Electronic supplementary information

Supramolecular Photochemistry of Encapsulated Caged ortho-Nitrobenzyl Triggers

Nareshbabu Kamatham, A. Mohan Raj, Richard S. Givens, José P. Da Silva,* and V. Ramamurthy*

Department of Chemistry, University of Miami, Coral Gables, FL 33146, United States CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal

Department of Chemistry, University of Kansas, Lawrence, KS 66045, United States

1. Structures of host, oNB triggers (1-8)	2
2. Characterization spectra	3
2.1 ¹ H NMR spectra of oNB esters 4 - 8	3
2.2 ESI-MS spectra of oNB esters 4 - 8	8
2.3 UV-Visible absorbance spectra of oNB esters 1 - 8	11
2.4 ¹ H NMR titration spectra of octa acid with guests $1 - 8$, and	
2D- COSY spectra	13
2.5 ¹ H NMR spectra of photoirradiation of complexes 1 - 8	24
2.6 LC-DAD-MS profiles, fragmentation spectra of selected triggers	
and products	30

Scheme 1. Structures of water-soluble octa acid (OA) cavitand and oNB triggers (1-8).

2. Characterization spectra

2.1 ¹H NMR spectra of oNB esters 4 - 8

Figure S1. ¹H NMR (500 MHz) spectrum of **4** in DMSO- d_6 . • and • indicate the residual solvent peak of water and DMSO- d_6 , respectively.

Figure S2. ¹H NMR (500 MHz) spectrum of **5** in DMSO- d_6 **•** and **•** indicate the residual solvent peaks of water and DMSO- d_6 , respectively.

Figure S3. ¹H NMR (500 MHz) spectrum of **6** in DMSO- d_6 . • and • indicate the residual solvent peaks of water and DMSO- d_6 , respectively.

Figure S4. ¹H NMR (500 MHz) spectrum of 7 in DMSO- d_6 . • and • indicate the residual solvent peaks of water and DMSO- d_6 , respectively.

Figure S5. ¹H NMR (500 MHz) spectrum of **8** in DMSO- d_6 . • and • indicate the residual solvent peak of water and DMSO- d_6 , respectively.

2.2 ESI-MS spectra of oNB esters 4-8

Figure S6. ESI-MS full scan spectrum of **4** in methanol-chloroform (50:50) containing 0.1% formic acid.

Figure S7. ESI-MS full scan spectrum of **5** in methanol-chloroform (50:50) containing 0.1% formic acid.

Figure S8. ESI-MS full scan spectrum of **6** in methanol-chloroform (50:50) containing 0.1% formic acid.

Figure S9. ESI-MS full scan spectrum of 7 in methanol-chloroform (50:50) containing 0.1% formic acid.

Figure S10. ESI-MS full scan spectrum of **8** in methanol-chloroform (50:50) containing 0.1% formic acid.

2.3 Absorption spectra of O-NB triggers 1 - 8 in water in the presence and absence of octa acid.

Figure S11. Absorption spectra of complexes of (1-3) with OA; $(OA)_2$: (1)₂ (blue); $(OA)_2$: (2)₂ (green); $(OA)_2$: (3)₂ (purple); [1-3] = 50 μ M, $[OA] = 50 \,\mu$ M in borate buffer.

Figure S12. UV-Vis spectra of OA (red), guest (blue) and guest@(OA)₂ (green) at [guest] = $25 \ \mu$ M, [OA] = $50 \ \mu$ M in Na₂B₄O₇ buffer/H₂O).

2.4 ¹H NMR titration spectra of octa acid with guests 1 - 8, 2D-COSY NMR spectra of the complexes

Figure S13. ¹H NMR (500 MHz) spectra of (i) OA(1 mM) in 10 mM Na₂B₄O₇ buffer/D₂O; (ii) 1@OA ([OA] = 1 mM), [1] = 0.25 mM); (iii) 1@OA ([OA] = 1 mM), [1] = 0.5 mM); (iv) 1@OA ([OA] = 1 mM), [1] = 0.75 mM); (v) 1@OA ([OA] = 1 mM), [1] = 1 mM); "*" indicates the bound guest proton peak and "•" represent the residual D₂O.

Figure S14. ¹H NMR (500 MHz) spectra of (i) OA(1 mM) in 10 mM Na₂B₄O₇ buffer/D₂O; (ii) 2@OA ([OA] = 1 mM), [2] = 0.25 mM); (iii) 2@OA ([OA] = 1 mM), [2] = 0.5 mM); (iv) 2@OA ([OA] = 1 mM), [2] = 0.75 mM); (v) 2@OA ([OA] = 1 mM), [2] = 1 mM); "*" indicates the bound guest proton peak and "•"represent the residual D₂O.

