Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2019

Supporting Information for

(1,3)Pyrenophanes containing crown ether moieties as fluorescence sensors for metal and ammonium ions

Hajime Maeda,* Keigo Nakamura, Taniyuki Furuyama and Masahito Segi

Fig. S1 (a) UV-vis absorption and (b) fluorescence spectra of **1**, 1.0×10^{-5} M, $\lambda_{ex} = 352$ (in THF and DMF), 353 (in CHCl₃ and CH₂Cl₂), and 354 (in toluene) nm.

solvent	E _T (30) ^a	I ₄₆₀ /I ₃₈₀ ^b	
toluene	33.9	1.66	
THF	37.4	1.23	
CHCl ₃	39.1	1.09	
CH_2CI_2	40.7	2.09	
DMF	43.2	1.36	

 Table S1
 Effect of solvents on ratio of intramolecular excimer/monomer emissions of 1.

 o Data from C. Reichardt, Solvatochromic Dyes as Solvent Polarity Indicators, *Chem. Rev.* 1994, **94**, 2319-2358. b Ratio of fluorescence intensity at 460 nm (l_{460}) to that at 380 nm (l_{380}).

Fig. S2 (a) UV-vis absorption and (b) fluorescence spectra of **2**, 1.0×10^{-5} M, $\lambda_{ex} = 352$ (in DMF) and 354 (in toluene and CHCl₃) nm.

Fig. S3 (a) UV-vis absorption and (b) fluorescence spectra of **4**, 1.0×10^{-5} M, $\lambda_{ex} = 352$ (in DMF), 353 (in CHCl₃), and 354 (in toluene) nm.

Fig. S4 (a) UV-vis absorption and (b) fluorescence spectra of **6**, 1.0×10^{-5} M, $\lambda_{ex} = 352$ (in DMF), 353 (in CHCl₃), and 354 (in toluene) nm.

Fig. S5 Fluorescence spectra of 1, 1.0×10^{-5} M in (a) 1:1 CH₂Cl₂:CH₃CN, (b) 1:1 toluene:CH₃CN, and (c) 1:1 THF:CH₃CN, upon addition of Ba(ClO₄)₂ (0-2000 equiv), $\lambda_{ex} = (a)(c) 351$, (b) 352 nm.

Fig. S6 UV-vis absorption spectra of **1** (1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN) upon addition of (a) Ba(ClO₄)₂ (0-2000 equiv), (b) NaClO₄ (0-2000 equiv), (c) LiClO₄ (0-50000 equiv), (d) Ca(ClO₄)₂ (0-1000 equiv), (e) Mg(ClO₄)₂ (0-1000 equiv), (f) Pb(ClO₄)₂ (0-100 equiv).

Fig. S7 UV-vis absorption spectra of **2** (1.0×10^{-5} M in 1:1CH₂Cl₂:CH₃CN) upon addition of (a) Ba(ClO₄)₂ (0-2000 equiv), (b) NaClO₄ (0-2000 equiv), (c) LiClO₄ (0-2000 equiv), (d) Ca(ClO₄)₂ (0-1000 equiv), (e) Mg(ClO₄)₂ (0-1000 equiv), (f) Pb(ClO₄)₂ (0-100 equiv).

Fig. S8 Fluorescence spectra of **2** (1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN, $\lambda_{ex} = (a)(b)(c)(e)(f)$ 352 nm, (d) 351 nm) upon addition of (a) Ba(ClO₄)₂ (0-2000 equiv), (b) NaClO₄ (0-2000 equiv), (c) LiClO₄ (0-2000 equiv), (d) Ca(ClO₄)₂ (0-1000 equiv), (e) Mg(ClO₄)₂ (0-1000 equiv), (f) Pb(ClO₄)₂ (0-100 equiv).

