Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2019

Fig. S1 The names for different ligands in complexes 1–6 (taking complex 1 as an example).

Table S1 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex **1**. (Ir, L1, L2 and acac denote the iridium atom and corresponding ligands presented in Figure S1.)

MO	Energy	Cor	nposit	tions		Assignment
		Ir	L1	L2	acac	
L+10	1.03	59	25	9	8	$d^{*}(Ir) + \pi^{*}(L1)$
L+9	0.89	37	39	21	4	$d^{*}(Ir) + \pi^{*}(L1 + L2)$
L+8	0.82	11	85	4	1	$d^{*}(Ir) + \pi^{*}(L1)$
L+7	0.12	6	92	1	1	$\pi^*(L1)$
L+6	-0.24	0	99	1	0	$\pi^*(L1)$
L+5	-0.50	0	98	1	0	$\pi^*(L1)$
L+4	-0.83	2	8	89	1	$\pi^*(L2)$
L+3	-0.97	2	2	3	93	$\pi^*(acac)$
L+2	-1.05	2	91	5	2	$\pi^*(L1)$
L+1	-1.46	5	1	92	1	$\pi^*(L2)$
L	-1.61	4	94	2	1	$\pi^*(L1)$
HOM	D–LUMO) ener	gy ga	р(3.	90 eV)
Н	-5.51	33	14	50	3	$d(Ir)+\pi(L1+L2)$
H-1	-6.07	36	12	7	45	$d(Ir)+\pi(L1+acac)$
Н-2	-6.26	6	50	33	10	π (L1+L2+acac)
H-3	-6.52	19	60	16	5	$d(Ir)+\pi(L1+L2)$
H-4	-6.62	66	20	10	5	$d(Ir)+\pi(L1+L2)$
Н-5	-7.02	30	11	9	49	$d(Ir)+\pi(L1+acac)$
H-6	-7.16	7	72	10	11	π (L1+L2+acac)
H - 7	-7.36	6	45	12	37	π (L1+L2+acac)
H-8	-7.48	2	40	28	30	π (L1+L2+acac)
H-9	-7.64	0	97	3	0	π (L1)
H-10	-8.10	6	13	40	41	π (L1+L2+acac)

	Engenery	Compositions				Aggiganaget
MO	Energy	Compositions			Assignment	
		lr	LI	L2	acac	
L+10	0.62	4	5	91	0	$d^{*}(Ir) + \pi^{*}(L1 + L2)$
L+9	0.60	16	9	73	2	$d^{*}(Ir) + \pi^{*}(L2)$
L+8	0.21	2	96	2	0	$\pi^*(L1)$
L+7	0.01	3	95	1	1	$\pi^*(L1)$
L+6	-0.42	1	99	0	0	π* (L1)
L+5	-0.51	0	99	0	0	$\pi^*(L1)$
L+4	-0.95	2	6	80	11	$\pi^*(L2+acac)$
L+3	-1.00	1	1	12	85	$\pi^*(L2+acac)$
L+2	-1.16	2	91	6	1	$\pi^*(L1)$
L+1	-1.58	5	1	92	1	π*(L2)
L	-1.86	3	95	1	1	π* (L1)
HOM	O–LUMO) enei	gy ga	p(3.	76 eV])
Н	-5.62	37	15	44	4	$d(Ir)+\pi(L1+L2)$
H-1	-6.12	36	5	5	53	$d(Ir)+\pi(acac)$
H-2	-6.40	3	69	28	1	π (L1+L2)
H-3	-6.47	10	49	36	5	$d(Ir)+\pi(L1+L2)$
H-4	-6.66	63	22	10	5	$d(Ir)+\pi(L1+L2)$
H-5	-6.94	7	44	45	3	$\pi(L1+L2)$
H-6	-7.02	24	29	9	39	$d(Ir)+\pi(L1+acac)$
H-7	-7.22	13	55	21	10	$d(Ir)+\pi(L1+L2+acac)$
H-8	-7.39	3	14	13	70	π (L1+L2+acac)
H-9	-7.58	0	98	1	0	π (L1)
H-10	-8.00	10	30	19	41	$d(Ir)+\pi(L1+L2+acac)$

Table S2 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex **2**. (Ir, L1, L2 and acac denote the iridium atom and corresponding ligands presented in Figure S1.)

