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Figure S1. "H NMR spectra overlay of EVA, EVOH and polymer 3 (EVOH-UPy) recorded at
120 °C in deuterated TCE.

Figure S2. '"H NMR spectra overlay of PE-MAH, PE-MAH-EA and polymer 4 (PE-MAH-EA-
UPy) recorded at 120 °C in deuterated TCE.



Table S1. Functional group content, melting temperatures (7m), p transition temperatures (7p)
degrees of crystallinity (X.) as well as molecular weights (M,, My) and molecular weight
distributions (Pwm) of the starting polyolefins.

o ° o N
[mol9%s] @ [°C] [°cl (%] [g/mol] [g/mol]
-9.5f
EVA 3.0 99.1 59 gf 11.7 13 500 69 100 5.1
PE-MAH 04 99.2 -16.4 9.3 2 500 5900 2.4

aFunctional group content was calculated from *H-NMR (400 MHz, 120 °C, TCE d,); PE-MAH with higher functional group content is not
commercially available. ® Melting temperatures (Tn) were determined by DSC from the second heating scan. °p transition temperatures (Tp)
were determined by DMTA from the maximum of tan T ¢ Degrees of crystallinity (X;) were calculated dividing the melting enthalpy of
100% crystalline PE (286.2 J/g, B. Wunderlich, C. M. Cormier, Heat of fusion of polyethylene. Journal of Polymer Science Part A-2: Polymer
Physics 1967, 5 (5), 987-988.) by melting enthalpy of a polymer determined by DSC from the second heating scan. ¢ Molecular weight and
polydispersity were determined by SEC in oDCB at 150 °C with respect to polyethylene standards. ftwo P transition temperatures were
observed.

Calculation of UPy units per chain

Number of UPy/chain was calculated based on the amount of -OH grafted and M, of starting
material according to the Equaton S1. Functional group content, hydrogen bonding motif
content and M, of the functionalized PE can be found in the Table 1 and Table 2. Repeating
unit other then ethylene is treated as a “comonomer” for this calculation even though the
polymer might not have beed obtained by copolymerization of this fragment with ethylene.

UPy / chain = M,,[ﬁ]-hydrog;n bonding motif [mol%] _ (1)

functional group [mol%] - M-comonomer' [, 571+ (100—functional group [mol%])-Metnyiene[,, ;7]
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Figure S3. DSC first (black) and second (red) heating curve of UPy.
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Figure S4. 'H NMR spectra overlay of polymer 1 (PE-HEMA 1-UPy, black) and PE-HEMA1
extruded with UPy at 200 °C (red), recorded at 120 °C in deuterated TCE.
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Figure S5. Representative melt viscosity changes recorded during the reactive extrusion of
polymer 2 (PE-HEMAZ2-IPR-UPy)
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Figure S6. IR spectra overlay of UPy (red line) and functional polyolefins grafted with UPy or
IPR-UPy (black lines).
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Figure S7. DSC second heating curves of PE-HEMAT1 and polymer 1 (PE-HEMA2-UPy).
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Figure S8. DSC second heating curves of PE-HEMAZ2, and polymer 2 (PE-HEMA2-IPR-UPy).
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Figure S9. DSC second heating curves of EVA, EVOH and polymer 3 (EVOH-UPy).
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Figure S10. DSC second heating curves of PE-MAH, PE-MAH-EA and polymer 4 (PE-MAH-
EA-UPy).
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Figure S11. DSC heating curves of polymer 3 (EVOH-UPy), maximal temperature was
increased by 10 °C each time starting from 120 °C.
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Figure S12. DSC heating curves of polymer 4 (PE-MAH-EA-UPy) maximal temperature was
increased by 10 °C each time starting from 120 °C.
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Figure S13. DSC heating curves of PE-HEMA1, maximal temperature was increased by 10 °C
each time starting from 120 °C.
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Figure S14. Rheology temperature sweep curves of PE-HEMA?2 and polymer 2 (PE-HEMA-
UPy).
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Figure S15. Rheology temperature sweep curves of EVOH and polymer 3 (EVOH-UPy).
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Figure S16. Rheology temperature sweep curves of PE-MAH-EA and polymer 4 (PE-MAH-
EA-UPy).
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Figure S17. TGA curves of PE-HEMA1 and polymer 1 (PE-HEMA-UPy).
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Figure S18. Rheology frequency sweep curves of EVOH and polymer 3 (EVOH-UPy).



Figure S19. Rheology frequency sweep curves of PE-MAH-EA and polymer 4 (PE-MAH-

EA-UPy)
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Figure S20. DMTA curves of EVOH and polymer 3 (EVOH-UPy).

02

Tan 6 (dot)



-0.3

10° E
E ]=——PE-MAH-EA —
s |—— 4 (PE-MAH-EA-UPY) -0.2 3
= . 8
) i w0
° c
8 1004 s
w o P -0.1

] /x
1 D1 T T T T T T T T T 0.0
-100 -50 0 50 100 150

Temperature [°C]

Figure S21. DMTA curves of PE-MAH-EA and polymer 4 (PE-MAH-EA-UPy)
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Figure S22. Representative stress-strain curves and Young’s modulus, toughness, ultimate
strength and strain at break of EVOH and polymer 3 (EVOH-UPy).
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Figure S23. Representative stress-strain curves and Young’s modulus, toughness, ultimate
strength and strain at break of PE-MAH-EA and polymer 4 (PE-MAH-EA-UPy)