Fig. S9 UV-vis absorption spectra of **4** (1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN) upon addition of (a) Ba(ClO₄)₂ (0-2000 equiv), (b) NaClO₄ (0-2000 equiv), (c) LiClO₄ (0-2000 equiv), (d) Ca(ClO₄)₂ (0-1000 equiv), (e) Mg(ClO₄)₂ (0-1000 equiv), (f) Pb(ClO₄)₂ (0-100 equiv).

Fig. S10 Fluorescence spectra of **4** (1.0×10^{-5} M in 1:1CH₂Cl₂:CH₃CN, $\lambda_{ex} = 351$ nm) upon addition of (a) Ba(ClO₄)₂ (0-100 equiv), (b) NaClO₄ (0-2000 equiv), (c) LiClO₄ (0-2000 equiv), (d) Ca(ClO₄)₂ (0-1000 equiv), (e) Mg(ClO₄)₂ (0-1000 equiv), (f) Pb(ClO₄)₂ (0-100 equiv).

Fig. S11 (a) UV-vis absorption spectra of **6** (1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN) upon addition of (a) Ba(ClO₄)₂ (0-100 equiv), (b) NaClO₄ (0-2000 equiv), (c) LiClO₄ (0-2000 equiv), (d) Ca(ClO₄)₂ (0-1000 equiv), (e) Mg(ClO₄)₂ (0-1000 equiv), (f) Pb(ClO₄)₂ (0-100 equiv).

Fig. S12 Fluorescence spectra of **6** (1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN, $\lambda_{ex} = 351$ nm) upon addition of (a) Ba(ClO₄)₂ (0-100 equiv), (b) NaClO₄ (0-2000 equiv), (c) LiClO₄ (0-2000 equiv), (d) Ca(ClO₄)₂ (0-1000 equiv), (e) Mg(ClO₄)₂ (0-1000 equiv), (f) Pb(ClO₄)₂ (0-50 equiv).

Fig. S13 Job's plots for complex formation between **1** and (a) Ba^{2+} , (b) Na^+ , (c) Li^+ , obtained using measurements of fluorescence intensities at 468 nm in 1:1 CH₂Cl₂:CH₃CN, [**1**] + [Mⁿ⁺(ClO₄⁻)_n] = 1.0 × 10⁻⁵ M.

Fig. S14 Job's plots for complex formation between 2 and (a) Ba^{2+} , (b) Li^+ , obtained using measurements of fluorescence intensities at 473 nm in 1:1 CH₂Cl₂:CH₃CN, [**2**] + [$M^{n+}(ClO_4^{-})_n$] = 1.0 × 10⁻⁵ M.

Fig. S15 Job's plots for complex formation between 4 and (a) Ba^{2+} , (b) Li^+ , obtained using measurements of fluorescence intensities at 472 nm in 1:1 CH₂Cl₂:CH₃CN, [4] + [Mⁿ⁺(ClO₄⁻)_n] = 1.0 × 10⁻⁵ M.

Fig. S16 Job's plots for complex formation between **6** and (a) Ba^{2+} , (b) Li^+ , obtained using measurements of fluorescence intensities at (a) 380, (b) 472 nm in 1:1 CH₂Cl₂:CH₃CN, [**6**] + [$M^{n+}(ClO_4^{-})_n$] = 1.0 × 10⁻⁵ M.

Fig. S17 ¹H NMR spectra (400 MHz, $CDCl_3$) of (a) a mixture of **1** with $Ba(ClO_4)_2$, (b) **1**, (c) a mixture of **1** with $LiClO_4$, and (d) **1**.