Figure S15. ¹H NMR (500 MHz) spectra of (i) OA(1 mM) in 10 mM Na₂B₄O₇ buffer/D₂O; (ii) **3**@OA ([OA] = 1 mM), [**3**] = 0.25 mM); (iii)**3**@OA ([OA] = 1 mM), [**3**] = 0.5 mM); (iv) **3**@OA ([OA] = 1 mM), [**3**] = 0.75 mM); (v) **3**@OA ([OA] = 1 mM), [**3**] = 1 mM); "*" indicates the bound guest proton peak and "•" represent the residual D₂O.

Figure S16. ¹H NMR (500 MHz, 10 mM Na₂B₄O₇ buffer/D₂O, pH = 8.7) spectra of (i) OA ([OA] = 1 mM) (ii) 1@OA (OA=1 mM, [4] = 0.25 mM); (iii) 4@OA (OA=1 mM, [4] = 0.5 mM); (iv) 4@OA (OA=1 mM, [4] = 0.75 mM); (v) 4@OA (OA=1 mM, [4] = 1.0 mM). "a-c" indicate the OA bound guest aliphatic proton peaks.

Figure S17. ¹H NMR (500 MHz, 10 mM Na₂B₄O₇ buffer/D₂O, pH = 8.7) spectra of (i) OA ([OA] = 1 mM) (ii) **5**@OA (OA=1 mM, [**5**] = 0.25 mM); (iii) **5**@OA (OA=1 mM, [**5**] = 0.5 mM); (iv) **5**@OA (OA=1 mM, [**5**] = 0.75 mM); (v) **5**@OA (OA=1 mM, [**5**] = 1.0 mM). • indicates the residual solvent peak of water. "a and b" indicate the OA bound guest aliphatic proton peaks.

Figure S18. ¹H NMR (500 MHz, 10 mM Na₂B₄O₇ buffer/D₂O, pH = 8.7) spectra of (i) OA ([OA] = 1 mM) (ii) **6**@OA (OA=1 mM, [**6**] = 0.25 mM); (iii) **6**@OA (OA=1 mM, [**6**] = 0.5 mM); (iv) **6**@OA (OA=1 mM, [**6**] = 0.75 mM); (v) **6**@OA (OA=1 mM, [**6**] = 1.0 mM). • indicates the residual solvent peak of water. "a-e" indicate the OA bound guest aliphatic proton peaks.

Figure S19. ¹H-NMR (500 MHz) COSY spectra of complex $6@(OA)_{2..}$ "a-e" indicate the OA bound guest aliphatic proton peaks.

Figure S20. ¹H NMR (500 MHz, 10 mM Na₂B₄O₇ buffer/D₂O, pH = 8.7) spectra of (i) OA ([OA] = 1 mM) (ii) 7@OA (OA=1 mM, [7] = 0.25 mM); (iii) 7@OA (OA=1 mM, [7] = 0.5 mM); (iv) 7@OA (OA=1 mM, [7] = 0.75 mM); (v) 7@OA (OA=1 mM, [7] = 1.0 mM). • indicates the residual solvent peak of water. "a-g" indicate the OA bound guest aliphatic proton peaks.

Figure S21. ¹H NMR (500 MHz) COSY spectra of complex $7@(OA)_{2..}$ "a-g" indicate the OA bound guest aliphatic proton peaks.

Figure S22. ¹H NMR (500 MHz, 10 mM Na₂B₄O₇ buffer/D₂O, pH = 8.7) spectra of (i) OA ([OA] = 1 mM) (i) 8@OA (OA=1 mM, [8] = 0.25 mM); (ii) 8@OA (OA=1 mM, [8] = 0.5 mM); (iii) 8@OA (OA=1 mM, [8] = 0.75 mM); (iv) 8@OA (OA=1 mM, [8] = 1.0 mM).
indicates the residual solvent peak of water.

Figure S23. ¹H NMR (500 MHz) COSY spectra of complex 8@(OA)₂

2.5¹ H NMR spectra of irradiated samples

Figure S24. ¹H NMR (500 MHz) spectra of (i) $2_2@OA_2$ before irradiation; (ii) $2_2@OA_2$ after 30 min irradiation.

Figure S25. Progress of reaction as followed by ¹H NMR (500 MHz upon photolysis of $3_2@OA_2$ a) disappearance of methyl proton; b) formation of photoproduct (methanol) with time.

Figure S26. ¹H NMR spectra (500 MHz, 10 mM Na₂B₄O₇ buffer/D₂O, pH = 8.7) of (i) **4** in DMSO-d₆, (ii) **4**@(OA)₂ ([OA] = 1 mM and [**4**] = 0.5 mM), (iii) 2.5 h irradiation of (ii) at ($\lambda \ge 300$ nm), (iv) butyric acid in Na₂B₄O₇ buffer/D₂O. Symbols • and • indicates the residual solvent peaks of DMSO-d₆ and water, respectively. "a-c" indicate the OA bound guest aliphatic proton peaks.

