Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2020

Optogenetic Rac1 engineered from membrane lipid-binding RGS-LOV for inducible lamellipodia formation

Erin E. Berlew, Ivan A. Kuznetsov, Keisuke Yamada, Lukasz J. Bugaj, and Brian Y. Chow*

Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, United States; (*) Correspondence: <u>bchow@seas.upenn.edu</u>

SUPPLEMENTARY FIGURES

Domain annotations:	MATDAIDHYY	QNRDGPPSRS	FSDEYDSYNK	TAPLPPLSAC	PERAQTPNSK	RIPITPNSAK	60
<u>BcLOV4</u> (1-596)	STSESPRRIT	FSRDAGSSTK	GSTQTSPSNQ	GSVSSRNGSN	GNGLGLSSAG	NFADFFSSEV	120
	FYIVLHNPTT	AHRFLKFCQS	RACSENLEFL	QKIDEYNRLI	DEATRLLSTI	YSTYVSSEAP	180
RGS domain: 124-234 LOV domain: 256-356 Amphipathic helix: 404-417 DUF domain: 427-567	KQINISNSHA	RRLSHDIKGA	THNVLPGLED	IFNGSQEQIE	KLLASDLYPR	FVKHQVTASA	240
	TMALANDKER	YPGLGDCFCL	TDPRRADNPI	VFASDGFVSV	TGYSRSDIIP	RNCRFLQGSF	300
	TDRQATKRLR	TSIENREETV	ELLLNYRKNG	DPFWNLLYVS	PLLDGNGDVR	FFLGGQINCS	360
	TTIHSRTDVL	RILSLNDEDT	GSFIEGSNKT	PSVRSKESNN	ASNYGKTSFF	KSFKKYKANT	420
wild-type Rac1: 606-795	VEIRDEAGME	GELIDRIGKL	QFKTQVEEFY	TAYSKYLVLS	YQPQSQNLIV	KYFSPGIVDM	480
	LNLNMPNGLV	APIVDKDIFK	VLTEHSPSSV	PRTFKNVVRE	GIKAGRAVSV	ETGLLTGIEE	540
<u>mCherry:</u> 804-1039	IKKSQNIFSG	TTANRERGWK	KAEEKYVCHF	TPCKDEMGRV	GWVVLTVAPK	LERFEFGGGS	600
<u>Linkers:</u> 597-604, 796-803	GGGSMQAIKC	VVVGDGAVGK	TCLLISYTTN	AFPGEYIPTV	FDNYSANVMV	DGKPVNLGLW	660
	DTAGQEDYDR	LRPLSYPQTD	VFLICFSLVS	PASFENVRAK	WYPEVRHHCP	NTPIILVGTK	720
	LDLRDDKDTI	EKLKEKKLTP	ITYPQGLAMA	KEIGAVKYLE	CSALTQRGLK	TVFDEAIRAV	780
	LCPPPVKKRK	RKCLLGGGSG	GGSMVSKGEE	DNMAIIKEFM	RFKVHMEGSV	NGHEFEIEGE	840
	GEGRPYEGTQ	TAKLKVTKGG	PLPFAWDILS	PQFMYGSKAY	VKHPADIPDY	LKLSFPEGFK	900
	WERVMNFEDG	GVVTVTQDSS	LQDGEFIYKV	KLRGTNFPSD	GPVMQKKTMG	WEASSERMYP	960
	EDGALKGEIK	QRLKLKDGGH	YDAEVKTTYK	AKKPVQLPGA	YNVNIKLDIT	SHNEDYTIVE	1020
	QYERAEGRHS	TGGMDELYK					1039

Supplementary Figure 1. Opto-Rac1 protein sequence.

Supplementary Figure 2. **Structured illumination schematic**. Light from a liquid light guide-coupled λ = 455 nm LED was collimated into the (DMD) digital micromirror device-based DLP (digital light processor, Digital Light Innovations CEL5500) via an air-spaced doublet collimator (ASDC, Thorlabs F810APC-405) and a plano-convex lens (L1, f = 200 mm). After the DLP the projected illumination pattern was infinity-corrected using another plano-convex lens (L2, f = 150 mm). The light was then redirected to the objective (Obj, 63x / 1.40 NA, Leica #506187) using a shortpass dichroic (DC, λ < 900 nm, Thorlabs DMLP900R) mounted in a custom K type laser cube (Nuhsbaum). The LED was from Mightex (LCS-0455-3-22).

Supplementary Figure 3: Summary of optogenetic assays and analysis. (a) Stimulation epochs using a digital micromirror device to spatially pattern illumination fields. (b) Analysis methodology to determine distance moved by cell. The cell border was manually segmented at 0 seconds post-illumination (black solid border) and at 120 seconds post-illumination (red dashed line). The distance moved by the cell was defined as the mean length of line segments (black dashed line) that were normal to the cell border at 120 seconds, with one endpoint at the t = 0 border and the other endpoint at the t = 120 s border. Line segments were spaced at 2.5 µm intervals along the t = 120 s border.

Supplementary Figure 4. Representative distribution of expression profile in HEK cells of domain arrangements screened in engineering opto-Rac1. Fluorescence micrographs of transfected HEK cells in the dark-adapted state. (ϕ Nuc/Cyto) = ratio of observed average fluorescence intensity in the nucleus vs. cytoplasm (N = 25 – 35 each). The dominant preference for nuclear localization of genetic constructs ii. and iii., plus their lack of plasma membrane localization, indicates that their nuclear localization is not a consequence of cell cycle phase or sequestration by the plasma membrane. Scale = 10 μ m.

Supplementary Figure 5. Fluorescence micrographs of mKoKappa-BcLOV4 expressed in HEK cells. The BcLOV4 fusion with mKoKappa as a signaling inert N-terminal protein is aggregated and membrane localized in the dark-adapted state, consistent with opto-Rac1 domain arrangements screened with C-terminal BcLOV4. Scale = $10 \mu m$.

Supplementary Figure 6: Expression of constitutively active Rac1 constructs in HEK cells. Multiple representative cells were imaged in the dark-adapted state. Constitutively active [CA] Rac1 fused to BcLOV4 reduced cell health based on Trypan Blue live/dead cell count, and compromised morphology with evidence of spurious activity in the dark-adapted state. The top-center image, chosen to demonstrate permanent membrane localization in non-rounded cells, shows high background after auto-contrast because of dimmer raw fluorescence. For reference, photoactivatable Rac1 (PA-Rac1), a fusion of AsLOV2 and constitutively active Rac1, shows spurious sheet-like protrusions in the dark-adapted state under similar laboratory conditions. Scale bar = $10 \ \mu m$.

[For Video File]

Supplementary Video 1. Focal induction of lamellipodia formation in opto-Rac1 transducing cells in response to spatially patterned illumination. Field of view = $60 \times 60 \mu m$. Box = Illumination field. λ = 455 nm @ 15 mW/cm², 1.6% duty ratio.