Supporting Information for

Optically-Healable Polyurethanes with Tunable Mechanical Properties

Rui Yan,¹ Bixin Jin,¹ Yunjun Luo,^{1,2*} Xiaoyu Li^{1,2*}

¹ School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

² Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology

Table of Contents

Figure S1. ¹H NMR spectra of CTMP

Figure S2. MALDI-TOF spectra of CTMP

Figure S3. ¹H NMR spectra of C₂-PU

Figure S4. ¹H NMR spectra of C₅-PU

Figure S5. ¹H NMR spectra of C₈-PU

Figure S6. ¹H NMR spectra of B₂-PU

Figure S7. ¹H NMR spectra of B₅-PU

Figure S8. ¹H NMR spectra of B₈-PU.

Figure S9. The heating thermograms from the first DSC scan of B-PU

Figure S10. The heating thermograms from the first DSC scan of C-PU before and after irradiation

Figure S11. TGA and DTG thermograms of C₈-PU after irradiation at 300 nm

Figure S12. The variation of FT-IR spectra of C_8 -PU after UV irradiation at 300 nm and 250 nm

Figure S13. GPC traces of C_8 -PU before and after irradiation with 300 nm and 250 nm UV light

Figure S14. The mechanical properties of B-PU before and after irradiation

Figure S15. Photographs of a small piece of C_8 -PU after UV irradiation at 300 nm and after dipped in THF

Figure S16. Stress-strain curves of C_8 -PU without and with irradiation at 300 nm, after cutting, and repairment

Figure S17. Stress-strain curves of C_5 -PU without and with irradiation at 300 nm, after cutting, and repairment

Figure S18. ¹H NMR spectra of PPG-PU

Figure S19. DSC trace of PPG-PU

Figure S20. Stress-strain curves of PPG-PU without and with irradiation at 300 nm, after cutting and repaired

Table S1. Thermal properties obtained from the first heating scan of C-PU samples with irradiation at 300 nm via DSC

Table S2. Thermal properties of C-PU samples

Table S3. The mechanical properties of B-PU

Table S4. The mechanical properties of C-PUs before and after UV irradiation

Table S5. The toughness and Young's modulus of C-PUs after 300 nm UV irradiation.

Table S6. Components and molecular characteristics of PPG-PU.

Table S7. The mechanical properties of PPG-PUs after 300 nm UV irradiation.

Figure S2. MALDI-TOF spectra of CTMP.

Figure S8. ¹H NMR spectra of B₈-PU.

Figure S9. The heating thermograms from the first DSC scan of B_2 -PU (orange), B_5 -PU (cyan) and B_8 -PU (green) samples.

Figure S10. The heating thermograms from the first DSC scan of (a) C_2 -PU, (c) C_5 -PU and (e) C_8 -PU samples before (black) and after illumination for 24 h (red), 48 h (green) and 72 h (blue). Zoom-in images of the results were shown in (b), (d) and (f) for C_2 -PU, C_5 -PU and C_8 -PU, respectively. The results of these tests are listed in Table S1.

Figure S11. (a) TGA and (b) DTG thermograms of pristine C_8 -PU samples (black) and the sample after UV irradiation at 300 nm for 72 h (blue).

Figure S12. The variation of FT-IR spectra of C_8 -PU after UV irradiation at 300 nm and 250 nm.

Figure S13. GPC traces of pristine C_8 -PU (black), after UV irradiation at 300 nm for 24 h (blue), and then UV irradiation at 250 nm for another 48 h (pink).

Figure S14. The strain-stress curves of B-PU samples before (dash) and after (dot) UV irradiation at 300 nm for 24 h.

Figure S15. Photographs of a small piece of C_8 -PU after UV irradiation at 300 nm for 120 h (a), and after dipped in THF for overnight (b).

Figure S16. Stress-strain curves of pristine C₈-PU specimen (pristine, black); after UVirradiation at 300 nm for 24 h (xl-24 h, red); then damaged with a cut in the middle (cut, blue); after 250 nm UV irradiation for 24 h and heating at 60 °C for 3 min but no 300 nm UV irradiation (repaired without re-crosslinking, brown); after heating, without 250 nm UV irradiation, after 300 nm UV irradiation for 24 h (repaired without decrosslinking, gray); without heating, after 250 nm UV irradiation for 24 h and 300 nm UV irradiation for 24 h (repaired without heating, pink); and after 250 nm UV irradiation for 24 h, heating at 60 °C for 3 min and 300 nm UV irradiation for 24 h, heating at 60 °C for 3 min and 300 nm UV irradiation for 24 h (repaired, green).

Figure S17. Stress-strain curves of pristine C₅-PU specimen (pristine, black); specimen after UV- irradiation at 300 nm for 24 h (xl-24h, red); crosslinked specimen with a cut in the middle (cut, blue); after 250 nm UV irradiation for 24 h and heating at 60 °C for 3 min but no 300 nm UV irradiation (repaired without re-crosslinking, brown); damaged specimen after 250 nm UV irradiation for 24 h, heating at 60 °C for 3 min and 300 nm UV irradiation for 24 h (repaired-1, green); damaged specimen after 250 nm UV irradiation for 24 h, heating at 60 °C for 3 min and 300 nm UV irradiation for 24 h (repaired-1, green); damaged specimen after 250 nm UV irradiation for 120 h (repaired-2, purple).

Figure S18. ¹H NMR spectra of PPG-PU.

Figure S19. DSC trace of PPG-PU.

