Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Physical Gelation of AB-Alternating Copolymers Made of Vinyl Phenol and Maleimide Units: Cooperation between Precisely Incorporated Phenol and Long Alkyl Pendant Groups

Kana Nishimori, ¹ Esther Cazares-Cortes, ² Jean-Michel Guigner, ³ François Tournilhac, ^{2*} and Makoto Ouchi ^{1*}

Contents

Table S1-S2. Characterization of alternating copolymers	P2
Figure S1-S2. SEC curves and FT-IR spectra of alternating copolymers after deprotection	P3
Figure S3-S5. ¹ H NMR spectra of alternating copolymers before and after deprotection	P5
Figure S6. MALDI-TOF-MS spectrum of Alt-C12	P6
Figure S7. ¹ H NMR spectra of 5wt% Alt-C18 gel in toluene-d ₈	P7
Table S3. Viscosities of 5wt% Alt-C12 solutions	P8
Figure S8. DSC thermograms for bulk Alt-C12 and Alt-C18	P9
Figure S9. Chem3D molecular models for repeat unit of Alt-C12 and Alt-C18	P9
Figure S10. WAXD data of freeze dried Alt-C12 and Alt-C18	P10
Figure S11. SANS data with fitting curves	P11
Figure S12. SAXS data with fitting curves	P12
Table S4. SAXS data of 5wt% Alt-C18 solutions in toluene-d8	P13

¹Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura Nishikyo-ku, Kyoto 615-8510, Japan

² Molecular, Macromolecular Chemistry, and Materials, CNRS, ESPCI-Paris, PSL Research University, 10 rue Vauquelin 75005 Paris, France

³ Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, CNRS, UMR 7590, IRD, MNHN, 4 place Jussieu, F-75005 Paris, France

^{*}Correspondence to: ouchi@living.polym.kyoto-u.ac.jp

^{*}Correspondence to: francois.tournilhac@espci.fr

Table S1. Characterization of Alternating Copolymers with tBOS and *N*-Alkylmaleimides Synthesized by Free Radical Copolymerization

	,		2			
Entry ^a	MI Derivatives	Conv.,% ^b		Composition Ratio ^c	$M_{ m n}{}^d$	$M_{ m w}/M_{ m n}{}^d$
		tBOS	MI	tBOS/MI	(GPC)	(GPC)
1	C18MI	97	98	49/51	190000	3.44
2	C12MI	98	99	49/51	91900	6.45
3	C8MI	96	100	49/51	154200	2.46
4	C2MI	93	99	50/50	75300	5.33

^a Conditions: $[tBOS]_0/[MI]_0/[AIBN]_0 = 1000/1000/20$ mM in toluene at 60 °C (Entries 1-4).

Table S2. Characterization of Alternating Copolymers with tBOS and *N*-Dodecylmaleimide (C12MI) Synthesized by RAFT Polymerization

Entry	Conc	Conc., mM Conv.,%		v.,% ^b	DP^c	Composition Ratio ^d	$M_{ m n}{}^e$	$M_{\rm w}/M_{\rm n}^{\ e}$
	tBOS	C12MI	tBOS	C12MI	(calcd.)	tBOS/C12MI	(GPC)	(GPC)
1	1000	1000	95	97	190	49/51	54300	1.32
2	1000	1000	94	96	95	48/52	31000	1.23
3	500	500	90	91	45	49/51	18700	1.20
4	300	300	96	99	29	48/52	12100	1.17
5	100	100	100	100	10	50/50	5100	1.11

^a Conditions: $[CTA]_0/[AIBN]_0 = 5/1$ mM (Entry 1) and 10/1 mM (Entries 2-5) in toluene at 60 °C.

^bConversions of tBOS and MI derivatives were determined by ¹H NMR.

^c Composition Ratio of tBOS and MI derivatives was determined by ¹H NMR after purification.

