Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2019

Supplementary Information

Exploration and Evaluation of Proton Sources Assisted Photocatalyst for Hydrogen Generation

T. C. Bhagya^a, Athira Krishnan^b, Arunima Rajan S^a, M. Ameen Sha^a, B. R. Sreelekshmy^c, P. Jineesh^a, S. M. A. Shibli^{a^{*,}}

*Corresponding author: S. M. A. Shibli, E-mail: smashibli@yahoo.com, Tel: +91 8547067230.

Number of pages in the supporting information: 12

Number of figures in the supporting information: 12

Number of tables in the supporting information: 2

Content

Fig. S1. Raman spectra of (a) pure Fe₂O₃, (b) pure TiO₂, and (c) Fe₂O₃-TiO₂

Fig. S2. FT-IR spectra of Fe₂O₃-TiO₂ photocatalyst

Fig. S3. SEM images of (A1, A2, A3) pure Fe₂O₃, (B1, B2, B3) pure TiO₂, and (C1, C2, C3) Fe₂O₃-TiO₂ (at magnifications 1000 X, 3000 X, 6000 X)

Fig. S4. EDX spectrum of Fe₂O₃-TiO₂ photocatalyst

Fig. S5. Plot of transformed Kubelka - Munk function as a function of the energy of light for 1:1.5 Fe₂O₃-TiO₂, 1:1 Fe₂O₃-TiO₂, 1.5:1 Fe₂O₃-TiO₂

Fig. S6. Photoluminescence (PL) spectra of 1:1 Fe_2O_3 -TiO₂ (A); 1:1.5 Fe_2O_3 -TiO₂ (B); 1.5:1 Fe_2O_3 -TiO₂ (C), using the excitation wavelength of 430 nm

Fig. S7. Apparent quantum efficiency of photocatalytic hydrogen generation with the 1.5:1 Fe₂O₃-TiO₂, 1:1 Fe₂O₃-TiO₂, 1:1.5 Fe₂O₃-TiO₂ systems under visible light irradiation

Fig. S8. N₂ adsorption and desorption isotherm of (A)1:1 Fe₂O₃-TiO₂, (B) 1:1.5 Fe₂O₃-TiO₂, (C) 1.5:1 Fe₂O₃-TiO₂; and (D) the corresponding surface area, S_{BET} values of, (a) 1:1.5 Fe₂O₃-TiO₂, TiO₂, (b)1:1 Fe₂O₃-TiO₂, (c)1.5:1 Fe₂O₃-TiO₂

Fig. S9. GC analysis of (a) pure hydrogen (standard); (b) hydrogen generated from the proton source assisted Fe₂O₃-TiO₂ photocatalyst under visible light irradiation ($\lambda > 420$ nm)

Fig. S10. X-ray diffraction patterns of the 5 w/v% 1.5:1 Fe₂O₃-TiO₂, before and after photocatalytic test (PCT)

Fig. S11a. Lifetime evaluation of the photogenerated electrons for Fe₂O₃-TiO₂ photocatalyst from Time-resolved fluorescence

Fig. S11b. Nyquist plots of (a) Fe₂O₃, (b) TiO₂, and (c) Fe₂O₃-TiO₂

Table S1. Elemental composition of Fe₂O₃-TiO₂ photocatalyst

Table S2. Comparison of the photocatalytic activity with some reported systems

Fig. S1. Raman spectra of (a) pure Fe₂O₃, (b) pure TiO₂, and (c) Fe₂O₃-TiO₂

Fig. S2. FT-IR spectra of Fe₂O₃-TiO₂ photocatalyst

Fig. S3. SEM images of (A1, A2, A3) pure Fe₂O₃, (B1, B2, B3) pure TiO₂, and (C1, C2, C3) Fe₂O₃-TiO₂ (at magnifications 1000 X, 3000 X, 6000 X)

Fig. S4. EDX spectrum of Fe₂O₃-TiO₂ photocatalyst

Fig. S5. Plot of transformed Kubelka - Munk function as a function of the energy of light for 1:1.5 Fe₂O₃-TiO₂, 1:1 Fe₂O₃-TiO₂, 1.5:1 Fe₂O₃-TiO₂

Fig. S6. Photoluminescence (PL) spectra of 1:1 Fe_2O_3 -TiO₂ (A); 1:1.5 Fe_2O_3 -TiO₂ (B); 1.5:1 Fe_2O_3 -TiO₂ (C), using the excitation wavelength of 430 nm

Fig. S7. Apparent quantum efficiency of photocatalytic hydrogen generated with (a) 1.5:1 Fe₂O₃-TiO₂; (b) 1:1 Fe₂O₃-TiO₂; and (c) 1:1.5 Fe₂O₃-TiO₂ systems under visible light irradiation

Fig. S8. N₂ adsorption and desorption isotherm of (A)1:1 Fe₂O₃-TiO₂, (B) 1:1.5 Fe₂O₃-TiO₂, (C) 1.5:1 Fe₂O₃-TiO₂; and (D) the corresponding surface area, S_{BET} values of, (a) 1:1.5 Fe₂O₃-TiO₂, TiO₂, (b)1:1 Fe₂O₃-TiO₂, (c)1.5:1 Fe₂O₃-TiO₂

