Electronic Supporting Information

Precision Design of Vinyl Amine and Vinyl Alcohol-Based Copolymers via Cobalt-Mediated Radical Polymerization

Pierre Stiernet,^a Christine Jérôme^a and Antoine Debuigne^{a*}

^a Center for Education and Research on Macromolecules (CERM), CESAM-Research Unit, University of Liege (ULiege), Sart-Tilman, Allée de la Chimie 3, Bat. B6a, B-4000 Liège, Belgium.

Table S1. Data used for the determination of the reactivity ratios for the CMRP of *N*VA and VAc.

Entry	Feed composition		Time	Conv ^a Copolymer composition ^b		omposition ^b
_	f^{o}_{NVA}	f ^o vAc	(min)	(%)	F_{NVA}	F _{VAc}
1	0.10	0.90	85	17	0.21	0.79
2	0.30	0.70	60	10	0.54	0.47
3	0.50	0.50	20	1	0.70	0.30
4	0.70	0.30	13	11	0.84	0.16
5	0.89	0.11	3	32 °	0.94	0.06

Conditions: 40 °C ; [Comonomers]/[PVAc₄-Co(acac)₂] = 700 ; comonomers/DMF = 1.4/1 m/v.^a Determined by ¹H NMR in MeOD (see Figure S1). ^b Determined by ¹H NMR in MeOD after purification of the copolymer by precipitation followed by dialysis in methanol. ^c The conversion was higher in this case due to a very fast polymerization when copolymerization with high *N*VA content is used. Nevertheless, as predicted by the Skeist's model, the composition drift is rather limited at this conversion and the value remains valid (see *F_{cumul}* in Figure 4).

Fig S1. Typical ¹H NMR spectrum in MeOD of the reaction mixture of the cobalt-mediated radical copolymerization of NVA/VAc. Conditions: [NVA]/[VAc]/[RCo(acac₂] = 250/250/1 ; 1 g of comonomers/mL of DMF, 40 °C, 11 h, overall conv = 47 %. Overall conversion (%) = [[[$f_{2.2-1.4 \text{ ppm}} - 3 f_{4.6 \text{ ppm}} + f_{4.6 \text{ ppm}} + f_{4.4 \text{ ppm}}$]]

Fig S2. Typical ¹H NMR analysis of a P(*N*VA-*co*-VAc) copolymer prepared by cobalt-mediated radical copolymerization of NVA/VAc. Conditions: [*N*VA]/[VAc]/[RCo(acac₂] = 150/350/1; 1 g of comonomers/mL of DMF, 40 °C, 13 h, conversion = 42 %. (See Table 1, $f^{\circ}_{NVA} = 0.3$). $F_{NVA} = 0.46$. It was determined by comparing the intensity of signal **b** at 3.8 ppm corresponding to the methine proton of the *N*VA units with signals between 2.3 and 1.4 ppm corresponding to the methyl and methylene groups of *N*VA and VAc units in the copolymer. $(F_{NVA} = f_{4.2-3.6 \text{ ppm}} / [f_{2.3-1.4 \text{ ppm}}/5])$

Fig S3. Dependence of the molar mass ($M_{n \text{ SEC DMF CAL PS}}$, full symbols) and dispersity (D, empty symbols) on monomer conversion (determined by ¹H NMR in MeOD) for the cobalt-mediated radical copolymerization of *N*VA and VAc. Conditions: [Monomer]/[R-Co] = 500; [*N*VA]/[VAc]/[PVAc_{<4}-Co(acac)₂] = 250/250/1; 1 g of comonomers/ mL of DMF, 40 °C. (see Table 1, $f_{NVA}^{\circ} = 0.5$)

Fig S4. Fineman-Ross plot for the cobalt-mediated radical copolymerization of *N*VA and VAc in DMF at 40 °C in DMF. Experimental conditions and data are presented in Table S1.

Fig S5. Kelen-Tudos plot for the cobalt-mediated radical copolymerization of *N*VA and VAc in DMF at 40 °C in DMF. Experimental conditions and data are presented in Table S1.

Fig S6. Infrared spectra of the P(NVA-co-VAc) copolymer (**A**) prepared by CMRP and the corresponding P(VAm-co-VA) (**B**) and P(NVA-co-VA) (**C**) copolymers produced via total and selective hydrolysis of (**A**), respectively.

Fig S7. ¹H NMR spectra in D₂O of the P(NVA-co-VAc) copolymer (**A**) prepared by CMRP and the corresponding P(VAm-co-VA) (**B**) and P(NVA-co-VA) (**C**) copolymers produced via total and selective hydrolysis of (**A**), respectively.

Fig S8. Thermogravimetric analysis of the P(NVA-co-VAc) copolymer A (----) prepared by CMRP and the corresponding P(VAm-co-VA) B (---) and P(NVA-co-VA) C (----) copolymers produced via total and selective hydrolysis of (A), respectively.

Fig S9. IR spectrum of the P(VAm-*co*-VA) (**D**) obtained via hydrolysis of P(*N*VA-*co*-VA) copolymer (**B**) through treatment with HCl (2N) at 120 °C for 14 h.

Fig S10. HSQC spectrum in D_2O of the P(VAm-*co*-VA) (**D**) obtained via hydrolysis of P(*N*VA-*co*-VA) copolymer (**B**) through treatment with HCl (2N) at 120 °C.