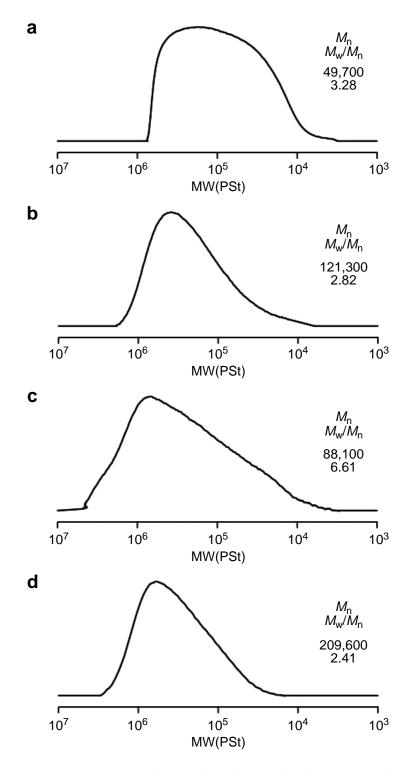
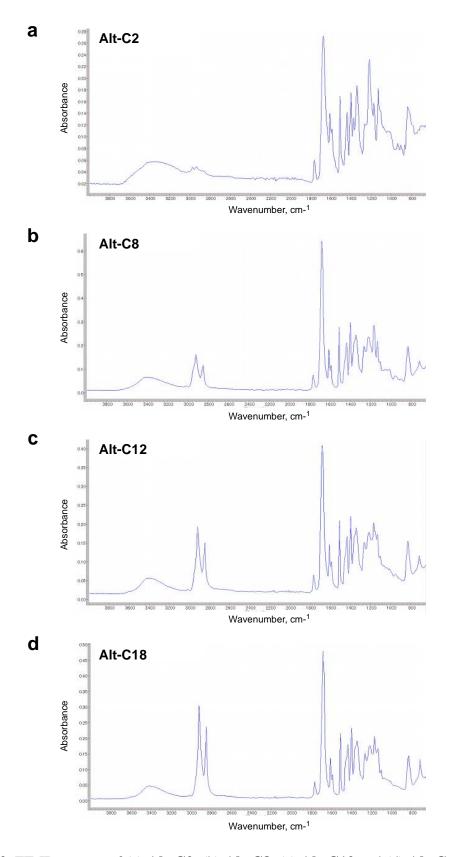
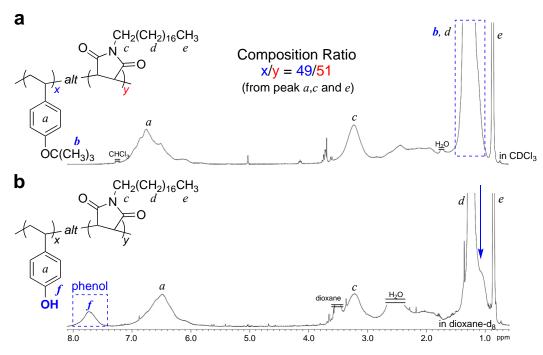
^d Determined by GPC in THF with PSt standard calibration (before deprotection reaction).

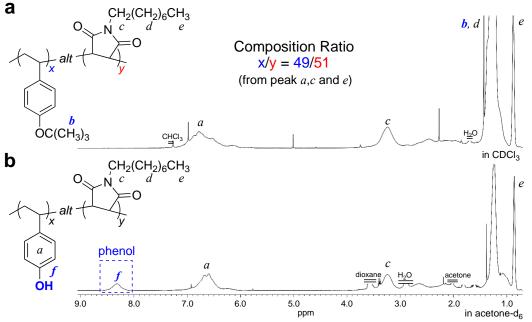
^bConversions of tBOS and C12MI were determined by ¹H NMR.

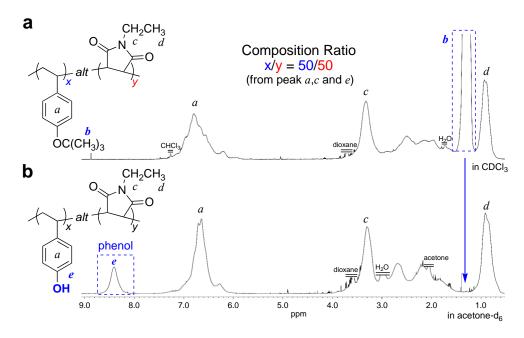
^c The average DPs of tBOS and C12MI in copolymers were determined by monomer conversions.

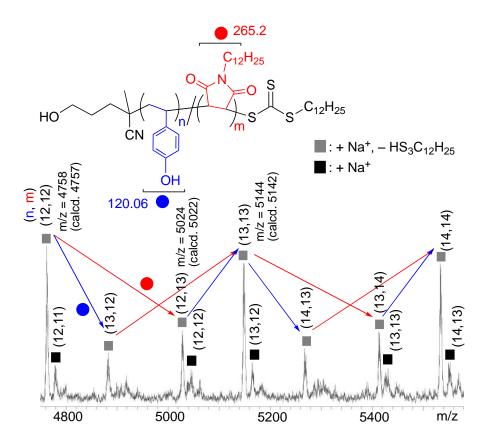
^d Composition Ratio of tBOS and C12MI was determined by ¹H NMR after purification.