Figure S20. Stress-strain curves of pristine PPG-PU specimen (pristine, black); specimen after UV-irradiation at 300 nm for 72 h (xl-72 h, red); crosslinked specimen with a cut in the middle (cut, blue); after 250 nm UV irradiation for 24 h and heating at 60 °C for 3 min but no 300 nm UV irradiation (repaired without re-crosslinking, brown).

	sample	<i>T</i> _m / °C	Δ $H_{ m m}$ / J g ⁻¹	crystallinity / %
C ₂ -PU	pristine	41.37	15.57	22.43
	300 nm-24 h	43.69	31.92	45.97
	300 nm-48 h	44.33	36.67	52.82
	300 nm-72 h	44.35	37.41	53.88
	pristine	44.20	28.82	43.72
C PU	300 nm-24 h	45.34	33.22	50.39
C ₅ -1 U	300 nm-48 h	43.52	28.92	43.87
	300 nm-72 h	42.70	29.10	44.14
C ₈ -PU	pristine	41.86	23.65	37.90
	300 nm-24 h	45.01	30.11	48.25
	300 nm-48 h	45.69	29.52	47.30
	300 nm-72 h	45.54	26.85	43.02

Table S1. Thermal properties obtained from the first heating scan of C-PU samples with irradiation at 300 nm for different time via DSC.

 $\overline{T_{\rm m}}$: The melting temperature of the crystalline portion

 $\Delta H_{\rm m}$ (J g⁻¹): The melting enthalpy of the crystalline portion

	DSC 2 nd run		TGA	
sample	T_{g_1} / °C	T_{g_2} / °C	T_{d_1} / °C	<i>T</i> _{d2} / °C
C ₂ -PU	-31.5	85.1	309.2	410.3
C ₅ -PU	-27.5	85.8	311.8	410.4
C ₈ -PU	-21.7	86.3	319.3	418.9

Table S2. Thermal properties of C-PU samples.

 $T_{\rm d}$: Peak decomposition temperature obtained from DTG curves.

	B-PU			
	B ₂ -PU	B ₅ -PU	B ₈ -PU	
σ/MPa	0.63±0.06	2.08±0.33	3.55±0.33	
ε / %	286±17	503±11	670±98	

Table S3. The mechanical properties of pristine B-PU samples.

Table S4. The mechanical properties of C-PUs before and after UV irradiation for different period of time.

	C ₂ -PU		C ₅ -PU		C ₈ -PU	
	σ/MPa	ε / %	σ/MPa	ε / %	σ/MPa	ε / %
pristine	1.18±0.18	239±15	6.58±0.92	683±34	3.19±0.43	513±66
xl-24 h	3.08±0.26	406±17	13.23±0.40	1199±23	5.86±0.32	798±10
xl-48 h	5.53±0.60	683±46	15.03±0.63	1291±1	6.64±0.39	924±42
xl-72 h	6.92±0.39	831±32	16.61±0.58	1355±48	7.34±0.22	1086±8
de-24 h	5.16±0.10	712±15	12.75±0.82	1198±90	5.93±0.69	794±25
de-48 h	4.74±0.08	570±27	10.57±0.26	898±53	4.90±0.25	669±13
de-72 h	4.06±0.51	395±16	9.19±0.78	701±12	3.91±0.04	545±32
re-xl -72 h	7.96±0.71	806±56	14.20±1.38	1301±59	7.51±0.38	1038±54
re-de -72 h	6.26±0.33	612±42	12.36±0.06	1124±61	5.47±0.19	670±7

	C ₂ -PU		C ₅ -PU		C ₈ -PU	
	Toughness / MJ m ⁻³	Young's Modulus / MPa	Toughness / MJ m ⁻³	Young's Modulus / MPa	Toughness / MJ m ⁻³	Young's Modulus / MPa
pristine	1.99±0.35	7.81±4.66	25.72±4.87	13.20±6.11	12.60±3.02	12.63±3.86
xl-24 h	9.21±1.04	18.58±3.65	87.40±6.98	19.21±2.29	33.02±1.24	19.30±2.71
xl-48 h	27.87±3.37	20.58±7.83	103.02±3.06	27.00±6.31	40.80±3.98	20.96±5.08
xl-72 h	40.74±5.52	31.80±6.04	119.92±9.87	27.58±3.78	50.60±1.12	24.37±373

Table S5. The toughness and Young's modulus of C-PUs after 300 nm UV irradiation.

Table S6. Components and molecular characteristics of PPG-PU.

Polymer	Soft segment	Diisocyanate	Chain extender	M _n	Ð
PPG-PU	PPG / g (mmol)	HDI / g(mmol)	CTMP / g (mmol)	M _n / Da	Ð
	10.07 (10.07)	3.67 (21.85)	3.07 (11.62)	20 k	1.75

Table S7. The mechanical properties of PPG-PUs after 300 nm UV irradiation.

	σ/MPa	ε / %	Toughness / MJ m ⁻³	Young's Modulus / MPa
pristine	0.36±0.02	483±76	1.24±0.23	0.45±0.05
xl-24 h	0.42±0.01	591±67	1.76±0.17	0.51±0.08
xl-48 h	0.56±0.04	682±25	2.41±0.12	0.65±0.10
xl-72 h	0.76±0.08	742±29	3.09±0.07	0.79±0.10

References:

1. J. Ling, M. Z. Rong and M. Q. Zhang, *Polymer*, 2012, **53**, 2691-2698.