Supporting Information

A selective "turn-on" sensor for recognizing of In^{3+} and Zn^{2+} in respective system based on imidazo[2,1-*b*]thiazole

Yuankang Xu^a, Songfang Zhao^{b,*}, Yanxia Zhang^a, Hanyu Wang^a,

Xiaofeng Yang^a, Meishan Pei^a, Guangyou Zhang^{a,*}

^a School of chemistry and chemical engineering, University of Jinan, Jinan 250022, China.

^b Henan Sanmenxia Aoke Chemical Industry Co. Ltd., Sanmenxia 472000, China.

*Corresponding author:

Guangyou Zhang, Ph.D, Professor, E-mail address:

chm_zhanggy@ujn.edu.cn.

Songfang Zhao, E-mail address: songfang2008@163.com.

Fig. S2. ¹³C NMR spectrum of X.

Fig. S3. The FTIR spectra of X.

Fig. S4. ESI mass spectrum of X.

Fig. S5. Absorption spectra of **X** (1×10^{-5} M) upon the addition of various metal ions (7.5 equiv.) in DMF/H₂O buffer solution (v/v = 9:1, tris = 10 mM, pH = 7.4).

Fig. S6. Fluorescence intensity of **X** and its complexation with In^{3+} in the presence of other metal ions (Ag⁺, Zn²⁺, Ni²⁺, Mg²⁺, Cd²⁺, Cu²⁺, K⁺, Cr³⁺, Fe³⁺, Mn²⁺, Ga³⁺, Al³⁺, Hg²⁺, Li⁺ and Co²⁺) in DMF/H₂O buffer solution (v/v = 9:1, tris = 10 mM, pH = 7.4).

Fig. S7. Benesi-Hilderbrand plot of \mathbf{X} with In^{3+} .

Fig. S8. ESI Mass spectrum of **X**[In³⁺].

Figure S9. The optimized geometry of **X** and $X[In^{3+}]$ at the B3LYP level of theory, where the light-gray, red, blue, white, brown and cyan spheres denote C, O, N, H, In and Cl atoms, respectively.

Fig. S10. Absorption spectra of **X** (1×10^{-5} M) upon the addition of various metal ions (7.5 equiv.) in EtOH/H₂O buffer solution (v/v = 9:1, tris = 10 mM, pH = 7.4).

Fig. S11. Fluorescence intensity of **X** and its complexation with Zn^{2+} in the presence of other metal ions (Li⁺, K⁺, Mg²⁺, Al³⁺, Mn²⁺, In³⁺, Ga³⁺, Hg²⁺, Ag⁺, Cd²⁺, Fe³⁺, Cr³⁺, Ni²⁺, Cu²⁺ and Co²⁺) in EtOH/H₂O buffer solution (v/v = 9:1, tris = 10 mM, pH = 7.4).

Fig. S12. Benesi-Hilderbrand plot of \mathbf{X} with Zn^{2+} .

Fig. S13. ESI Mass spectrum of $X[Zn^{2+}]$.

Figure S14. The optimized geometry of **X** and $\mathbf{X}[Zn^{2+}]$ at the B3LYP level of theory, where the light-gray, red, blue, white, dark-gray and cyan spheres denote C, O, N, H, Zn and Cl atoms, respectively.

No Fluorescence

Strong Fluorescence

Scheme 2. The proposed binding mode of \mathbf{X} with In^{3+} .

