Supporting Information

Directed motion of water droplets on multi-gradient photopolymer surfaces

Elisabeth Rossegger,^a Daniel Hennen,^b Thomas Griesser,^{b,c} Ignazio Roppolo^d and Sandra Schlögl^{a,*}

^aPolymer Competence Center Leoben GmbH, Roseggerstrasse 12, A-8700 Leoben, Austria

e-mail: sandra.schloegl@pccl.at

^bChristian Doppler Laboratory for Functional and Polymer based Ink-Jet Inks, Otto Glöckel-Strasse 2, A-8700 Leoben, Austria

^cInstitute of Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto Glöckel-Strasse 2, A-8700 Leoben, Austria

^aDepartment of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Figure S1 – ¹H NMR spectrum of butynyl-NBC

Figure S2 – ¹³C NMR spectrum of butynyl-NBC

Figure S3 – FT-IR spectrum of butynyl-NBC

Figure S4 – ¹H NMR spectrum of hexynyl-NBE

Figure S5 – ¹³C NMR spectrum of hexynyl-NBE

Figure S6 – FT-IR spectrum of hexynyl-NBE

Figure S7 – Following the UV-vis absorbance of hexynyl-**NBE** (0.01 mg/mL in acetonitrile) upon UV exposure (269 mW/cm²).

Figure S8 – FT-IR spectra of resin 3EQ-1H-1T prior to (*black line*) and after photo-curing (*red line*). Inserts show the IR bands of the characteristic (I) alkyne, (II) thiol and (III) vinyl sulfide groups magnified out of the FT-IR spectra. Irradiation was carried out with visible light (λ = 420 - 450 nm, 3.6 mW/cm²) under air.

Figure S9 – FT-IR spectra of resin 3EQ-1H-1T prior to (*black line*) and after photo-curing (*red line*). The characteristic NO₂ absorption bands at 1537 cm⁻¹ (asym. stretching) and 1348 cm⁻¹ (sym. stretching) are magnified out of the FT-IR spectra. Irradiation was carried out with visible light (λ = 420 - 450 nm, 3.6 mW/cm²) under air.

Figure S10 – UV-vis spectra of resin 3EQ-1H-1T prior to (*black line*) and after photo-curing for 600 (*red line*) and 1200 s (*blue line*). Irradiation was carried out with visible light ($\lambda = 420 - 450$ nm, 3.6 mW/cm²) under air.

Figure S11 – Static water contact angles of cured thiol-yne systems comprising butynyl-**NBC** and 3 equiv. of selected thiols versus exposure time (269 mW/cm², λ < 400 nm). The thiol component is varying and comprised a 1:1 molar ratio of TMPMP and HDT (*open squares*), 1:2 molar ratio of TMPMP and HDT (*open diamonds*) and 1:3 molar ratio of TMPMP and HDT (*open triangles*). UV exposure was carried out either in (a) nitrogen or (b) air. The lines are a guide for the eye.

Figure S12 – Variations of the signal intensity in the S2p region at 161-165 eV (*open squares*) and 166-170 eV (*full squares*) versus UV exposure time. UV irradiation was carried out under nitrogen atmosphere. The lines are a guide for the eye.

Figure S13 – Movement of a $2-\mu L$ water droplet on the surface of 2EQ-1T-1H with a combined gradient of wettability and Laplace pressure. The scale bar is 2 mm.