Fig. S9. GC analysis of (a) pure hydrogen (standard); (b) hydrogen generated from the proton source assisted Fe₂O₃-TiO₂ photocatalyst under visible light irradiation ($\lambda > 420$ nm)

Fig. S10. X-ray diffraction patterns of the 5 w/v% 1.5:1 Fe₂O₃-TiO₂, before and after photocatalytic test (PCT)

Fig. S11a. Lifetime evaluation of the photogenerated electrons for Fe₂O₃-TiO₂ photocatalyst from Time-resolved fluorescence

$Y = \sum Ai e^{t/T_i}$	(i = 1, 2)	(1)
$T = (A_i T_i^2) / (A_i T_i^2)$	(i = 1, 2)	(2)

Bi-exponential decay kinetics as in equation 1 is used to get the best fit of the Time-resolved fluorescence data, and the average lifetime is calculated using equation 2

Where t, T_i and A_i are constants, the value of which are obtained by fitting the decay curves.

Fig. S11b. Nyquist plots of (a) Fe₂O₃, (b) TiO₂, and (c) Fe₂O₃-TiO₂

Element	Weight%/STEM-	Weight%/ICP-MS				
	EDX					
Ti	26.16	28.475				
Fe	50.34	53.74				
0	23.50					

Table S1. Elemental composition of Fe₂O₃-TiO₂ photocatalyst

Parameter	[R 1] ⁶⁷	[R2] ⁶⁸	[R3] ⁶⁹	[R4] ⁷⁰	[R5] ⁷¹	[R6] ⁷²	[R7] ⁷³	[R 8] ⁷⁴	[R 9] ⁷⁵	[R10] ⁷⁶	[R11] ⁷⁷	[R12] ⁷⁸	[R13] ⁷⁹	Present work
Catalytic system	TiO ₂ -ZrO ₂ hollow spheres	Pt-CeO ₂	Pt/TiO2	Pt/Colloi dal WO _x wires	Fe3O4@Sn O2@MoS2/ g-C3N4 spheres	Cu2ZnS nS4/Ag/ PANI	Fe ₂ O ₃ - TiO ₂ hierarch ical structure	CuS- TiO2/Pt	MoS2/B- TiO2 sheets	Fe ₂ O ₃ /g- C ₃ N ₄	α-Fe2O3	CoP-CdS	TiO2/NiS	Fe ₂ O ₃ - TiO ₂
%Composition	-	1 wt% Pt- CeO ₂	0.17% Pt/TiO ₂	1 wt% Pt loaded WO _x	2.0 atm % of MoS ₂ /g- C ₃ N ₄	30 mg CZTS	H- Fe ₂ O ₃ /T iO ₂ -2%	1.97 atomic% Pt, CuS- TiO ₂ (1:2)	$\begin{array}{c} 1.0 \text{ wt\%} \\ MoS_2 + \\ B\text{-}TiO_2 \end{array}$	FCN containin g 0.02 wt% Fe	α, γ-Fe ₂ O ₃ (500 °C)	1 wt%- CoP-CdS	3.3 mol% NiS	1.5:1 Fe:Ti (5% w/v)
Particle size	-	< 10 nm	-	< 3 nm	~0.481 µm	< 40 nm	~ 33 nm	Average diameter (40-60 nm)	Length 1 µm, width 1 µm, thickness 0.4 µm	<20 nm	~27 nm	-	diameter- 300 nm, length 10 µm	10 nm
Surface area	53.6 m ² g ⁻¹	119.4 m ² g ⁻	$54 \operatorname{m}_{1}^{2} \mathrm{g}^{-}$	-	46.71 m ² g ⁻¹	-	28 cm ² g ⁻¹	15.87 m ² g ⁻¹	35.6 m ² g ⁻¹	63.4 m ² g ⁻¹	$57 m^2 g^{-1}$	7.23 m ² g ⁻¹	$30 \text{ m}^2\text{g}^{-1}$	85.56 m ² g ⁻¹
Sacrificial agents/ electron donors	Na ₂ S	ethanol	formald ehyde	Methano l	Triethanola mine	Na2S, Na2SO3	Na2S/Na 2SO3	Na2S/Na2 SO3	Methanol	Triethan olamine	Na ₂ SO ₃	Na2S/Na2S O3	methanol	Diethyl amine hydrogenchlo ride (as proton source)
Hydrogen production rate	23.7 µmol/8 h	93.43 µmol/2h	2.28 µmol min ⁻¹	464 μmol h ⁻¹	110.72 μmol h ⁻¹	859.6 µmol h⁻ ¹	217.6 µmol h ⁻¹	746 µmol h ⁻¹	0.50 mmol h ⁻¹	77.6 μmol h ⁻¹	<5 mL	$< 60 \text{ mmol} \\ g^{-1}$	655 μmol h ⁻¹	880 µmol h ⁻¹
Quantum efficiency	-	1.57%	10.91%	-	-	30.5%	0.94%	1.55%	-	-	0.26%	11.6%	-	19.39%
Cyclic stability	≤ 91.4% for 3 cycles	1.52 mmol (34 h)	Reliabl e stability (4 cycles of 3h each)	Not mentione d	Retained stability (5 cycles of 4 h each)	Retaine d stability (4 cycles of 5 h each)	~1500 µmol /7 h	Retained stability (5 cycles of 2 h each)	Retained (5 cycles of 5 h each)	Retained stability (5 cycles of 6 h each); <500 µmol/6 h	-	< 55 mmol g^{-1} (for 5 cycles of 4 h each)	Retained stability (4 cycles of 3 h each)	Retained stability (4 cycles of 6 h each); >2500 µmol/6 h

Table S2. Comparison of the photocatalytic activity with some reported systems.

