Supporting Information for

Ferrocene-Containing Amphiphilic Polynorbornenes as Biocompatible Drug Carriers

Guirong Qiu,^a Xiong Liu,^{a,b} Binrong Wang,^c Haibin Gu,^{a,b,*} Weixiang Wang^{c,*}

^aKey Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China. E-mail: guhaibinkong@126.com (H. Gu) ^bNational Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.

^cCollege of Food and Bioengineering, Xihua University, Chengdu 610039, China. E-mail: wang_weixiang@hotmail.com(W. Wang)

Table of Contents	
Materials and instruments	S6
1. Synthesis of 2	S7
Synthesis route of 2 (Scheme S1)	S7
1.1 Synthesis of 1	S7
¹ H NMR spectrum of 1 (Figure S1)	S7
1.2 Synthesis of 2	S7
¹ H NMR spectrum of 2 (Figure S2)	S8
2. Synthesis of NFc	S8
Synthesis route of NFc (Scheme S2)	S8
2.1 Synthesis of 3	S8
¹ H NMR spectrum of 3(Figure S3)	S9
IR spectrum of 3(Figure S4)	S9
2.1 Synthesis of NFc	S9
¹ H NMR spectrum of NFc (Figure S5)	S10
¹³ C NMR (100 MHz) spectrum of NFc (Figure S6)	S10
ESI mass spectrum of NFc (Figure S7)	S11
IR spectrum of NFc (Figure S8)	S11
Uv-vis spectrum of NFc (Figure S9)	S12
CV curve of monomer NFc (Figure S10)	S12
3. ROMP synthesis of homopolymer PNFc	S12
3.1 General Synthesis of homopolymer PNFc	S12
¹ H NMR spectrum of PNFc (Figure S11)	S13
¹³ C NMR spectrum of PNFc (Figure S12)	S14
IR spectrum of PNFc (Figure S13)	S14
UV-vis spectrum of PNFc . (Figure S14)	S14
CV curve of polymer PNFc (Figure S15)	S15
MALDI-TOF MS spectrum of polymer PNFc c(Figure S16)	S15
GPC curve of PNFc a(Figure S17)	S15
Molecular weight data of polymers PNFc a by GPC (Table S1)	S16

3.2 Kinetic study for the synthesis of Polymer PNFc-c:	S16
¹ H NMR spectrum of the reaction mixtures in $CDCl_3$ for the synthesis of PNFc-c	S16
(Figure S18)	
3.3 Calculation of the polymer degrees of PNFc-a by ¹ H NMR end-group analysis and	S16
errors	
¹ H NMR of PNFc -a in (CD ₃) ₂ SO (Figure S19)	S16
Polymer degree of PNFc-a calculated by using its ¹ H NMR spectrum in $(CD_3)_2SOa$	S17
(Table S2)	
3.4 Calculation of the polymer degrees of PNFc-b by ¹ H NMR end-group analysis and	S17
errors	
¹ H NMR of PNFc-b in (CD ₃) ₂ SO (Figure S20)	S17
Polymer degree of PNFc-b calculated by using its ¹ H NMR spectrum in (CD ₃) ₂ SO ^a	S18
(Table S3)	
3.5 Calculation of the polymer degrees of PNFc-c by ¹ H NMR end-group analysis and	S18
errors	
The ¹ H NMR of PNFc-c in (CD ₃) ₂ SO (Figure S21)	S18
Polymer degree of PNFc-c calculated by using its ¹ H NMR spectrum in $(CD_3)_2SO$	S19
(Table S4.)	
4. Synthesis of monomer NETG	S19
Synthesis route of monomer NETG (Scheme S4)	S19
4.1. Synthesis of 5	S20
¹ H NMR (400 MHz) spectrum of 5 (Figure S22)	S20
4.2. Synthesis of 6	S20
¹ H NMR (400 MHz) spectrum of 6 (Figure S23)	S21
¹³ C NMR spectrum (100 MHz) of 6 (Figure S24)	S21
4.3. Synthesis of 7	S21
¹ H NMR (400 MHz) spectrum of 7 (Figure S25)	S22
¹³ C NMR (100 MHz) spectrum of 7 (Figure S26)	S22
ESI Mass spectrum of 9 (Figure S27)	S23
4.4. Synthesis of NETG	S23
¹ H NMR (400 MHz) spectrum of NETG (Figure S28)	S24
¹³ C NMR (100 MHz) spectrum of NETG (Figure S29)	S24
Mass spectrum of NETG (Figure S30)	S24
IR spectrum of NETG (Figure S31)	S25
5. Synthesis of polymer PNETG	S25
Synthesis route of polymer PNETG (Scheme S5)	S25
5.1. General Synthesis procedure of polymer PNETG	S25
¹ H NMR (400 MHz) spectrum of PNETG (Figure S32)	S26
¹ H NMR (400 MHz) spectrum of PNETG-a (Figure S33)	S26
¹ H NMR (400 MHz) spectrum of PNETG-a in (CD ₃) ₂ SO (Figure S34)	S27
¹ H NMR (400 MHz) spectrum of PNETG-b in D ₂ O (Figure S35)	S27
¹³ C NMR (100 MHz) spectrum of PNETG in CDCl ₃ (Figure S36)	S28
MAIDI-TOF mass spectrum of PNETG -a (Figure S37)	S28
IR spectrum of PNETG (Figure S38)	S29

