Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2019

Supporting Information

$Efficient\ visible-light-driven\ photocatalytic\ hydrogen\ production\ over\ direct\ Z-schemesystemTaON/Zn_{0.5}Cd_{0.5}S\ with\ NiS\ cocatalyst$

Tingting Wei, aZhanbin Jin, aFengyan Li, *aDandan Yan, a and Lin Xu*a

^a Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.

Fig. S1.SEM image (a) and the overlay image (b) of T30-ZCS; the corresponding SEM mapping images of (c) N (d) O (e) Ta (f) Zn (h)Cd (i) S.

Fig. S2. EDS spectrum of (a) T4-ZCS and (b) T30-ZCS.

Fig. S3 The plots of $(\alpha h\nu)^2$ versus hv of the TaON-ZCS photocatalysts.

Sample	BET(m ² /g)	BJH pore size (nm)
ZCS	49.2493	19.60
TaON	4.9273	10.59
T4-ZCS	38.3013	18.99

Table S1. Surface area and pore size parameters for ZCS, TaON and T4-ZCS.

Table S2. Typical earth-abundant NiS co-catalysts and other systems consisted of NiS-MoS₂, CoP and Co₃N co-catalysts for photocatalytic hydrogen evolution.

Photocatalyst	Amountof	Activity (the	Activity (×	A.Q.Y.	Referen
	catalyst	value	1000 µmol	(%)	ce
	(mg)	reported in	h ⁻¹ g ⁻¹)		
		literature)			
NiS/TaON-Zn _{0.5} Cd _{0.5} S	50	1740µmol·h ⁻¹	34.8	25.5	This
					work
NiS/Zn _x Cd _{1-x} S-MOF	50	839µmol·h ⁻¹	16.78		1
1T-1Li _x MoS ₂ /Cd _{0.5} Zn _{0.5} S	100	769.9µmol∙h ⁻¹	7.699		2
NiS/g-C ₃ N ₄ -SrTiO ₃	50	86.13µmol·h ⁻¹	1.7227		3
NiS-MoS ₂ /CNTs/CN	20	6.198µmol·h ⁻¹	0.3099		4
NiS _x /Zn _{0.8} Cd _{0.2} S/rGO	50	392µmol∙h ⁻¹	7.84	20.88	5
Zn _{0.5} Cd _{0.5} S/CoP	50	734µmol·h ⁻¹	14.68		6
Co ₃ N/ CdS	1	137.3µmol·h ⁻¹	137.33	14.9	7
CdS nanorod/CoP	1	500µmol·h ⁻¹	500	35	8
CdS/CoP	1	254µmol·h ⁻¹	254	25.1	9

References

1. X. X. Zhao, J.R. Feng, J. Liu, W. Shi, G. M. Yang, G. C. Wang and P. Cheng, *Angew. Chem. Int. Ed.*, 2018, **57**, 9790-9794.

2. H. Du, H. L. Guo, Y. N. Liu, X. Xie, K. Liang, X. Zhou, X. Wang and A. W. Xu, *ACS Appl. Mater. Inter.*,2016, **8**, 4023-4030.

3. X. L. Luo, G. L. He, Y. P. Fang, Y. H. Xu, J. Colloid Interfaces Sci., 2018, 518, 184–191.

4. Y. X. Zhang, K. Li, Y. X. Yu, W. D. Zhang, J. Colloid Interfaces Sci., 2018, 526, 374–383.

5.C. Xue, H. Li, H. An, B. L. Yang, J. J. Wei and G. D. Yang, ACS Catal., 2018, 8, 1532-1545.

6. D.S. Dai, H. Xu, L. Ge., C.c. Han, Y.Q. Gao, S.S. Li and Y Lu, Appl. Catal. B, 2017, 217, 429-436.

7. H.L. Chen, D.C. Jiang, Z. J. Sun, R. M. Irfan, L. Zhang and P. W Du, Catal. Sci. Technol., 2017, 7, 1515-1522.

8. Z. J. Sun, B. H. Lv, J. S. Li, M. Xiao, X. Y. Wang and P. W. Du, J. Mater. Chem. A, 2016, 4,1598.

9. S. Cao, Y. Chen, C. J. Wang, X. J. Lv and W. F. Fu, Chem. Commun., 2015, 51, 8708.