Table S3 Frontier molecular orbital energies (eV) and compositions (%) in the ground
state for complex 3. (Ir, L1, L2 and acac denote the iridium atom and corresponding
ligands presented in Figure S1.)

MO	Energy	Compositions				Assignment
		Ir	L1	L2	acac	
L+10	0.52	3	9	88	0	$d^{*}(Ir) + \pi^{*}(L1 + L2)$
L+9	0.20	5	12	82	1	$\pi^{*}(L1+L2)$
L+8	0.04	7	84	8	1	π* (L1)
L+7	-0.01	1	97	1	0	π* (L1)
L+6	-0.50	0	98	1	0	$\pi^*(L1)$
L+5	-0.55	0	99	1	0	π* (L1)
L+4	-0.94	3	7	71	19	$\pi^*(L2+acac)$
L+3	-1.00	1	2	19	77	$\pi^*(L1+acac)$
L+2	-1.15	3	90	7	0	$\pi^*(L1)$
L+1	-1.62	5	2	91	1	π*(L2)
L	-1.82	3	94	2	1	$\pi^*(L1)$
HOM	D–LUMO	ener	gy ga	p(3.	75 eV])
Н	-5.57	36	15	45	4	$d(Ir)+\pi(L1+L2)$
H-1	-6.07	29	30	7	35	$d(Ir)+\pi(L1+acac)$
H-2	-6.19	8	71	2	19	$\pi(L1+acac)$
H-3	-6.42	8	18	70	4	π (L1+L2)
H-4	-6.62	61	19	15	5	$d(Ir)+\pi(L1+L2)$
H-5	-6.80	12	30	51	6	$d(Ir)+\pi(L1+L2)$
H-6	-7.03	28	22	9	40	$d(Ir)+\pi(L1+acac)$
H - 7	-7.20	8	79	7	7	π(L1)
H-8	-7.36	5	12	14	70	π (L1+L2+acac)
H-9	-7.60	1	98	1	1	π(L1)
H-10	-7.89	12	36	17	36	$d(Ir)+\pi(L1+L2+acac)$

Table S4 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex 4. (Ir, L1, L2 and acac denote the iridium atom and corresponding ligands presented in Figure S1.)

MO	Energy	Cor	nposit	tions		Assignment
		Ir	L1	L2	acac	_
L+10	0.52	2	7	91	0	π*(L2)
L+9	0.25	3	62	36	0	$\pi^{*}(L1+L2)$
L+8	0.16	8	34	56	2	$\pi^{*}(L1+L2)$
L+7	-0.23	2	98	0	0	$\pi^*(L1)$
L+6	-0.58	0	100	0	0	$\pi^*(L1)$
L+5	-0.92	3	17	67	13	$\pi^*(L1+L2+acac)$
L+4	-0.97	1	4	11	83	$\pi^*(L2+acac)$
L+3	-1.05	2	83	15	0	$\pi^{*}(L1+L2)$
L+2	-1.11	1	94	4	1	π* (L1)
L+1	-1.60	5	9	85	1	$\pi^*(L2)$
L	-1.69	4	87	9	1	$\pi^*(L1)$
HOM	D–LUMO	ener	rgy ga	р(3.	86 eV)
Н	-5.55	36	19	42	3	$d(Ir)+\pi(L1+L2)$
H-1	-6.07	29	25	9	37	$d(Ir)+\pi(L1+acac)$
Н-2	-6.15	9	65	9	17	$\pi(L1+acac)$
Н-3	-6.42	14	16	65	4	$d(Ir)+\pi(L1+L2)$
H - 4	-6.64	66	15	14	5	$d(Ir)+\pi(L1+L2)$
Н-5	-6.81	5	34	52	9	π (L1+L2)
H-6	-7.03	30	13	15	42	$d(Ir)+\pi(L1+L2+acac)$
H-7	-7.33	4	20	11	64	π (L1+L2+acac)
H-8	-7.37	3	90	1	7	π (L1+acac)
Н-9	-7.61	0	100	0	0	π (L1)
H-10	-7.88	10	47	13	30	$d(Ir)+\pi(L1+L2+acac)$