Fig. S18 (a)(c) UV-vis absorption spectra of pyrene (8, 1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN) upon addition of (a) Ba(ClO₄)₂ (0-2000 equiv) and (c) Pb(ClO₄)₂ (0-1000 equiv). (b)(d) Fluorescence spectra of pyrene (**8**, 1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN, λ_{ex} = 335 nm) upon addition of (b) Ba(ClO₄)₂ (0-2000 equiv) and (d) Pb(ClO₄)₂ (0-1000 equiv). (e)(g) UV-vis absorption spectra of **7** (1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN) upon addition of (e) Ba(ClO₄)₂ (0-2000 equiv) and (g) Pb(ClO₄)₂ (0-1000 equiv). (f)(h) Fluorescence spectra of **7** (1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN, λ_{ex} = 350 nm) upon addition of (f) Ba(ClO₄)₂ (0-2000 equiv) and (h) Pb(ClO₄)₂ (0-1000 equiv).

Fig. S19 ¹H NMR spectra (400 MHz, CDCl₃) of (a) **1**, (b) a mixture of **1** with $(PhCH_2)_2NH_2^+PF_6^-$, and (c) $(PhCH_2)_2NH_2^+PF_6^-$. (d) Fluorescence spectra of **1** (1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN, $\lambda_{ex} = 351$ nm) upon addition of $(PhCH_2)_2NH_2^+PF_6^-$ (0-2000 equiv). (e) Job's plot for complex formation between **1** and $(PhCH_2)_2NH_2^+PF_6^-$, obtained using measurements of fluorescence intensities at 468 nm in 1:1 CH₂Cl₂:CH₃CN, [**1**] + [(PhCH₂)_2NH₂⁺PF₆⁻] = 1.0×10^{-5} M.

Fig. S20 (a)(c)(e) UV-vis absorption spectra of **1** (1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN) upon addition of (a) *n*-Bu₂NH₂+PF₆⁻ (0-2000 equiv), (c) (PhCH₂)₂NH₂+PF₆⁻ (0-2000 equiv), and (e) NH₄+PF₆⁻ (0-2000 equiv). (b)(d)(f) Fluorescence spectra of **1** (1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN, $\lambda_{ex} = 351$ nm) upon addition of (b) *n*-Bu₂NH₂+PF₆⁻ (0-2000 equiv), (d) (PhCH₂)₂NH₂+PF₆⁻ (0-2000 equiv), and (f) NH₄+PF₆⁻ (0-2000 equiv).

Fig. S21 (a)(c)(e) UV-vis absorption spectra of **2** (1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN) upon addition of (a) *n*-Bu₂NH₂+PF₆⁻ (0-1000 equiv), (c) (PhCH₂)₂NH₂+PF₆⁻ (0-2000 equiv), and (e) NH₄+PF₆⁻ (0-2000 equiv). (b)(d)(f) Fluorescence spectra of **2** (1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN, λ_{ex} = 352 nm) upon addition of (b) *n*-Bu₂NH₂+PF₆⁻ (0-1000 equiv), (d) (PhCH₂)₂NH₂+PF₆⁻ (0-2000 equiv), and (f) NH₄+PF₆⁻ (0-2000 equiv).

Fig. S22 (a)(c)(e) UV-vis absorption spectra of **4** (1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN) upon addition of (a) *n*-Bu₂NH₂+PF₆⁻ (0-1000 equiv), (c) (PhCH₂)₂NH₂+PF₆⁻ (0-2000 equiv), and (e) NH₄+PF₆⁻ (0-2000 equiv). (b)(d)(f) Fluorescence spectra of **4** (1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN, λ_{ex} = 351 nm) upon addition of (b) *n*-Bu₂NH₂+PF₆⁻ (0-1000 equiv), (d) (PhCH₂)₂NH₂+PF₆⁻ (0-2000 equiv), and (f) NH₄+PF₆⁻ (0-2000 equiv).