^e Determined by GPC in THF with PSt standard calibration (before deprotection reaction).


Figure S1. SEC curves of (a) Alt-C2, (b) Alt-C8, (c) Alt-C12 and (d) Alt-C18 in THF.


 $\textbf{Figure S2.} \ \textbf{FT-IR} \ \text{spectra of (a)} \ \textbf{Alt-C2}, \ \textbf{(b)} \ \textbf{Alt-C8}, \ \textbf{(c)} \ \textbf{Alt-C12} \ \text{and (d)} \ \textbf{Alt-C18}.$


Figure S3. ¹H NMR spectra of the copolymer with tBOS and C18MI (a, CDCl₃) and the copolymer after deprotection reaction (b, 1,4-dioxane-d₈).

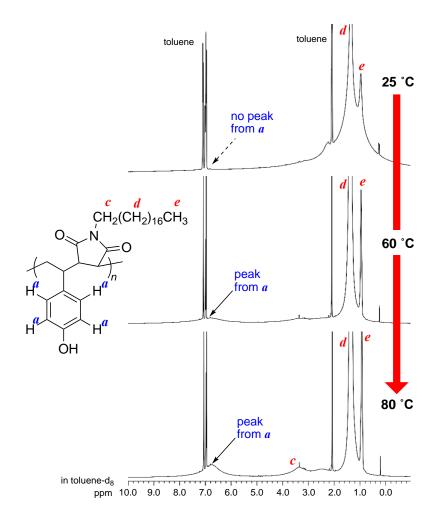

Figure S4. ¹H NMR spectra of the copolymer with tBOS and C8MI (a, CDCl₃) and the copolymer after deprotection reaction (b, acetone-d₆).

Figure S5. ¹H NMR spectra of the copolymer with tBOS and C2MI (a, CDCl₃) and the copolymer after deprotection reaction (b, acetone-d₆).

Figure S6. MALDI-TOF-MS spectrum of **Alt-C12** ($M_n = 18200$, $M_w/M_n = 1.22$) synthesized by RAFT copolymerization.

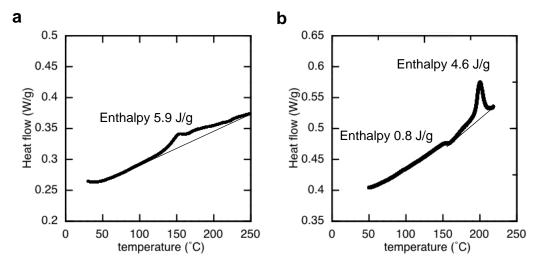
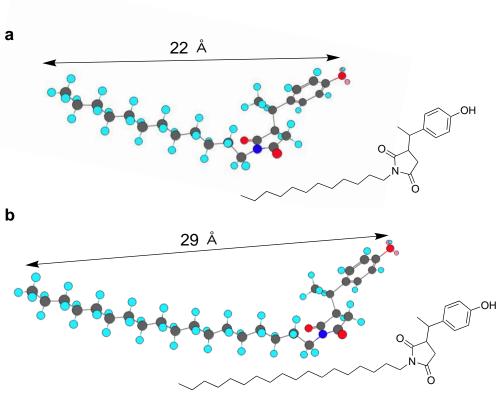


Figure S7. ¹H NMR spectra of 5wt% **Alt-C18** gel in tolunene-d₈ at 25 °C, 60 °C and 80 °C.


Table S3. Viscosity of the Solution of **Alt-C12** in Toluene (5wt%) After Addition of Pyridine in Comparison with the Solution in THF (5wt%)

	Viscosity (mPa·s)				
Angle (°)	In Toluene After Addition of Pyridine ^a	In THF			
20	8.35	10.19			
25	8.29	10.17			
30	8.26	10.22			
35	8.29	10.25			
40	8.33	10.32			
45	8.36	10.39			
50	8.41	10.44			
55	8.44	10.50			
60	8.48	10.53			
65	8.46	10.51			
70	8.36	10.40			
Average	8.37	10.36			

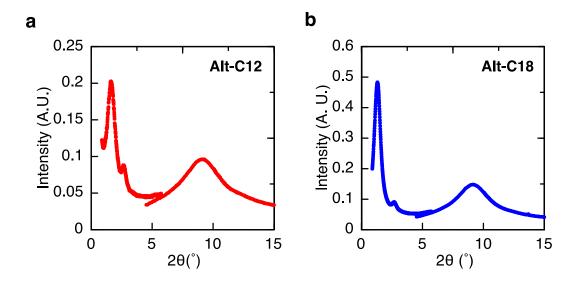

^a The amount of pyridine added in toluene solution was 2 equimolar with phenol groups in the solution.

