Electronic supporting information

Substituents para-to-ortho positioning effect driving the photoreactivity of a dibenzothiophene-based oxalate series used as LEDs excitable free radical photoinitiators

Haiyan Pan,¹ Siqi Chen,¹ Ming Jin*,¹ Jean-Pierre Malval*,² Decheng Wan,¹ Fabrice Morlet-Savary²

 ¹Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, P.R. China
 ²Institute de Science des Matériaux de Mulhouse, UMR CNRS 7361, Université de Haute-Alsace, 15 rue Jean Starcky, Mulhouse, 68057, France

Correspondence to: M. Jin (e-mail: <u>mingjin@tongji.edu.cn</u>), J.P. Malval (e-mail: jeanpierre.malval@uha.fr)

Contents

- Figure S1. The ¹H NMR spectra of four compounds in CDCl₃.
- Figure S2. The ¹³C NMR spectra of four compounds in CDCl₃.
- Figure S3. The Mass spectra of HO and HP.
- Figure S4. The Mass spectra of BO and BP.
- Table S1.
 hfc (hyperfine coupling constants) for the detected spin adduct of PBN in toluene.
- Table S2.Complete photopolymerization results using distinctive LEDs sources
and
upon irradiance in the 30-80 mW cm⁻² range.

Figure S1. The ¹H NMR spectra of four compounds in CDCl₃.

Figure S2. The 13 C NMR spectra of four compounds in CDCl₃.

HP. ¹H NMR (CDCl₃) δ (ppm): 8.82 (s, 1H), 8.24 (dd, J = 6.2, 2.6 Hz, 1H), 8.09 (dd, J = 6.2, 2.6 Hz, 1H), 7.95 (d, J = 8.4 Hz 1H), 7.91–7.84 (m, 1H), 7.56–7.48 (td/td, 2H), 4.04 (s, J = 8.4 Hz, 3H). ¹³C NMR (CDCl₃) δ (ppm): 185.52 (C=O), 164.19 (C=O), 146.87 (Cq), 139.69 (Cq), 135.90 (Cq), 134.90 (Cq), 128.97 (Cq), 127.86 (CH), 127.48 (CH), 125.25 (CH), 123.79 (CH), 123.22 (CH), 123.03 (CH), 122.14 (CH), 53.03 (CH₃). HRMS (TOF MS ESI): m/z 293.0247 (M + Na⁺) (Calcd: 270.0351).

HO. ¹H NMR (CDCl₃) 1 (ppm): 8.44 (dd, J = 7.8, 1.0 Hz, 1H), 8.29–8.12 (dd/dd, 2H), 8.04–7.90 (dd, 1H), 7.60 (t, J = 7.7 Hz, 1H), 7.56–7.48 (t/t, 2H), 4.05 (s, 3H). ¹³C NMR (CDCl₃) δ (ppm): 185.13 (C=O), 163.82 (C=O), 141.77 (C_q), 140.80 (C_q), 137.68 (C_q), 133.60 (C_q), 131.80 (CH), 127.81 (CH), 127.66 (CH), 126.51 (C_q), 125.00 (CH), 124.32 (CH), 123.02 (CH), 121.59 (CH), 53.13 (CH₃). HRMS (TOF MS ESI): m/z 293.0247 (M + Na⁺) (Calcd: 270.0351).

BP. ¹H NMR (CDCl₃) δ (ppm): 8.74 (s, 1H), 8.32 (s, 1H), 8.08 (dd, J = 8.5, 1.6 Hz, 1H), 7.90 (d, J = 8.5 Hz, 1H), 7.68 (d, J = 8.5 Hz, 1H), 7.57 (dd, J = 8.6, 1.9 Hz, 1H), 3.98 (d, 3H). ¹³C NMR (CDCl₃) δ (ppm): 184.86(C=O), 163.55 (C=O), 141.18 (C_q), 140.46 (C_q), 136.45 (C_q), 135.37 (C_q), 132.36(CH), 130.53 (CH), 127.91 (CH), 126.57 (C_q), 124.63 (CH), 124.49 (CH), 124.32 (CH), 118.98 (C_q), 53.22(CH₃). HRMS (TOF MS ESI): m/z 370.9355 (M + Na⁺) (Calcd: 347.9456).