References

67 J. Zhang, L. Li, Z. Xiao, D. Liu, S. Wang, J. Zhang, W. Zhang, Hollow sphere TiO_2 – ZrO_2 prepared by self-assembly with polystyrene colloidal template for both photocatalytic degradation and H₂ evolution from water splitting, ACS Sustainable Chem. Eng., 2016, **4**, 2037-2046.

68 N. R Manwar, A. A. Chilkalwar, K. K. Nanda, Y. S. Chaudhary, J. Subrt, S. S. Rayalu, N. K. Labhsetwar, Ceria supported Pt/PtO-Nanostructures: efficient photocatalyst for sacrificial donor assisted hydrogen generation under visible-NIR light irradiation, ACS Sustainable Chem. Eng., 2016, **4**, 2323-2332.

69 P. Chowdhury, G. Malekshoar, M. B. Ray, J. Zhu, A. K. Ray, Sacrificial hydrogen generation from formaldehyde with Pt/TiO₂ photocatalyst in solar radiation, Ind.Eng.Chem. res., 2013, **52**, 5023-5029.

70 T. Paik, M. Cargnello, T. R. Gordon, S. Zhang, H. Yun, J. D. Lee, C. B. Murray, Photocatalytic Hydrogen Evolution from Substoichiometric Colloidal WO₃–x Nanowires, ACS Energy Lett., 2018, **3**(8), 1904-1910.

71 D. Lu, H. Fan, K. K. Kondamareddy, H. Yu, A. Wang, H. Hao, J. Shen, Highly Efficient Visible-Light-Induced Photocatalytic Production of Hydrogen for Magnetically Retrievable Fe₃O₄@ SiO₂@ MoS₂/g-C₃N₄ Hierarchical Microspheres, ACS Sustainable Chem. Eng., 2018, **6**(8), 9903-9911.

72 X. Wang, Y. Ruan, S. Feng, S. Chen, K. Su, Ag Clusters Anchored Conducting Polyaniline As Highly Efficient Cocatalyst for Cu₂ZnSnS₄Nanocrystals toward Enhanced Photocatalytic Hydrogen Generation, ACS Sustainable Chem. Eng., 2018, **6**(9), 11424-11432.

73 Zhu, S, F Yao, C. Yin, Y. Li, W. Peng, J. Ma, D. Zhang, Fe₂O₃/TiO₂ photocatalyst of hierarchical structure for H₂ production from water under visible light irradiation, Microporous and Mesoporous Mater., 2014, **190**, 10-16

74 K. Manjunath, V. S. Souza, G. Nagaraju, J. M. L. Santos, J. Dupont, T. Ramakrishnappa, Superior activity of the CuS–TiO₂/Pt hybrid nanostructure towards visible light induced hydrogen production, New J. Chem., 2016, **40**(**12**), 10172-10180.

75 X. Yang, H. Huang, B. Jin, J. Luo, X. Zhou, Facile synthesis of MoS_2/B -TiO₂ nanosheets with exposed {001} facets and enhanced visible-light-driven photocatalytic H₂ production activity, RSC Adv., 2016, **6(108)**, 107075-107080.

76 Y. P. Li, F. T. Li, X. J. Wang, J. Zhao, J. N. Wei, Y. J. Hao, Y. Liu., Z-scheme electronic transfer of quantum-sized α -Fe₂O₃ modified g-C₃N₄ hybrids for enhanced photocatalytic hydrogen production, Int. J. Hydrogen Energy, 2017, **42**(**47**), 28327-28336.

77 S. Boumaza, H. Kabir, I. Gharbi, A. Belhadi, M. Trari, Preparation and photocatalytic H_2 -production on α -Fe₂O₃ prepared by solgel, Int. J. Hydrogen Energy, 43, 2018, 3424-3430.

78 J. Wang, P. Wang, C. Wang, Y. Ao, In-situ synthesis of well dispersed CoP nanoparticles modified CdS nanorods composite with boosted performance for photocatalytic hydrogen evolution, Int. J. Hydrogen Energy, 2018, **43**(**32**), 14934-14943.

79 F. Xu, L. Zhang, B. Cheng, J. Yu, Direct Z-Scheme TiO₂/NiS Core–Shell Hybrid Nanofibers with Enhanced Photocatalytic H₂-Production Activity, ACS Sustainable Chem. Eng., 2018, **6(9)**, 12291-12298.

•