Strong Fluorescence

Scheme 3. The proposed binding mode of ${\bf X}$ with $Zn^{2+}.$

sensor	Reaction media	Target ion	LOD (M)	Ka	Ref.
1	$DMF/H_2O(v/v = 9/1)$	In ³⁺	$1.02 imes 10^{-9}$	$1.01 imes 10^5 \ \mathrm{M}^{-1}$	This work
2	MeOH	In ³⁺	$7.9 imes10^{-6}$	$1.0 imes 10^8 \ \mathrm{M}^{-2}$	[17]
3	EtOH	In ³⁺	$6.1 imes 10^{-7}$	$8.1 imes 10^4 \ M^{-2}$	[21]
4	MeOH	In ³⁺	$2.0 imes10^{-6}$	$1.4 imes 10^5 \ \mathrm{M}^{-1}$	[22]
5	DMF	In ³⁺	$5.0 imes10^{-8}$	$2.0\times10^{10}\ M^{\text{-}2}$	[23]
6	$EtOH/H_2O(v/v = 9/1)$	Zn^{2+}	$5.5 imes 10^{-9}$	$2.65\times10^5M^{1}$	This work
7	$EtOH/H_2O(v/v = 9/1)$	Zn^{2+}	$2.86 imes 10^{-7}$	$1.81 imes 10^5 \ \mathrm{M^{-1}}$	[25]
8	$MeOH/H_2O(v/v = 1/9)$	Zn^{2+}	$7.95\times10^{\text{-}7}$	$6.0 imes10^3~M^{-1}$	[26]
9	EtOH	Zn^{2+}	$4.0 imes 10^{-8}$	$6.4 imes 10^4 \ \mathrm{M}^{-1}$	[27]
10	$EtOH/H_2O(v/v = 99/1)$	Zn^{2+}	$5.03 imes 10^{-7}$	85.7 M ⁻²	[29]

Table S1. Comparative study of the analytical performance of \mathbf{X} with other previous sensors.

			•	
sample	In ³⁺ added (M)	In ³⁺ recovered (M)	Recovery (%)	RSD (%)
1	1.0×10^{-5}	9.28×10^{-6}	92.8	0.74
2	2.0×10^{-5}	1.88×10^{-5}	94.1	2.36
3	3.0×10^{-5}	2.74×10^{-5}	91.2	2.27
4	4.0×10^{-5}	3.68×10^{-5}	92.3	3.51

Table S2. Determination of In³⁺ concentrations in tap water samples.

Table S3. Determination of Zn^{2+} concentrations in tap water samples.

sample	Zn ²⁺ added (M)	Zn^{2+} recovered (M)	Recovery (%)	RSD (%)
1	1.0×10^{-5}	9.73 × 10 ⁻⁶	97.3	3.01
2	2.0×10^{-5}	2.08×10^{-5}	104.1	2.39
3	3.0×10^{-5}	3.19×10^{-5}	106.2	1.50

The specific configuration and test process

Stock solutions of the ions (In³⁺ and Zn²⁺) were prepared with a concentration of 0.03 M in distilled water and tap water. The probe **X** was dissolved in ethanol/H₂O (v/v = 9 : 1) buffer solution (10 mM tris, pH = 7.4) and DMF/H₂O (v/v = 9 : 1) buffer solution (10 mM tris, pH = 7.4) at room temperature with the concentration of 1×10^{-5} M.

The fluorescence intensity was measured when the In³⁺ (distilled water) concentration were 1×10^{-5} M, 2×10^{-5} M, 3×10^{-5} M and 4×10^{-5} M. Then, the fluorescence intensity was measured with three times when the In³⁺ (tap water) concentration were 1×10^{-5} M, 2×10^{-5} M, 3×10^{-5} M and 4×10^{-5} M.

For example:

Determination of In³⁺ concentrations in tap water samples, sample 1, Table S2.

Fluorescence intensity: 751.3 (distilled water, 1×10^{-5} M); 1281 (distilled water, 2×10^{-5} M);

1829 (distilled water, 3×10^{-5} M); 2639 (distilled water, 4×10^{-5} M).

Linear equation: Y = 621.1X + 72.3

Fluorescence intensity (three times): 645.8 (tap water, 1×10^{-5} M); 654.5 (tap water, 1×10^{-5} M);

646.7 (tap water,
$$1 \times 10^{-5}$$
 M).

The average of fluorescence intensity: (645.8 + 654.5 + 646.7) / 3 = 649

In³⁺ recovered (M) = (649 - 72.3) / 621.1 = 0.928; 9.28 × 10⁻⁶ M

 $Recovery = In^{3+} recovered (M) / In^{3+} added (M) = 9.28 \times 10^{-6} / 1.0 \times 10^{-5} = 92.8\%$

according to formula $\sigma = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \bar{x})^2}$. The standard deviation (σ) was calculated to be

4.78.

RSD = $\sigma / \bar{x} = 4.78 / 649 = 0.0073, 0.73\%$

The calculation of other data was similar to the example.

Table S4. XYZ coordinate of the optimized structure of \mathbf{X} .