MO	Energy	Cor	nposi	tions		Assignment
		Ir	L1	L2	acac	
L+10	0.44	10	86	4	1	$d^{*}(Ir) + \pi^{*}(L1)$
L+9	0.18	6	12	82	1	$\pi^{*}(L1+L2)$
L+8	0.03	6	86	8	1	$\pi^*(L1)$
L+7	-0.06	1	98	1	0	$\pi^*(L1)$
L+6	-0.40	1	99	0	0	$\pi^*(L1)$
L+5	-0.64	0	98	1	0	$\pi^*(L1)$
L+4	-0.95	3	6	74	17	$\pi^*(L2+acac)$
L+3	-1.01	1	2	17	80	$\pi^*(L2+acac)$
L+2	-1.18	3	91	6	0	$\pi^*(L1)$
L+1	-1.63	5	2	92	1	$\pi^*(L2)$
L	-1.87	3	95	2	1	$\pi^*(L1)$
HOM	D–LUMC) ener	gy ga	p(3.	73 eV)
Н	-5.60	36	14	47	4	$d(Ir)+\pi(L1+L2)$
H-1	-6.12	36	8	6	50	$d(Ir)+\pi(acac)$
H-2	-6.35	1	91	2	5	π (L1)
H-3	-6.43	8	21	68	4	π (L1+L2)
H-4	-6.65	58	22	16	5	$d(Ir)+\pi(L1+L2)$
H-5	-6.81	15	30	50	5	$d(Ir)+\pi(L1+L2)$
H-6	-7.04	26	28	8	38	$d(Ir)+\pi(L1+acac)$
H-7	-7.20	12	69	9	10	$d(Ir)+\pi(L1+acac)$
H-8	-7.38	5	11	14	70	π (L1+L2+acac)
H-9	-7.52	0	98	1	1	π (L1)
H-10	-7.93	11	35	17	37	$d(Ir)+\pi(L1+L2+acac)$

Table S5 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex **5**. (Ir, L1, L2 and acac denote the iridium atom and corresponding ligands presented in Figure S1.)

Table S6 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex 6. (Ir, L1, L2 and acac denote the iridium atom and corresponding ligands presented in Figure S1.)

MO	Energy	Cor	nposit	tions		Assignment
		Ir	L1	L2	acac	
L+10	0.48	2	48	49	0	π*(L1+L2)
L+9	0.20	5	16	78	1	$\pi^{*}(L1+L2)$
L+8	0.08	7	80	12	1	$\pi^{*}(L1+L2)$
L+7	-0.42	1	99	0	0	π* (L1)
L+6	-0.56	1	99	0	0	$\pi^*(L1)$
L+5	-0.93	3	12	71	14	π *(L1+L2+acac)
L+4	-0.98	1	3	14	82	$\pi^*(L2+acac)$
L+3	-1.08	2	86	12	0	$\pi^{*}(L1+L2)$
L+2	-1.14	1	96	2	1	$\pi^*(L1)$
L+1	-1.61	5	4	90	1	$\pi^*(L2)$
L	-1.74	4	92	4	1	$\pi^*(L1)$
HOM	D–LUMO	ener	rgy ga	р(3.	82 eV])
Н	-5.56	36	17	43	3	$d(Ir)+\pi(L1+L2)$
H-1	-6.09	36	8	7	49	$d(Ir)+\pi(acac)$
Н-2	-6.24	2	75	18	5	π (L1+L2)
Н-3	-6.44	16	19	61	4	$d(Ir)+\pi(L1+L2)$
H - 4	-6.66	64	16	15	4	$d(Ir)+\pi(L1+L2)$
Н-5	-6.83	5	37	48	10	π (L1+L2+acac)
H-6	-7.03	29	15	15	41	$d(Ir)+\pi(L1+L2+acac)$
H-7	-7.35	4	20	12	64	π (L1+L2+acac)
H-8	-7.37	4	89	1	7	π(L1)
Н-9	-7.52	0	100	0	0	π(L1)
H-10	-7.90	11	39	15	35	$d(Ir)+\pi(L1+L2+acac)$

Table S7 Selected calculated wavelength λ (nm), oscillator strength *f*, major contribution, transition characters, and the available experimental wavelengths (nm) for complexes **1–6**. (H and L indicate HOMO and LUMO, respectively.)

