Supplementary information

Yan Zhang, ${ }^{* a}$ Yue $\mathrm{Xu},{ }^{\text {a }}$ Chao Wei, ${ }^{a}$ Chuanhao Sun, ${ }^{a}$ Bingkun Yan, ${ }^{a}$ Jieni Hu, ${ }^{a}$ Wei L^{b}
${ }^{\text {a }}$ Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials and Science and Engineering, East China University of Science and Technology. Shanghai, 200237, P. R. China
${ }^{\text {b }}$ Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug

Delivery, Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
*Corresponding author. E-mail: zhang_yan@ecust.edu.cn Tel: +86 02165243432

Results and discussion

Fig. S1 The typical ${ }^{1} \mathrm{H}$-NMR spectrum of MN and MSe in CDCl_{3}

Fig. S2 The typical ${ }^{13} \mathrm{C}$-NMR spectrum of MN and MSe in CDCl_{3}

Fig. S3 The CMC determination of the mPEG-b-poly(MN-co-MSe) copolymers using the fluorescence method with pyrene as a probe

Fig. S4 Turbidity measurements of mPEG- b-poly(MN-co-TMC) and mPEG- b-PTMC copolymers at the presence of $50 \mathrm{mM} \mathrm{H}_{2} \mathrm{O}_{2}$ in aqueous solution for 24 h

Fig. S5 DLS results of the mPEG- b-poly(MSe-co-TMC) (left) and mPEG- b-PTMC (right) copolymers with different pH or $50 \mathrm{mM} \mathrm{H}_{2} \mathrm{O}_{2}$ at $37^{\circ} \mathrm{C}$ for 12 h

Fig. S6 The FT-IR spectra of mPEG-b-poly($\left.\mathrm{MN}_{9}-c o-\mathrm{MSe}_{9}\right)$ and mPEG-b-poly $\left(\mathrm{MN}_{9}-c o-\mathrm{OSe}_{9}\right)$

Fig. S7 The water contact angle of mPEG-b-poly $\left(\mathrm{MN}_{9}-\mathrm{co}-\mathrm{MSe}_{9}\right)$ at different environments.
(A) water (B) pH $5.0(\mathrm{C}) \mathrm{pH} 7.4+\mathrm{H}_{2} \mathrm{O}_{2}$ (D) $\mathrm{pH} 5.0+\mathrm{H}_{2} \mathrm{O}_{2}$

Fig. S8 DLS curve of DOX-loaded mPEG- b-poly $\left(\mathrm{MN}_{9}-\mathrm{Co}-\mathrm{MSe}_{9}\right)$ micelles in aqueous solution

$$
\left(\text { Size }_{\text {intensity }}=110.4 \mathrm{~nm}, \mathrm{PDI}=0.159\right)
$$

Fig. S9 SEC curves of mPEG-b-poly $\left(\mathrm{MN}_{9}-\mathrm{Co}-\mathrm{MSe}_{9}\right)$ in 0.02 M PBS at $37{ }^{\circ} \mathrm{C}$ at marked degradation time. (A) pH 7.4 (B) pH 5.0 (c) $\mathrm{pH} 7.4+50 \mathrm{mM} \mathrm{H}_{2} \mathrm{O}_{2}$ (D) $\mathrm{pH} 5.0+50 \mathrm{mM} \mathrm{H}_{2} \mathrm{O}_{2}$

Fig. S10 Cell viability of (A\&B) HEK293 cells and (C\&D) A549 cells cultured with mPEG $_{45}-b$ poly $\left(\mathrm{MN}_{9}-\mathrm{Co}-\mathrm{MSe}_{9}\right)$ and $\mathrm{mPEG}_{45}-b$-poly $\left(\mathrm{MN}_{9}-\mathrm{Co}-\mathrm{OSe}_{9}\right)$ in 48 h and 72 h , respectively.