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	6	0	-5.286854	-1.689122	1.297058	
2	6	0	-5.029600	-2.846596	0.505276	
3	6	0	-4.245195	-0.756948	-0.580441	
4	6	0	-4.389607	0.673399	1.158164	
5	6	0	-3.481765	1.171424	0.203984	
6	6	0	-2.663186	2.468481	0.342442	
7	6	0	-0.170494	1.159687	-0.955533	
8	7	0	-5.104271	-0.432312	0.532110	
9	7	0	-3.424538	0.236037	-0.949725	
10	16	0	-4.468550	-2.408646	-1.132110	
11	8	0	-2.785476	3. 182897	1.371143	
12	7	0	-1.738967	2.872038	-0.727071	
13	7	0	-0.473979	2.324584	-0.481918	
14	6	0	1.220999	0.557498	-0.685874	
15	6	0	2.251201	1.342095	0.147609	
16	6	0	3.517459	0.794103	0.393001	
17	6	0	3.878749	-0.592685	-0.170817	
18	6	0	2.941266	-1.306666	-0.929288	
19	6	0	1.549775	-0.704476	-1.198952	
20	6	0	5.168273	-1.954254	1.327734	
21	6	0	4.136916	-3.088863	1.184332	
22	6	0	6.191465	-0.084469	0.223477	
23	6	0	6.232026	0.739741	-1.076766	
24	7	0	5.206989	-1.167506	0.086594	
25	1	0	-5.139788	-3.851755	0.855155	
26	1	0	-5.567763	-1.723522	2.328953	

27	1	0	-4.525303	1.034849	2.156081
28	1	0	-1.671631	3.869490	-0.750669
29	1	0	-0.886282	0.614548	-1.534645
30	1	0	0.833986	-1.249617	-1.778061
31	1	0	3.192291	-2.270214	-1.321031
32	1	0	4.233248	1.339245	0.972109
33	8	0	1.915715	2.629823	0.671161
34	1	0	1.286207	3.058720	0.086895
35	1	0	6.135086	-2.372664	1.515100
36	1	0	4.889872	-1.320179	2.143419
37	1	0	4.415317	-3.722938	0.368648
38	1	0	4.108734	-3.661530	2.087747
39	1	0	3.170103	-2.670453	0.996965
40	1	0	5.913062	0.549607	1.039161
41	1	0	7.158278	-0.502878	0.410846
42	1	0	5.265214	1.158150	-1.264135
43	1	0	6.948618	1.528073	-0.977130
44	1	0	6.510429	0.105664	-1.892449

Standard orientation:

Center	iter Atomic Atomic Coordinates (Angstroms)				troms)
Number	Number	Туре	Х	Y	Z
1	6	0	6. 237351	-1.111169	0. 104403
2	6	0	5.900047	-2.426783	0.124242
3	6	0	3.896381	-0.931753	0.055332
4	6	0	4.868171	1.105480	0.034367
5	6	0	3.500757	1.284462	0.004894
6	6	0	2.903405	2.663629	-0.033401
7	6	0	-0.789116	2.335051	-0.091511
8	6	0	-1.942531	1.527127	-0.101003
9	6	0	-2.020264	0.068346	-0.081086
10	6	0	-3.222850	-0.603361	-0.101810
11	6	0	-4.482661	0.101076	-0.151119
12	6	0	-4.421182	1.551995	-0.150763
13	6	0	-3.219212	2.210667	-0.131842
14	6	0	-5.659692	-2.073075	-0.150488
15	6	0	-7.026258	-2.752283	-0.304698
16	6	0	-6.964891	0.166868	-0.206641
17	6	0	-7.431265	0.579927	1.205484
18	16	0	4.091018	-2.700452	0.094673
19	7	0	5.100695	-0.271469	0.065571
20	7	0	2.875737	-0.026013	0.018259
21	8	0	3.690119	3.636644	-0.037985
22	7	0	1.535062	2.891704	-0.063755
23	7	0	0.514107	1.916691	-0.063674
24	8	0	-0.865739	-0.733998	-0.038136
25	7	0	-5.661859	-0.566500	-0.199356
26	1	0	7.233658	-0.690920	0.115299
27	1	0	6.553045	-3.286981	0.154006
28	1	0	5.643360	1.855868	0.034547
29	1	0	1.262980	3.875027	-0.089442