BO. 1H NMR (CDCl3) δ (ppm): 8.34 (dd, J = 10.9, 5.4 Hz, 1H), 8.25 (s, 1H), 8.21 (dd, J = 7.7, 1.0 Hz, 1H), 7.76 (d, J = 8.5 Hz, 1H), 7.64 – 7.50 (t/d, 2H), 3.99 (d, J = 4.6 Hz, 3H). 13C NMR (CDCl3) δ (ppm): 185.12 (C=O), 163.95 (C=O), 147.13 (Cq), 138.31 (Cq), 136.63 (Cq), 134.68 (Cq), 130.78 (CH), 129.27 (Cq), 128.01 (CH), 125.01 (CH), 124.31 (CH), 124.06 (CH), 123.35 (CH), 119.31 (Cq), 53.16 (CH3). HRMS (TOF MS ESI): m/z 386.0710 (M + K+) (Calcd: 347.9456).

Figure S3. The Mass spectra of HO and HP.

Figure S4. The Mass spectra of BO and BP.

PIs	Radical 1	Radical 2	PBNox
HP	$a_{\rm N} = 13.5 \text{ G}$; $a_{\rm H} = 1.8 \text{ G}$; (53.3%)	$a_{\rm N} = 14.0 \text{ G}$; $a_{\rm H} = 5.1 \text{ G}$; (44.3%)	(3.4%)
НО	$a_{\rm N} = 13.5 \text{ G}$; $a_{\rm H} = 1.8 \text{ G}$; (56.2%)	$a_{\rm N} = 14.0 \text{ G}$; $a_{\rm H} = 5.1 \text{ G}$; (42.0%)	(1.8%)
BP	$a_{\rm N} = 13.6 \text{ G}$; $a_{\rm H} = 1.8 \text{ G}$; (47.8%)	$a_{\rm N} = 14.0 \text{ G}$; $a_{\rm H} = 5.1 \text{ G}$; (50.2%)	(2.0%)
BO	$a_{\rm N}$ = 13.6 G ; $a_{\rm H}$ = 1.8 G ; (59.3%)	$a_{\rm N} = 14.0 \text{ G}$; $a_{\rm H} = 5.1 \text{ G}$; (39.2%)	(1.5%)

 Table S1.
 hfc (hyperfine coupling constants) for the detected spin adduct of PBN in

toluene of four PIs.

	L EDa		concentration	R_p /	Conversion
Monomer	$(\lambda_{irr}) / (\mathrm{mW} \cdot \mathrm{cm}^{-2})$	Photoinitiator	of	[M]	at $t = 60 s$
			Photoinitiator	S ⁻¹	(%)
		HP	3 wt%	26	92
трспа		НО		11	91
IFGDA		BP		30	93
		BO		22	95
	365/27	HP	1 wt%	5.6	41
тмрта		НО		3.7	43
		BP		4.4	40
		BO		3.2	51
		HP	1 wt%	9.3	85
HDDA		НО		4.3	82
прря		BP		6.9	78
		BO		4.1	70
		HP		24	92
TPGDA		НО	3 wt%	16	92
ПОDА		BP	5 W1/0	25	94
		BO		20	95
	385/48	HP	1 wt%	5.3	44
тмрта		НО		4.6	48
		BP		3.6	36
		BO		4.2	41
		HP	1 wt%	6.5	83
HDDA		HO		3.5	82
		BP		5.7	82
		BO		3.5	/6
		HP	3 wt%	25	89
TPGDA		HO		25	89
		BP		24	8/
				24	90
		HP	1 wt%	1.5	31
ТМРТА		ПО рр		5.1 1.5	40
		BO		1.5	34
		<u></u> Цр		1.0	50
		HO	1 wt%	1.0	39 70
HDDA		RP		1.7	62
		BO		2.4	70
	425/37	HP	3 wt%	67	88
		НО		92	88
TPGDA		BP		5.4	82
		BO		6.5	86
		HP	1 wt%	0.1	17
талрт А		НО		0.5	28
IMPIA		BP		0.04	14
		BO		0.1	20
		НР	1 wt%	0.5	46
		НО		0.7	66
ΠυυΑ		BP		0.8	41
		BO		0.9	70

Table S2. Complete photopolymerization results using distinctive LEDs sources and upon irradiance in the 30-80 mW cm⁻² range