Supporting Information

Fabrication of a novel $ZnIn_2S_4/g-C_3N_4/graphene$ ternary nanocomposite with enhanced charge separation for efficient

photocatalytic H₂ evolution under solar light illumination

Saikumar Manchala,^{a,b} VSRK Tandava,^a Lakshmana Reddy Nagappagari,^c Shankar Muthukonda Venkatakrishnan,^c Deshetti Jampaiah,^d Ylias M. Sabri,^d Suresh K Bhargava,^d Vishnu Shanker^{a,b*}

^aDepartment of Chemistry, National Institute of Technology, Warangal-506004, Telangana, India

^bCentre for Advanced Materials, National Institute of Technology, Warangal-506004, Telangana, India

^cNano Catalysis and Solar Fuels Research Laboratory, Department of Materials Science and Nanotechnology, Yogi Vemana University, Vemanapuram, Kadapa-516005, Andhra Pradesh, India

^dCentre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO BOX 2476, Melbourne-3001, Australia

Corresponding author Email: vishnu@nitw.ac.in

No. of Tables: One

No. of Figures: One

Table S1.The rate of H₂ evolution over synthesized CN, ZIS, ZIS-CN, CN-G, ZIS-G, and ZIS-G-CN photocatalysts under solar light.

S.No.	Photocatalyst	Amount (mg)	Rate of H ₂ evolution (µmolh ⁻¹ g ⁻¹)
1	Pure g-C ₃ N ₄	5	6.1
2	Pure ZnIn ₂ S ₄	5	139
3	$ZnIn_2S_4$ -g- C_3N_4	5	184
4	g-C ₃ N ₄ -graphene	5	192
5	ZnIn ₂ S ₄ -graphene	5	400
6	$ZnIn_2S_4$ -graphene-g- C_3N_4	5	477

Calculation of band edge potentials of $ZnIn_2S_4$ and $g-C_3N_4$

The conduction band edge potential (E_{CB}) and valence band potentials (E_{VB}) of $ZnIn_2S_4$ are - 0.67 and +1.30 eV, and of g-C₃N₄ are -1.30 and +1.43 eV respectively, according to the empirical equations:

 $E_{CB} = X - E_e + 0.5E_g \rightarrow 1$

$$E_{VB} = E_g - E_{CB} \rightarrow 2$$

'X' is the electro-negativity of the semiconductor (4.82 eV for $ZnIn_2S_4$ and 4.73 for g-C₃N₄);

 E_e is the energy of free electrons on the hydrogen scale (~4.5 eV);

'*Eg*' is the band gap energies of the $ZnIn_2S_4$ and $g-C_3N_4$ are 1.97 eV and 2.73 eV in our experiment.

Figure S1. PXRD patterns of the synthesized ternary ZIS-CN-G nanocomposite before and after photocatalytic experiments.