	State	$\lambda(nm)/E(eV)$	f	Configuration	Assignment	Nature	Exptl ^a
1	\mathbf{S}_1	414/2.99	0.0621	H→L (90%)	$d(Ir)+\pi(L1+L2) \rightarrow \pi^*(L1)$	MLCT/LLCT/ILCT	
	\mathbf{S}_{10}	305/4.05	0.1264	H-2→L+1 (78%)	$\pi(L1+L2+acac) \rightarrow \pi^*(L2)$	LLCT/ILCT	
	S_{14}	295/4.19	0.2577	H-3→L (34%)	$d(Ir)+\pi(L1+L2) \rightarrow \pi^*(L1)$	MLCT/LLCT/ILCT	
				H-1→L+2 (32%)	$d(Ir)+\pi(L1+acac)\rightarrow\pi^*(L1)$	MLCT/LLCT/ILCT	
	S ₂₂	267/4.62	0.1402	H-4→L+3 (20%)	$d(Ir)+\pi(L1+L2)\rightarrow\pi^*(acac)$	MLCT/LLCT/ILCT	
				H-4→L+2 (18%)	$d(Ir) + \pi(L1 + L2) \rightarrow \pi^*(L1)$	MLCT/LLCT/ILCT	
	S ₂₆	263/4.70	0.1397	H-2→L+4 (51%)	$\pi(L1+L2+acac) \rightarrow \pi^*(L2)$	LLCT/ILCT	
				H→L+7 (16%)	$d(Ir) + \pi(L1 + L2) \rightarrow \pi^*(L1)$	MLCT/LLCT/ILCT	
	S ₃₄	251/4.93	0.1001	H-6→L+1 (37%)	$\pi(L1+L2+acac) \rightarrow \pi^*(L2)$	LLCT/ILCT	
				H-7→L+1 (17%)	$\pi(L1+L2+acac) \rightarrow \pi^*(L2)$	LLCT/ILCT	
	S_{47}	234/5.28	0.1149	H-5→L+3 (32%)	$d(Ir)+\pi(L1+acac)\rightarrow\pi^*(acac)$	MLCT/LLCT/ILCT	
				H-8→L+1 (18%)	$\pi(L1+L2+acac) \rightarrow \pi^*(L2)$	LLCT/ILCT	
2	\mathbf{S}_1	434/2.85	0.0473	H→L (96%)	$d(Ir)+\pi(L1+L2)\rightarrow\pi^*(L1)$	MLCT/LLCT/ILCT	
	S_{13}	303/4.09	0.1132	H-2→L+1 (41%)	$\pi(L1+L2) \rightarrow \pi^*(L2)$	LLCT/ILCT	
				H-1→L+2 (19%)	$d(Ir)+\pi(acac)\rightarrow\pi^*(L1)$	MLCT/LLCT	
	S_{17}	287/4.31	0.2114	H-5→L (61%)	$\pi(L1+L2) \rightarrow \pi^*(L1)$	LLCT/ILCT	
				H-1→L+4 (10%)	$d(Ir)+\pi(acac)\rightarrow\pi^*(L2+acac)$	MLCT/LLCT/ILCT	
	S ₂₆	267/4.63	0.3298	H-7→L (30%)	$d(Ir)+\pi(L1+L2+acac)\rightarrow\pi^*(L1)$	MLCT/LLCT/ILCT	
				H-2→L+2 (21%)	$\pi(L1+L2) \rightarrow \pi^*(L1)$	LLCT/ILCT	
	S ₃₀	262/4.72	0.1015	H-2→L+4 (20%)	$\pi(L1+L2) \rightarrow \pi^*(L2+acac)$	LLCT/ILCT	
				H-2→L+3 (11%)	$\pi(L1+L2) \rightarrow \pi^*(L2+acac)$	LLCT/ILCT	
	S_{41}	247/5.01	0.1572	H-5→L+2 (30%)	$\pi(L1+L2) \rightarrow \pi^*(L1)$	LLCT/ILCT	
				H-6→L+2 (26%)	$d(Ir)+\pi(L1+acac)\rightarrow\pi^*(L1)$	MLCT/LLCT/ILCT	
3	\mathbf{S}_1	434/2.85	0.0552	H→L (95%)	$d(Ir) + \pi(L1 + L2) \rightarrow \pi^*(L1)$	MLCT/LLCT/ILCT	418
	S_7	343/3.61	0.1841	H-2→L (84%)	$\pi(L1+acac) \rightarrow \pi^*(L1)$	LLCT/ILCT	
	S_{13}	307/4.03	0.1604	H-3→L+1 (64%)	$\pi(L1+L2) \rightarrow \pi^*(L2)$	LLCT/ILCT	
				H-1→L+2 (11%)	$d(Ir)+\pi(L1+acac)\rightarrow\pi^*(L1)$	MLCT/LLCT/ILCT	
	S ₃₃	264/4.68	0.1305	H-2→L+6 (20%)	$\pi(L1+acac) \rightarrow \pi^*(L1)$	LLCT/ILCT	
				H-8→L (19%)	$\pi(L1+L2+acac) \rightarrow \pi^*(L1)$	LLCT/ILCT	
				H-3→L+4 (17%)	$\pi(L1+L2) \rightarrow \pi^*(L2+acac)$	LLCT/ILCT	
4	\mathbf{S}_1	421/2.94	0.0824	H→L (88%)	$d(Ir) + \pi(L1 + L2) \rightarrow \pi^*(L1)$	MLCT/LLCT/ILCT	
	S_7	332/3.72	0.2531	H-2→L (58%)	$\pi(L1+acac) \rightarrow \pi^*(L1)$	LLCT/ILCT	
				H→L+5 (14%)	$d(Ir) + \pi(L1 + L2) \rightarrow \pi^*(L1 + L2 + acac)$	MLCT/LLCT/ILCT	
	S_8	332/3.72	0.1037	H→L+5 (57%)	$d(Ir) + \pi(L1 + L2) \rightarrow \pi^*(L1 + L2 + acac)$	MLCT/LLCT/ILCT	
				H-2→L (14%)	$\pi(L1+acac) \rightarrow \pi^*(L1)$	LLCT/ILCT	
	S ₉	321/3.85	0.1572	H-3→L (33%)	$d(Ir)+\pi(L1+L2) \rightarrow \pi^*(L1)$	MLCT/LLCT/ILCT	
				H-4→L (28%)	$d(Ir)+\pi(L1+L2) \rightarrow \pi^*(L1)$	MLCT/LLCT/ILCT	
	S_{13}	306/4.04	0.1114	H-3→L (48%)	$d(Ir)+\pi(L1+L2) \rightarrow \pi^*(L1)$	MLCT/LLCT/ILCT	
				H-4→L (39%)	$d(Ir) + \pi(L1 + L2) \rightarrow \pi^*(L1)$	MLCT/LLCT/ILCT	

