and Ag loaded ZnO nanostructures

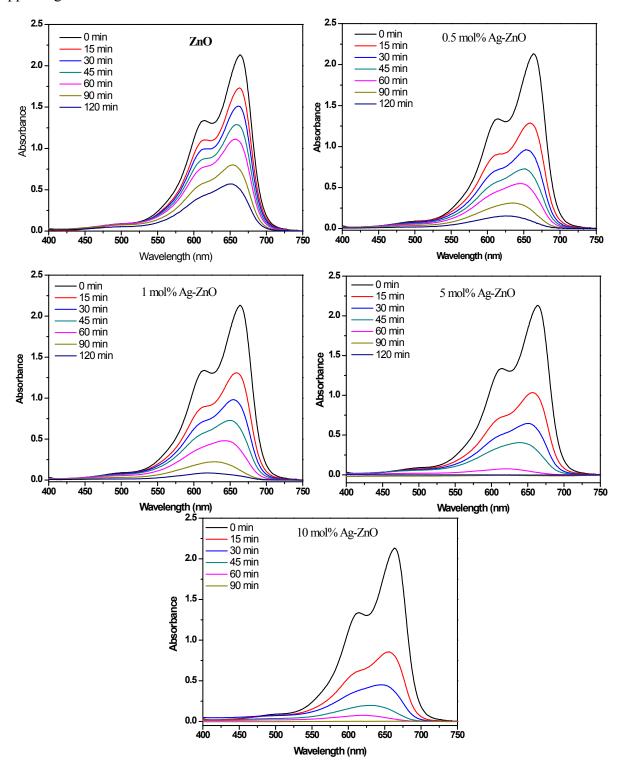
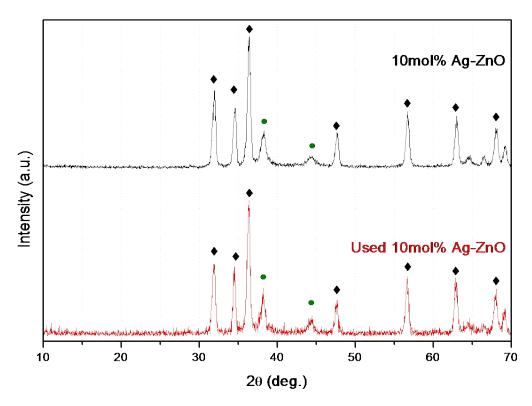


Fig. S2. Graph of MB degradation with irradiation time using Ag-ZnO catalyst

The recycle study of the catalyst was performed using 10 mol% Ag-ZnO nanorods for photocatalytic MB degradation under same experimental set up and results are tabulated in Table


Supporting information

S1. Even after third recycle the catalyst showed 92 % of MB degradation with 1h of irradiation, this clearly confirms the stability and reproducibility of the catalyst.

Table S1. Amount of %MB degradation after 1h of irradiation over 10 mol % Ag-ZnO catalyst

Sr. No.	Description	% MB degrade
1	First run	96
2	Second run	94
3	Third run	92

XRD analysis of as synthesized and used catalyst is depicted in Fig. S 2. The Ag-ZnO catalyst recovered after third run was analyzed with X-ray diffractogram. The identical XRD pattern confirms the stability of Ag-ZnO catalyst.

Fig. S3. XRD pattern of 10 mol% Ag-ZnO before and after photocatalytic MB degradation reaction