Supporting Information

Dual modification of TiO_2 nanorod arrays with $SiW_{11}Co$ and Ag nanoparticles for enhanced photocatalytic activity under simulated sunlight

Dandan Yan, Wencheng Fang, Fengyan Li,* Zhanbin Jin, Lin Xu*

Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China. E-mail: lify525@nenu.eud.cn; linxu@nenu.edu.cn; Fax: +86-0431-85099765; Tel: +86-0431-85099765

Fig. S1. IR spectrum for $SiW_{11}Co$.

Fig. S2. Cross-sectional SEM images of TNRs (a) TNRs/Si W_{11} Co (b) and TMRs/Si W_{11} Co/Ag (c).

Fig. S3. SEM images of TNRs (a) TNRs/SiW₁₁Co (b) and TMRs/SiW₁₁Co/Ag (c) at high magnification.

Fig. S4. EDS spectrum of (a) TNRs, (b) TNRs/SiW₁₁Co, and (c) TNRs/SiW₁₁Co/Ag films.

Fig. S5. SEM image (a) and the overlay image (b) of $TNRs/SiW_{11}Co/Ag$; the corresponding EDS mapping images of (c) Ti (d) O (e) Si (f) W (g) Co (h) Ag.

Fig. S6. XPS spectra of (a) full survey spectra for $TNRs/SiW_{11}Co$ and $TNRs/SiW_{11}Co/Ag$; (b) Si 2p XPS spectra for $TNRs/SiW_{11}Co/Ag$.

Fig. S7. Mott-Schottky plot of SiW₁₁Co.

Fig. S8. UV-Vis diffuse reflectance spectra (a) and the band gap determination (b) of $SiW_{11}Co$.

The calculation method of CB or VB potentials of SiW₁₁Co:

As shown in Fig. S7, it can be proved that $SiW_{11}Co$ is a N-type semiconductor due to the slope of Mott-Schottky plot for $SiW_{11}Co$ is greater than 0. And the E_{CB} is calculated by doing the intercept on the horizontal axis. Therefore, $E_{CB} = -0.481$ V vs. SCE, and $E_{CB} = 0.24$ V vs. RHE according to $E_{RHE} = E_{SCE} + 0.241$ (ref. Applied Catalysis A: General 2017, 536, 67.).

From Fig. S8b, the calculated E_g of SiW₁₁Co is 1.52 eV which is calculated by doing the slopes of the tangents on horizontal axis. According to $E_g = E_{CB} - E_{VB}$, it can be concluded that $E_{VB} =$ +1.28 V.