Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2020

P. Singh et. al.

Near-IR oxime-based solvatochromic-----

Near-IR oxime-based solvatochromic perylene diimide probe as

chemosensor for Pd species and Cu²⁺ ions in water and live cells

Poonam Sharma,^a Sandeep Kaur,^b Satwinderjeet Kaur,^b and Prabhpreet Singh,^{*a}

^aDepartment of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143 005, India.

e-mail: prabhpreet.chem@gndu.ac.in; Tel: +91-84271-01534

^bDepartment of Environmental and Botanical Sciences, Guru Nanak Dev University, Amritsar 143 005, India.

1.	Experimental Section	S2-8			
2.	Density Functional theory (DFT) and Time dependent (TD-DFT) calculations of				
	OPR-PDI				
3.	Density Functional theory (DFT) and Time dependent (TD-DFT) calculations of	S9-10			
	PDI 2				
4.	Solvatochromic behavior of PDI 2	S11			
5.	Aggregation studies of OPR-PDI in aqueous Binary mixture	S11-12			
6.	Additional UV-Vis and Fluorescence data of OPR-PDI	S12-13			
7.	Recovery data of Pd and Cu ²⁺ in biofluids	S14			
8.	NMR titration data of OPR-PDI in the presence of Pd and Cu ²⁺ ions	S14-15			

TABLE OF CONTENTS

1. Experimental Section

Materials and characterization: Chemicals and solvents were of reagent grade and used without further purification. DMSO, DMF and CH₃CN solvents were of HPLC grade. Deionized water was obtained from ULTRA UV/UF Rions Lab Water System Ultra 370 series devices. Chromatographic purification was done with silica gel 60–120 mesh. TLC was performed on aluminum sheets coated with silica gel 60 F254 (Merck, Darmstadt). NMR spectra were recorded at 400 MHz for ¹H; 100 MHz for ¹³C (JEOL) using CDCl₃ as solvent. The peak values were obtained as ppm (δ) and referenced to the TMS as reference in ¹H NMR and deuterated solvent in ¹³C NMR spectra. Chemical shift values are reported in ppm, coupling constant (*J*) in Hz and abbreviations used for splitting patterns are s = singlet, bs = broad singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet and m = multiplet. The absorption spectra were recorded using quartz cells on Shimadzu-2450 spectrophotometer (Shimadzu, Japan) equipped with Peltier system as temperature controller and Agilent spectrophotometer. The fluorescence titrations were performed on Shimadzu RF-6000 spectroflurophotometer (Shimadzu, Japan) with excitation at 490 nm, unless otherwise stated. Theoretical calculations were carried out using DFT (B3LYP/6-31G^{*}) basis set in the Gaussian 09 package. PDI **1** was synthesized according to previously reported literature procedure.

Method for detection of metal ions: Stock solutions (0.1 M) of metal ions were prepared in deionized water and were diluted as required. **OPR-PDI** was added in various 10 mL volumetric flask and subsequently different concentrations of metal ions were added. The solutions were diluted with HEPES buffer-DMSO (9:1 v/v, pH 7.2) up to the 10 mL mark.

MTT Assay: The **OPR-PDI** was used to determine the cell viability in Human Osteosarcoma MG-63 cells using MTT assay. The cells were cultured in a 96 well microplates at the concentration of 1 x 10^4 cells/0.1 ml and allow to be incubated for 24 hours for adherence. The cells were treated with different concentrations of **OPR-PDI** for another 24 hours. After incubation, thoroughly mix 20 µl of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) in each well and further incubated for 4 hours to allow metabolization of MTT by the viable cells into purple colored formazan (MTT metabolic product). Finally, resuspend the intracellular MTT formazan in 100 µl of dimethyl sulfoxide. The absorbance was measured at 570 nm using a multi-well plate reader (BioTek Synergy HT). Cell viability = Absorbance of **OPR-PDI** / Absorbance of control x 100

where

Absorbance of control = absorbance of untreated cells

Absorbance of **OPR-PDI** = absorbance of cells treated with different concentrations of **OPR-PDI**.

Cell culture: The human Osteosarcoma MG-63 cell line used in this study was obtained from National Centre for Cell Science, Pune (India). The cells were cultured in DMEM (Sigma) with 10% (v/v) Fetal Bovine Serum (Biological Industries), 100 IU/ml penicillin, 500 μ g/ml of Gentamycin sulfate and 100 mg/l streptomycin (before use). Cells were grown and maintained at 37°C in a 95% humidified atmosphere, 5% CO₂ and in a fresh T-25 tissue culture flask in CO₂ incubator.

Treatment: Cells of two wells were treated with **OPR-PDI** (10 μ M prepared in media with 2% DMSO); cells of 4 wells were treated with **OPR-PDI** (10 μ M) for 30 minutes followed by addition of Pd⁰ (2 wells each with 50 and 100 μ M concentrations); cells of another 4 wells were treated with **OPR-PDI** (10 μ M) for 30 minutes followed by addition of Cu²⁺ ions (2 wells each with 200 and 400 μ M concentrations); 2 wells served as control.

Confocal Microscopy: MG-63 cells were seeded at the concentration of 1×10^5 cells/well in 24-well plates and 12 mm coverslip was placed in each well. The treated cells were washed two times with 1xPBS and then fixed with 4% paraformaldehyde for 10-15 minutes. After fixation, the cells were washed three times with 1xPBS. Finally, mounted the coverslips containing cells on the glass slides having anti-fading reagent (Fluoromount; Sigma). Then the image was captured at an excitation wavelength of 488 nm using Nikon A1R Laser Scanning Confocal Microscope system. The data obtained was analyzed with the software version 4.11.00 of NIS Elements AR analysis (Nikon Corporation, Japan).