	S_{14}	303/4.08	0.0965	H-3→L+1 (44%)	$d(Ir) + \pi(L1 + L2) \rightarrow \pi^*(L2)$	MLCT/LLCT/ILCT
5	\mathbf{S}_1	436/2.83	0.0475	H→L (96%)	$d(Ir) + \pi(L1 + L2) \rightarrow \pi^*(L1)$	MLCT/LLCT/ILCT
	S_{11}	315/3.92	0.0995	H-4→L+1 (52%)	$d(Ir)+\pi(L1+L2)\rightarrow\pi^*(L2)$	MLCT/LLCT/ILCT
				H-3→L+1 (24%)	$\pi(L1+L2) \rightarrow \pi^*(L2)$	LLCT/ILCT
	S_{12}	306/4.03	0.1553	H-3→L+1 (54%)	$\pi(L1+L2) \rightarrow \pi^*(L2)$	LLCT/ILCT
				H-1→L+2 (16%)	$d(Ir)+\pi(acac)\rightarrow\pi^*(L1)$	MLCT/LLCT
	S_{16}	295/4.19	0.0915	H-5→L (78%)	$d(Ir)+\pi(L1+L2)\rightarrow\pi^*(L1)$	MLCT/LLCT/ILCT
	S ₂₉	266/4.64	0.2364	H-7→L (25%)	$d(Ir)+\pi(L1+acac)\rightarrow\pi^*(L1)$	MLCT/LLCT/ILCT
				H-4→L+2 (14%)	$d(Ir)+\pi(L1+L2)\rightarrow\pi^*(L1)$	MLCT/LLCT/ILCT
	S ₃₀	265/4.67	0.1428	H-8→L (41%)	$\pi(L1+L2+acac) \rightarrow \pi^*(L1)$	LLCT/ILCT
				H-8→L+3 (14%)	$\pi(L1+L2+acac) \rightarrow \pi^*(L2+acac)$	LLCT/ILCT
	S_{46}	246/5.03	0.1265	H-6→L+2 (42%)	$d(Ir)+\pi(L1+acac)\rightarrow\pi^*(L1)$	MLCT/LLCT/ILCT
				H-9→L (27%)	$\pi(L1) \rightarrow \pi^*(L1)$	ILCT
6	\mathbf{S}_1	425/2.91	0.0703	H→L (91%)	$d(Ir) + \pi(L1 + L2) \rightarrow \pi^*(L1)$	MLCT/LLCT/ILCT
	S_8	331/3.73	0.1870	H-2→L (58%)	$\pi(L1+L2) \rightarrow \pi^*(L1)$	LLCT/ILCT
				H→L+5 (14%)	$d(Ir) + \pi(L1 + L2) \rightarrow \pi^*(L1 + L2 + acac)$	MLCT/LLCT/ILCT
	S ₉	322/3.84	0.1321	H-3→L (36%)	$d(Ir)+\pi(L1+L2)\rightarrow\pi^*(L1)$	MLCT/LLCT/ILCT
				H-4→L (27%)	$d(Ir) + \pi(L1 + L2) \rightarrow \pi^*(L1)$	MLCT/LLCT/ILCT
	S_{12}	313/3.95	0.1294	H-2→L+1 (81%)	$\pi(L1+L2) \rightarrow \pi^*(L2)$	LLCT/ILCT
				H-3→L+1 (11%)	$d(Ir)+\pi(L1+L2)\rightarrow\pi^*(L2)$	MLCT/LLCT/ILCT
	S ₂₂	281/4.41	0.1001	H→L+6 (40%)	$d(Ir)+\pi(L1+L2)\rightarrow\pi^*(L1)$	MLCT/LLCT/ILCT
				H-5→L (12%)	$\pi(L1+L2+acac) \rightarrow \pi^*(L1)$	LLCT/ILCT
	S_{45}	251/4.93	0.1481	H-8→L (27%)	$\pi(L1) \rightarrow \pi^*(L1)$	ILCT
				H→L+8 (14%)	$d(Ir) + \pi(I_1 + I_2) \rightarrow \pi^*(I_1 + I_2)$	MLCT/LLCT/ILCT