Figure S27. ¹H NMR spectra (500 MHz, 10 mM Na₂B₄O₇ buffer/D₂O, pH = 8.7) of (i) **5** in DMSO-d₆, (ii) **5**@(OA)₂ ([OA] = 1 mM and [**5**] = 0.5 mM), (iii) 2 h irradiation of (ii) at ($\lambda \ge 300$ nm), (iv) 3,3 dimethylacrylic acid in Na₂B₄O₇ buffer/D₂O. Symbols • and • indicates the residual solvent peaks of DMSO-d₆ and water, respectively. "a and b" indicate the OA bound guest aliphatic proton peaks.

Figure S28. ¹H NMR spectra (500 MHz, 10 mM Na₂B₄O₇ buffer/D₂O, pH = 8.7) of (i) **6** in DMSO-d₆ (ii) **6**@(OA)₂ ([OA] = 1 mM and [**6**] = 0.5 mM); (iii) 4 h irradiation of (ii) at ($\lambda \ge 300$ nm); (iv) hexanoic acid@OA ([OA]=1mM, [hexanoic acid] = 0.25 mM); (v) hexanoic acid in Na₂B₄O₇ buffer/D₂O. Symbols • and • indicate the residual solvent peaks of DMSO-d₆ and water, respectively. "a-e" indicate the OA bound guest aliphatic proton peaks.

Figure S29. ¹H NMR spectra (500 MHz, 10 mM Na₂B₄O₇ buffer/D₂O, pH = 8.7) of (i) 7 in DMSO-d₆ (ii) 7@(OA)₂ ([OA] = 1 mM and [7] = 0.5 mM); (iii) 5 h irradiation of (ii) at $(\lambda \ge 300 \text{ nm})$; (iv) octanoic acid@OA ([OA]=1mM, [octanoic acid] = 0.25 mM); (v) octanoic acid in Na₂B₄O₇ buffer/D₂O. Symbols • and • indicate the residual solvent peaks of DMSO-d₆ and water, respectively. "a-g" indicate the OA bound guest aliphatic proton peaks.

Figure S30. ¹H-NMR spectra (500 MHz, 10 mM Na₂B₄O₇ buffer/D₂O, pH = 8.7) of (i) **8** in DMSO-d₆ (ii) **8**@(OA)₂ ([OA] = 1 mM and [**8**] = 0.5 mM); (iii) 5 h irradiation of (ii) at ($\lambda \ge 300$ nm); (iv) decanoic acid@OA ([OA] = 1mM, [decanoic acid] = 0.25 mM); (v) decanoic acid in Na₂B₄O₇ buffer/D₂O. Symbols • and • indicate the residual solvent peaks of DMSO-d₆ and water, respectively.

2.6 LC-DAD-MS profiles and fragmentation spectra of selected triggers and products

Figure S31. LC–DAD and LC–MS traces of 1@OA (0.5 mM : 1 mM) in borate buffer (10 mM). (i) LC–DAD trace at 320 nm before irradiation, (ii) LC–DAD trace at 320 nm after 2 minutes irradiation ($\lambda > 300$ nm), (iii) single ion trace at m/z 271, assigned to [M + H]⁺ of dimer of 2-nitrosobenzaldehyde.⁵ The insert shows the UV spectrum of compound with 11.00 minutes retention time.

Figure S32. LC–DAD and LC–MS traces of **3**@OA (0.5 mM : 1 mM) in borate buffer (10 mM). (i) LC–DAD trace at 320 nm before irradiation, (ii) LC–DAD trace at 320 nm after 2 minutes irradiation ($\lambda > 300$ nm), (iii) single ion trace at m/z 150, assigned to [M + H]⁺ of 2-nitrosoacetophenone.¹ The insert shows the UV spectrum of compound with 8.70 minutes retention time.

Figure S33. LC–DAD traces of **5**@OA (0.5 mM : 1 mM) in borate buffer (10 mM). (i) LC–DAD trace at 320 nm before irradiation, (ii) LC–DAD trace at 320 nm after 2 minutes irradiation ($\lambda > 300$ nm). The insert shows the UV spectrum of compound with 2.46 minutes retention time, assigned to *o*-nitrosobenzaldehyde.⁵

Figure S34. EI (electron impact), a), and ESI-MS², b), spectra of 2-nitrosobenzaldehyde.

Figure S35. EI (electron impact), a), and ESI-MS², b), spectra of 2-nitroso acetophenone.