Detection limit: The detection limit was calculated based on the absorbance or fluorescence titrations. To determine the S/N ratio, the emission intensity of **OPR-PDI** (10 μ M) without Cu²⁺ and palladium species was measured by 3 times and the standard deviation of blank solution (without addition of analyte) measurements was determined. The detection limit was then calculated with this equation, Detection limit = 3σ bi/m, where σ bi is the standard deviation of blank solution (without addition of analyte) measurements; m is the slope between intensity versus analyte concentration.

Sample preparation for TLC Strips: TLC strips were made by dipping into 30% water–CH₃CN solution of **OPR-PDI** (5 μ M) followed by drying under vacuum at room temperature. Different concentrations of Cu²⁺ and Pd⁰ were prepared in aqueous solution. The 5 μ L aliquot of each solution of Cu²⁺ and Pd⁰ was added on the TLC strips previously coated with **OPR-PDI**. For control experiment, drop of water alone was also added on the TLC strip coated with **OPR-PDI**. The TLC strips were then visualized under sunlight and UV lamp on excitation at 365 nm.

Fig. S1a: ¹H NMR spectrum of OX-PDI (400 MHz).

Fig. S1b: ¹³C NMR spectrum of OX-PDI (400 MHz).

Fig. S2a: ¹H NMR spectrum of OPR-PDI (500 MHz).

Fig. S2b: ¹³C NMR spectrum of OPR-PDI (500 MHz).

Fig. S2c: ¹H-¹H COSY spectrum of **OPR-PDI**.

Fig. S2d: ¹H-¹³C HSQC spectrum of OPR-PDI.

Fig. S2e: ¹H-¹H NOESY spectrum of **OPR-PDI**.

Fig. S2f: IR spectrum of OPR-PDI.

Fig. S2g: Mass spectrum of OPR-PDI.

2. Density Functional theory (DFT) and Time dependent (TD-DFT) calculations

Fig. S3: Approximate excitation wavelength of **OPR-PDI** calculated by time-dependent density functional theory (TD-DFT) with the B3LYP functional and $6-31G^*$ basis set under Gaussian 09 software. Excitation Wavelength = 550.9 nm; Oscillation Strength = 0.5111.

Fig. S4: (a-b) Molecular orbital analysis of PDI **2** with HOMO and LUMO presentations; (c) B3LYP/6-31G* optimized structure of PDI **2**.

Fig. S5: Approximate excitation wavelength of PDI **2** calculated by time-dependent density functional theory (TD-DFT) with the B3LYP functional and $6-31G^*$ basis set under Gaussian 09 software. Excitation Wavelength = 546.4 nm; Oscillation Strength = 0.5433.

Fig. S6: DLS graph of OPR-PDI in CH₂Cl₂.

3. Solvatochromic properties of PDI 2

Fig. S7 (a) Absorbance and (b) emission spectra of PDI 2 (10μ M) in different polarity solvents showing solvatochromic properties; (c) photographs of PDI 2 solutions in different solvents showing absorbance and fluorescence color changes (365 nm UV lamp).

Fig. S8 UV-vis absorption and emission spectra of OPR-PDI (10 μ M) after the incremental addition of 10 vol% H₂O in) DMF.

Fig. S9 UV-vis absorption and emission spectra of OPR-PDI (10 μ M) after the incremental addition of 10 vol% H₂O in) CH3CN.

Fig. S10 UV-vis absorption and emission spectra of OPR-PDI (10 μ M) after the incremental addition of 10 vol% H₂O in) THF.

Table S1: Frank–Codon factor (A_{0-0}/A_{0-1}) and degree of aggregation calculated for **OPR-PDI** in water-DMSO binary mixture.

Volume % Water	α_{agg}	Frank–Codon factor
		(A_{0-0}/A_{0-1})
0	0	1.46
10	0.81	1.12
20	0.95	0.72
30	0.96	0.69
40	0.99	0.71
50	0.96	0.76
60	0.95	0.76
70	0.98	0.82
80	0.99	0.90
90	1	1

Fig. S11: Emission spectrum for Pd⁰ showing blue shift.

Fig. S12: Jobs plot based on colorimetric and fluorometric data.

Table S2: Recovery in percent of Pd^0 and Cu^{2+} ions in biofluid samples using fluorometric technique.

		Pd ⁰			Cu ²⁺		
Techniques	Samples	Pd ⁰ added (μM)	Pd ⁰ found (μM)	% age recovery	Cu ²⁺ added (µM)	Cu ²⁺ found (µM)	% age recover y
	Blood	5.75	5.9	102.6	ND	ND	ND
	Serum	7.25	7.0	96.5	ND	ND	ND
Fluorescenc		0.4	0.39	98.7	0.3	0.32	106.6
C		2.25	2.15	95.5	1	1.05	105
	Urine	3.25	3.15	96.9	9	9.25	102.8
		3.75	3.95	105.3	28.3	27.8	98.2

Fig. S13: ¹H NMR spectra of **OPR-PDI** recorded in DMSO (d_6) on incremental addition of Pd⁰ (1 and 2 equivalents) and for comparison ¹H NMR spectra of product obtained from model reaction at the top has been given.

Fig. S14: ¹H NMR spectra of **OPR-PDI** recorded in DMSO (d_6) on incremental addition of Cu²⁺ ions (1 and 2 equivalents).