30	1	0	-0.949078	3.413696	-0.109409
31	1	0	-3.218664	3.298314	-0.137236
32	1	0	-5.330721	2.136961	-0.162299
33	1	0	-3.180573	-1.683605	-0.078735
34	1	0	-6.876238	1.037514	-0.863373
35	1	0	-7.708629	-0.483521	-0.665282
36	1	0	-8.394498	1.098208	1.133471
37	1	0	-7.568971	-0.294818	1.850892
38	1	0	-6.718374	1.254515	1.693799
39	1	0	-5.003830	-2.429263	-0.955475
40	1	0	-5.212206	-2.376778	0.806522
41	1	0	-7.481847	-2.562035	-1.282480
42	1	0	-6.869616	-3.834523	-0.226820
43	1	0	-7.733792	-2.471010	0.482004
44	49	0	0.878608	-0.049515	-0.021454
45	17	0	1.126325	-1.484262	0.000000

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	9. 155514	-0. 587574	-0. 124890	
2	6	0	9.502229	-2.358469	-0.107720	
3	6	0	6.794288	-1.235770	-0.019087	
4	6	0	6.525207	1.863029	-0.062636	
5	6	0	5.087452	1.654306	-0.099225	
6	6	0	3.445473	2.971061	-0.044245	
7	6	0	-1.469868	3.072750	0.133254	
8	6	0	-2.893709	1.329677	0.246067	
9	6	0	-3.163982	-0.879914	0.332556	
10	6	0	-5.163436	-1.201640	-0.003338	
11	6	0	-6.499834	-0.246889	-0.115617	
12	6	0	-6.543304	1.519982	-0.271853	
13	6	0	-5.166845	2.256026	-0.307351	
14	6	0	-7.716503	-2.790149	0.082132	
15	6	0	-8.996326	-3.450589	-0.463278	
16	6	0	-9.164387	0.955448	-0.277837	
17	6	0	-10.463495	0.713459	0.512959	
18	16	0	7.828092	-2.724789	-0.034339	
19	7	0	7.726180	0.255221	-0.082492	
20	7	0	4.856363	-0.518551	0.024669	
21	8	0	4.082139	4.054808	-0.105230	
22	7	0	2.007828	3.274832	-0.001821	
23	7	0	0.251040	1.931793	0.109397	
24	8	0	-2.002454	-1.705925	0.216551	
25	7	0	-7.864524	-0.792929	-0.096571	
26	1	0	10.028048	0.030078	-0.170614	
27	1	0	10.396130	-2.945999	-0.133176	
28	1	0	6.934056	2.851157	-0.025955	

29	1	0	1.786589	4.249715	-0.027442
30	1	0	-1.630609	4.130162	0.102547
31	1	0	-5.193490	3.283629	-0.604372
32	1	0	-7.467604	2.054893	-0.338483
33	1	0	-5.391706	-2.238347	-0.137622
34	1	0	-8.662701	1.815119	0.114816
35	1	0	-9.399652	1.119639	-1.308658
36	1	0	-11.289730	1.134303	-0.021012
37	1	0	-10.616179	-0.338561	0.634781
38	1	0	-10.387203	1.176500	1.474558
39	1	0	-6.871192	-3.136420	-0.475046
40	1	0	-7.593813	-3.047852	1.113362
41	1	0	-9.626228	-2.702738	-0.897838
42	1	0	-8.735217	-4.173512	-1.207660
43	1	0	-9.516760	-3.934393	0.336710
44	30	0	1.763375	-0.836095	0.169945

The calculation process of detection limit:

Scan the blank sample solution 10 times and calculate the standard deviation (σ) according to formula $\sigma = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \bar{x})^2}$. The standard deviation (σ) was calculated to be 0.48.

The fluorescence emission spectra were measured when the Zn²⁺ concentration were 1×10^{-7} M, 2×10^{-7} M, 3×10^{-7} M, 4×10^{-7} M, 5×10^{-7} M and 6×10^{-7} M, respectively. As shown in Fig 9 (b) inset, a good linear relationship (R² = 0.9858) between the fluorescence intensity at 463 nm and concentration of Zn²⁺ was obtained. The slope of the line is 26×10^7 M. based on 3σ /s equation, $LOD = \frac{3 \times 0.48}{26 \times 10^7} = 5.5 \times 10^{-9}$ M.