Supporting Information

Ferulic acid-based reactive core-shell latex by seeded emulsion polymerization

W. S. J. Li^a, V. Ladmiral^a, H. Takeshima^b, K. Satoh^b, M. Kamigaito^b, M. Semsarilar^c, C. Negrell^a, P. Lacroix-Desmazes^a, S. Caillol^{a^{*}}

^a ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.

^b Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya

University, Nagoya 464-8603, Japan.

^c Institut Européen des Membranes (UMR 5635, ENSCM-CNRS-UM), Université de Montpellier, C.C.

047, Place E. Bataillon, Montpellier, France.

Determination of AC4VG conversion

AC4VG monomer conversions were calculated by ¹H NMR using the following equation:

$$conversion (AC4VG) = 100 \times \left[1 - \frac{\left(\int_{5.18}^{5.28} CH(AC4VG)_t / 1 \right)}{\int_{0.72}^{5.28} CH_3(PBA)_t / 3} \right] \\ \left[\frac{\left(\int_{5.18}^{5.28} CH(AC4VG)_{t=0} / 1 \right)}{\int_{0.72}^{5.28} CH_3(PBA)_{t=0} / 3} \right]$$
(Equation S1)

Determination of the number of particles in the seed latex and in the composite latex

The number of particles in the seed and final latexes were calculated as follows:

The mass of one polymer particle is calculated as:

$$m_{polymer\ particle} = \frac{\pi}{6} (D_v)^3 \rho$$

where,

 D_{v} is the volume-average particle diameter ρ is the polymer density

The number of particles in a given quantity of latex is calculated as:

$$N_p = \frac{m_{polymer}}{m_{polymer \ particle}}$$
(Equation S3)

where,

 $m_{polymer}$ is the mass of polymer in the latex $m_{polymer \ particle}$ is the mass of one polymer particle

For the P(S-co-BA) latex, using the volume-intensity average diameter of 55 nm, as measured by DLS,

(Equation S2)

 $m_{P(S-co-BA) \ particle} = \frac{\pi}{6} (55nm)^3 \left(\frac{1.058 \ g}{cm^3}\right) \left(\frac{10^{-7} cm}{nm}\right)^3 = 9.2 \times 10^{-17} g$ In 16 g of P(S-co-BA) seed latex at 8 wt. % solids content, $N_p \ in \ P(S-co-BA) \ seed \ latex = \frac{(16g)(0.08)}{9.2 \times 10^{-17} g} = 1.4 \times 10^{16}$

For the P(S-*co*-BA)@PAC4VG latex, using the volume-intensity average diameter of 74 nm, as measured by DLS,

 $m_{P(S-co-BA)@PAC4VG particle} = \frac{\pi}{6} (74nm)^3 \left(\frac{1.022 \ g}{cm^3}\right) \left(\frac{10^{-7} cm}{nm}\right)^3 = 2.2 \times 10^{-16} g$ With the near complete conversion of 2 g of AC4VG in the seed latex, $N_p \ in \ P(S-co-BA)@PAC4VG \ latex = \frac{(16g)(0.08) + 2g}{2.2 \times 10^{-16} g} = 1.5 \times 10^{16}$

For the PBA latex, using the volume-intensity average diameter of 60 nm as measured by DLS,

$$m_{PBA \ particle} = \frac{\pi}{6} (60 nm)^3 \left(\frac{1.087 \ g}{cm^3}\right) \left(\frac{10^{-7} cm}{nm}\right)^3 = 1.2 \times 10^{-16} g$$

In 15 g of PBA seed latex at 8 wt. % solids,
 $N_p \ in \ PBA \ seed \ latex = \frac{(15g)(0.08)}{1.2 \times 10^{-16} g} = 1.0 \times 10^{16}$

For the PBA@PAC4VG latex, using the volume-intensity average diameter of 91 nm, as measured by DLS,

$$m_{PBA@PAC4VG \ particle} = \frac{\pi}{6} (90nm)^3 \left(\frac{1.026 \ g}{cm^3}\right) \left(\frac{10^{-7} cm}{nm}\right)^3 = 4.0 \times 10^{-16} g$$

With the near complete conversion of 3 g of AC4VG in the seed latex, $N_p in PBA@PAC4VG latex = \frac{(15g)(0.08) + 3g}{4.0 \times 10^{-16}g} = 1.1 \times 10^{16}$

Determination of the interfacial tensions

The interfacial tensions of the polymers were calculated using Wu's method³⁴:

$$\gamma_{ij} = \gamma_i + \gamma_j - \left[\frac{4\gamma_i^P \gamma_j^P}{\gamma_i^P + \gamma_j^P}\right] - \left[\frac{4\gamma_i^D \gamma_j^D}{\gamma_i^D + \gamma_j^D}\right]$$
(Equation S4)

 γ_{ij} is the interfacial surface tension between species *i* and species *j*

 γ_i^{P} , γ_i^{D} and γ_j^{P} , γ_j^{D} are the polar and dispersion components of the surface tension of species *i* and *j* respectively