Figure S8. DSC thermograms recorded at 2nd heating process for bulk samples of (a) **Alt-C12** and (b) **Alt-C18**. Temperature program: 1st heating at 10 °C/min from 20 °C to 250 °C; 5 min holding at 250 °C; 1st cooling at 10 °C/min from 250 °C to 20 °C; 2nd heating at 10 °C/min from 20 °C to 250 °C.

Figure S9. Chem3D Molecular models of dimers of 4-vinylphenol and *N*-alkylmaleimide (a, C12MI; b, C18MI) with alkyl chains in the fully extended conformation.

Figure S10. Wide angle X-ray diffraction patterns of freeze dried bulk **Alt-C12** (a) and **Alt-C18** (b). The peak arising at $2\theta = 2.7^{\circ}$ is due to Kapton windows.

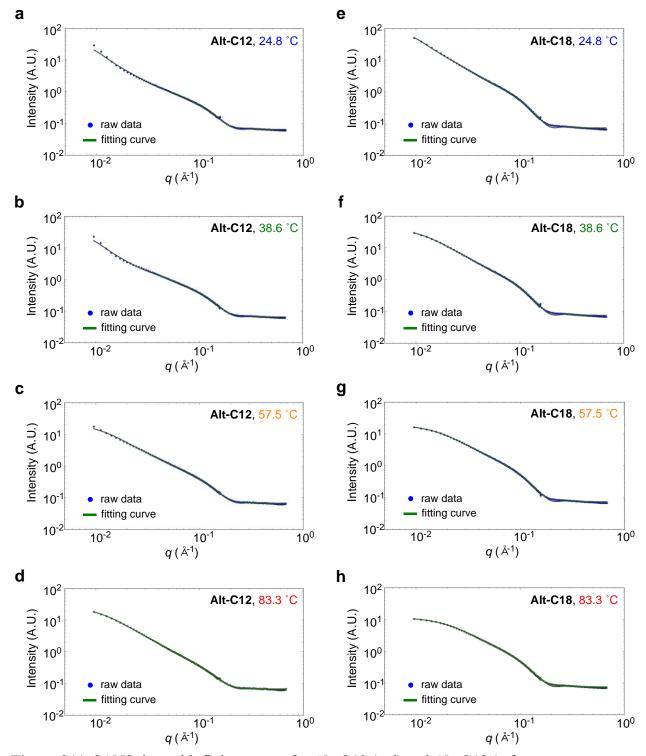
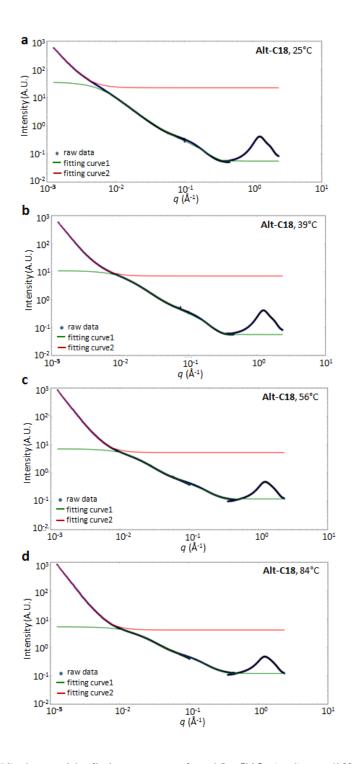



Figure S11. SANS data with fitting curves for Alt-C12 (a-d) and Alt-C18 (e-f).

Figure S12. SAXS data with fitting curves for **Alt-C18** (a-d) at different temperatures. The fitting curve1 (green) correspond to a flexible cylinder model fitted from 0.01 to 0.5 Å^{-1} . The fitting curve2 (red) correspond to a shape unique power law model fitted from 0.001 to 0.01 Å^{-1} .

Table S4. Fitting Parameters from Modeling of SAXS Data Recorded at Various Temperatures of 5wt% **Alt-C18** Solutions in Toluene-d₈

Sample		power law					
	Temperature (°C)	Av. Radius (Å)	Kuhn length (Å)	Contour length (Å)	Background (cm ⁻¹)	power	Background (cm ⁻¹)
Alt-C18	84	8.48	140.4	429.0	0.12	3.19	4.11
	56	8.51	103.4	634.6	0.12	3.17	5.23
	39	8.50	76.0	1092.5	0.05	3.03	6.87
	25	8.50	58.3	4000.0	0.05	2.80	21.96