Supplementary Information

Thermoresponsive dendronized chitosan-based hydrogels as injectable

stem cells carriers

Xiacong Zhang,[‡] Lin Cheng,[‡] Letian Feng,^a Yu Peng,^a Zhimin Zhou,^b Guoyong Yin,^{*b} Wen Li,^{*a} and Afang Zhang^a

a Laboratory of Polymer Chemistry, School of Materials Science and Engineering, Shanghai

University, Nanchen Street 333, Materials Building Room 801, Shanghai 200444, China.

b Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University,

Guangzhou Road 300, Nanjing, Jiangsu Province, 210000, China.

*E-mail: guoyong_yin@sina.com. Tel: +86-13675185445. Fax: +86-21-64085875.

*E-mail: wli@shu.edu.cn. Tel: +86-21-66138044. Fax: +86-21-66131720.

‡ These authors contributed equally to this work.

Table of Contents

Scheme S1 Synthesis of L-CSS				
Table S1. Primer sequences.S3Fig. S1 1 H NMR spectrum of G1-CS in D2O (500 µL, 2 wt%) with addition of DCI in D2O				
Fig. S3 FTIR spectra of CS, G1A and G1-CSS5				
Fig. S4 Plots of transmittance vs temperature for 0.1 wt% G1-CS and L-CS in PBS buffer				
solution. Heating rate = 0.5 °C/minS5				
Fig. S5 FTIR spectra of PEGDA and the hydrogel from G1-CS and PEGDA				
Fig. S6 Frequency sweeps (a) and strain sweeps (b, c, d, e) of hydrogels derived from				
G1-CS and PEGDA with different [NH2]/[CHO] ratios and different gelator concentrations				
S				
Fig. S7 Frequency sweeps (a) and strain sweeps (b) of hydrogels derived from L-CS and				
PEGDAS7				
Fig. S8 Cytoxicity of G1-CS to HOS cells, compared to PBS group. *p < 0.05				
Fig. S9 Histological sections from HMSCs/G1-CS hydrogel constructs at different culture				
time. The scale bar is 100 $\mu m.$ a) and b) are results from other two repeated experiments.				

Scheme S1. Synthesis procedure of L-CS.

-

Table S1. Primer sequences.				
	Gene	Forward primer (5'—3')	Reverse primer (5'—3')	
	Human-GAPDH	AGAAGGCTGGGGCTCATTTG	AGGGGCCATCCACAGTCTTC	
	Human-ALP	GGGTCAAGGTGGCAACGA	CTGGGCATGGAGTATGAGC	
	Human-CBFA-1	TGGTTACTGTCATGGCGGGTA	TCTCAGATCGTTGAACCTTGCTA	
	Human-SOX-9	AGCGAACGCACATCAAGAC	CTGTAGGCGATCTGTTGGGG	
11	Human-Collagen	CCAGATGACCTTCCTACGCC	TTCAGGGCAGTGTACGTGAAC	
	Human-AP2	CTCCGCCATCCCTATTAACAAG	GACCCGGAACTGAACAGAAGA	
	Human-PPAR-y	GGGATCAGCTCCGTGGATCT	TGCACTTTGGTACTCTTGAAGTT	
	Rat-GAPDH	ACAGCAACAGGGTGGTGGAC	TTTGAGGGTGCAGCGAACTT	
	Rat-Nestin	ACAGGAGGTGGGTGCTCTAA	CCCCATCTACCCCACTCAGA	
	Rat-NeuN	TGGGCCCGAATTCTATGCAG	AACAAGCGTTTGCTCCAGTG	
	Rat-β-tubulin	CAACTATGTGGGGGGACTCGG	TGGCTCTGGGCACATACTTG	
	Rat-MAP2	GGCACTCCTCCAAGCTACTCT	CTTGACGTTCTTCAGGTCTGG	
	Rat-GFAP	TGCATGTACGGAGTATCGCC	GGGGGAGGAAAGGACAACTG	
	Rat-CD68	CGTTACCCGGAGACGACAA	TCCTTGGTGGCCTACAGAGT	

Fig. S1 ¹H NMR spectrum of G1-CS in D₂O (500 μ L, 2 wt%) with addition of DCI in D₂O (100 μ L, 1 wt%).

Fig. S2 ¹H NMR spectrum of **L-CS** in D_2O .

Fig. S3 FTIR spectra of CS, G1A and G1-CS.

Fig. S4 Plots of transmittance *vs* temperature for 0.1 wt% **G1-CS** and **L-CS** in PBS buffer solution. Heating rate = 0.5 °C/min.

Fig. S6 Frequency sweeps (a) and strain sweeps (b, c, d, e) of hydrogels derived from **G1-CS** and **PEGDA** with different [NH₂]/[CHO] ratios and different gelator concentrations.

Fig. S7 Frequency sweeps (a) and strain sweeps (b) of hydrogels derived from **L-CS** and **PEGDA**.

Fig. S8 Cytoxicity of G1-CS to HOS cells, compared to PBS group. *p < 0.05.

Fig. S9 Histological sections from HMSCs/G1-CS hydrogel constructs at different culture time. The scale bar is 100 μ m. a) and b) are results from other two repeated experiments.