 γ_i and γ_i are the total surface tensions of species *i* and *j* respectively ($\gamma_i^P + \gamma_i^D = \gamma_i$)

In order to use Wu's method, the polar and dispersion components of the surface tensions of each solid species were calculated using Owen's equation³⁵ (Equation S5; here γ_i^P and γ_i^D are denoted as γ_s^P and γ_s^D in reference to the solid polymer species) by using the measured contact angles of a polar (H₂O) and a non-polar (CH₂I₂) liquid on the surface of each polymer.

$$1 + \cos\theta = 2\sqrt{\gamma_S^{D}} \left(\frac{\sqrt{\gamma_l^{D}}}{\gamma_{l\nu}} \right) + 2\sqrt{\gamma_S^{P}} \left(\frac{\sqrt{\gamma_l^{P}}}{\gamma_{l\nu}} \right)$$
(Equation S5)

 $\gamma_s{}^{D}$ and $\gamma_s{}^{P}$ are the dispersion and polar components of the surface free energy of the solid species $\gamma_l{}^{D}$ and $\gamma_l{}^{P}$ are the dispersion and polar components of the surface free energy of the liquid species

 γ_{lv} is the free energy of the liquid species against its saturated vapor

 $\boldsymbol{\theta}$ is the contact angle (in degrees) of the liquid species against a solid species

The values of γ_{l}^{D} , γ_{l}^{P} and γ_{lv} were taken from the literature for water (γ_{l}^{D} = 21.8 dynes/cm, γ_{l}^{P} = 51 dynes/cm, and γ_{lv} = 72.8 dynes/cm) and diiodomethane (γ_{l}^{D} =49.5 dynes/cm, γ_{l}^{P} = 1.3 dynes/cm, and γ_{lv} = 50.8 dynes/cm).³⁵ A system of two equations (one equation for each contact angle of each liquid) with two unknowns (γ_{s}^{P} and γ_{s}^{D}) can then be solved to obtain the values of γ_{s}^{P} and γ_{s}^{D} for each polymer component. These values were then used in Equation S4 to obtain the respective interfacial tensions.

Material	Water contact	Methylene iodide	γs	γs ^P	γs ^D
	angle (°)	contact angle (°)	(dyne/cm)	(dyne/cm)	(dyne/cm)
РВА	97.1±0.1*	64.5 ± 0.1*	26.0	1.5	24.5
PAC4VG	85.7± 0.1	39.3 ± 0.1	40.1	2.1	38.0
P(S- <i>co</i> -BA)	98.5 ± 0.1	40.0 ± 0.1	42.5	0.0	42.5
(P(S- <i>co</i> - BA)@PAC4VG	75.1 ± 0.1	50.9 ± 0.1			
PBA@PAC4VG	89.5 ± 0.1	68.2 ± 0.1			

Table S1: Measured contact angles of water and methylene iodide on various polymer surfaces.

*value taken from Kim *et al.*⁴⁰

Table S2: Interfacial tensions and parameters U and T calculated according to the method of Gonzales-Ortiz.³³

Polymer	Y 12	γ _{1w}	γ _{2w}	Т	U

	(dyne/cm)	(dyne/cm)	(dyne/cm)		
P(S- <i>co</i> -BA)@PAC4VG	2.3	57.1	48.9	0.82	0.05
PBA@PAC4VG	3.0	46.5	48.9	0.99	0.06

*1=P(S-co-BA) or PBA, 2=PAC4VG, W=water

Figure S1: Intensity-average particle hydrodynamic diameters distributions for (from left to right): P(S₈₅-co-BA₁₅), (P(S₃₇-co-BA₆)@PAC4VG₅₇, PBA, and PBA₃₀@PAC4VG₇₀. The subscripts indicate the monomer weight fractions.

Figure S2: Volume-average particle size distributions for (from left to right): P(S₈₅-co-BA₁₅), (P(S₃₇-co-BA₆)@PAC4VG₅₇, PBA, and PBA₃₀@PAC4VG₇₀. The subscripts indicate the monomer weight fractions.

Figure S3: Number-average particle size distributions for (from left to right): P(S₈₅-co-BA₁₅), (P(S₃₇-co-BA₆)@PAC4VG₅₇, PBA, and PBA₃₀@PAC4VG₇₀. The subscripts indicate the monomer weight fractions.

Figure S4: TGA thermograms of protected and deprotected PAC4VG.

Estimation of a copolymer T_g based on the T_g of the pure components using the Fox-Flory equation:

$$\frac{1}{T_{g,copolymer}} = \frac{w_1}{T_{g,1}} + \frac{w_2}{T_{g,2}}$$
(Equation S6)

where,

 $w_1\,\text{and}\,w_2$ are the weight fractions of polymers 1 and 2

 $T_{g,1}$ and $T_{g,2}$ are the individual glass transition temperatures of polymers 1 and 2 (in Kelvin)

Figure S5 : TEM image of P(S-co-BA)@PAC4VG latex particles.

Figure S7: FTIR analysis of P(S-co-BA)@PAC4VG before and after deprotection.

Figure S8: FTIR analysis of control sample (non-crosslinked) and crosslinked resin.