^a Ref. 24

	MO	Energy/eV	Сс	mpo	sition	Assignment	
			Ir	L1	L2	acac	
1	L+1	-1.59	4	72	22	1	π*(L1+L2)
	L	-1.70	5	23	71	1	$\pi^{*}(L1+L2)$
	Н	-5.33	25	8	65	2	$d(Ir)+\pi(L1)$
2	L	-2.16	4	94	2	1	$\pi^{*}(L1)$
	Н	-5.51	36	19	41	4	$d(Ir)+\pi(L1+L2)$
	H-2	-6.39	3	54	40	3	π (L1+L2)
3	L+1	-1.80	5	63	31	1	$\pi^{*}(L1+L2)$
	L	-1.91	4	33	62	1	$\pi^{*}(L1+L2)$
	Н	-5.42	27	9	62	2	$d(Ir)+\pi(L2)$
4	L	-1.89	6	8	86	1	π*(L2)
	Н	-5.40	28	10	60	2	$d(Ir)+\pi(L1+L2)$
5	L+1	-1.61	6	2	91	1	π* (L2)
	L	-2.19	3	94	2	1	$\pi^{*}(L1)$
	Н	-5.47	34	16	45	5	$d(Ir)+\pi(L1+L2)$
	H-2	-6.40	2	73	18	6	π (L1+L2)
6	L	-2.14	4	94	2	1	$\pi^{*}(L1)$
	Н	-5.46	35	18	43	4	$d(Ir)+\pi(L1+L2)$
	H-2	-6.39	4	31	59	6	$\pi(L1+L2)$

Table S8 Partial frontier molecular orbital composition (%) of complexes 1–6 in thetriplet excited states. (H and L indicate HOMO and LUMO, respectively)