Fig. S23 (a)(c)(e) UV-vis absorption spectra of **6** (1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN) upon addition of (a) *n*-Bu₂NH₂+PF₆⁻ (0-1000 equiv), (c) (PhCH₂)₂NH₂+PF₆⁻ (0-2000 equiv), and (e) NH₄+PF₆⁻ (0-2000 equiv). (b)(d)(f) Fluorescence spectra of **6** (1.0×10^{-5} M in 1:1 CH₂Cl₂:CH₃CN, λ_{ex} = 351 nm) upon addition of (b) *n*-Bu₂NH₂+PF₆⁻ (0-1000 equiv), (d) (PhCH₂)₂NH₂+PF₆⁻ (0-2000 equiv), and (f) NH₄+PF₆⁻ (0-2000 equiv).

Fig. S24 ¹H NMR spectra (400 MHz, $CDCl_3$) of (a) **1**, (b) a mixture of **1** with $NH_4^+PF_6^-$, and (c) $NH_4^+PF_6^-$.

Fig. S25 ¹H NMR spectra (400 MHz, CDCl₃) of (a) **2**, (b) a mixture of **2** with n-Bu₂NH₂+PF₆⁻, and (c) n-Bu₂NH₂+PF₆⁻.

Fig. S26 Variable-temperature fluorescence spectra of 1, 1.0×10^{-5} M in (a) CHCl₃, $\lambda_{ex} = 354$ nm, (b) toluene, $\lambda_{ex} = 354$ nm, and (c) DMF, $\lambda_{ex} = 352$ nm.

Fig. S27 Variable-temperature fluorescence spectra of 2, 1.0×10^{-5} M in (a) CHCl₃, $\lambda_{ex} = 354$ nm, (b) toluene, $\lambda_{ex} = 354$ nm, and (c) DMF, $\lambda_{ex} = 353$ nm.

Fig. S28 Variable-temperature fluorescence spectra of 4, 1.0×10^{-5} M in (a) CHCl₃, $\lambda_{ex} = 353$ nm, (b) toluene, $\lambda_{ex} = 354$ nm, and (c) DMF, $\lambda_{ex} = 352$ nm.

Fig. S29 Variable-temperature fluorescence spectra of 6, 1.0×10^{-5} M in (a) CHCl₃, $\lambda_{ex} = 353$ nm, (b) toluene, $\lambda_{ex} = 354$ nm, and (c) DMF, $\lambda_{ex} = 352$ nm.

Fig. S30 Variable-temperature ¹H NMR spectra (500 MHz) of **1** in (a) $CDCl_3$ and (b) toluene- d_8 .

Fig. S31 Variable-temperature ¹H NMR spectra (500 MHz) of 2 in (a) CDCl₃ and (b) toluene-d₈.

Fig. S32 Variable-temperature ¹H NMR spectra (500 MHz) of 4 in (a) CDCl₃ and (b) toluene-d₈.

Fig. S33 Variable-temperature ¹H NMR spectra (500 MHz) of 6 in (a) CDCl₃ and (b) toluene-d₈.

1, B3LYP/6-31G(d,p)

1, ωB97XD/6-31G(d,p)

4, ωB97XD/6-31G(d,p)

6, B3LYP/6-31G(d,p)

6, ωB97XD/6-31G(d,p) (k) (l)

Fig. S34 Optimized conformers of (a)(b)(c)(d) **1**, (e)(f)(g)(h) **4**, and (i)(j)(k)(l) **6**, calculated by using (a)(b)(e)(f)(i)(j) B3LYP/6-31G(d,p) and (c)(d)(g)(h)(k)(l) ω B97XD/6-31G(d,p).

	B3LYP/3-21G//B3LYP/6-31G(d,p)		ωB97XD/3-21G//ωB97XD/6-31G(d,p)	
compound	∆∆H(syn–anti) (kJ/mol)	∆∆ <i>S(syn–anti</i>) (J/mol∙K)	∆∆H(syn–anti) (kJ/mol)	∆∆ <i>S(syn–anti</i>) (J/mol∙K)
1	18.2	13.3	-112.7	7.8
4	13.1	10.8	-185.7	-2.9
6	-13.8	13.5	-112.3	4.9

Table S2Enthalpy and entropy differences of conformers.