GPC curve of PNETG b (Figure S39)	S29
Molecular weight data of polymer PNETG b by GPC (Table S5)	S29
5.2 Kinetic study for polymer PNETG-a	S29
¹ H NMR spectra of the reaction mixtures in $CDCl_3$ for the synthesis of PNETG-a	S30
(Figure S40)	
5.3 Kinetic study for polymer PNETG-b	S30
¹ H NMR spectra of the reaction mixtures in $CDCl_3$ for the synthesis of PNETG-b	S30
(Figure S41)	
ROMP synthesis of diblock copolymer PN(Fc-b-TEG)	S31
6.1. Synthesis route of diblock copolymer PN(Fc-b-TEG) (Scheme S6)	S31
¹³ C NMR (100 MHz) spectrum of PN(Fc-b-TEG) (Figure S42)	S31
UV-vis spectrum of PN(Fc-b-TEG) (Figure S43)	S31
IR spectrum of PN(Fc-b-TEG) (Figure S44)	S31
DLS curve of PN(Fc-b-TEG) in wate (Figure S45)	S32
The partial GPC trace of PN(Fc-b-TEG) (Figure S46)	S32
Molecular weight data of black polymer PN(Fc-<i>b</i>-TEG) by GPC (Table S6)	S32
6.2 ¹ H NMR of PN(Fc-b-TEG) in (CD ₃) ₂ SO for ratio analysis (Figure S47)	S32
Ratio analysis calculated by using the ¹ H NMR spectrums in $(CD_3)_2SO$ of PN(Fc-b -	S33
TEG) (Table S7)	
6.3. Kinetic study for the synthesis of diblock copolymer PN(Fc-b-TEG)	S33
¹ H NMR spectra of the reaction mixtures in CDCl ₃ for the synthesis of PN(Fc-b-TEG)	S34
(Figure S48)	
ROMP synthesis of random copolymer PN(Fc-r-TEG)	S34
7.1 General synthetic procedure	S34
¹ H NMR (400 MHz) spectrum of PN(Fc-<i>r</i>-TEG) (Figure S49)	S35
¹³ C NMR (100 MHz) spectrum of PN(Fc-r-TEG) (Figure S50)	S35
UV-vis spectrum of PN(Fc-r-TEG) (Figure S51)	S35
IR spectrum of PN(Fc-r-TEG) (Figure S52)	S36
DLS curve of PN(Fc-r-TEG) in water (Figure S53)	S36
The SEM images of self-assembly random copolymer PN(Fc-r-TEG) in aqueous	S36
solutions (Figure S54)	
The partial GPC trace of PN(Fc-r-TEG) (Figure S55)	S37
Molecular weight data of black polymer PN(Fc-r-TEG) by GPC (Table S8)	S37
7.2. ¹ H NMR of PN(Fc-r-TEG) in (CD ₃) ₂ SO for ratio analysis (Figure S56)	S37
Ratio analysis calculated by using the ¹ H NMR spectrums in (CD ₃) ₂ SO of PN(Fc-r -	S37
TEG) (Table S9)	
7.3. Kinetic study for the synthesis of random copolymer PN(Fc-r-TEG)	S38
¹ H NMR spectra of the reaction mixtures in CDCl ₃ for the synthesis of PN(Fc-r-TEG)	S38
(Figure S57)	
8. Self-assembly of the copolymer in water	\$39
The Tyndall effect of PN(Fc-b-TEG) and (a) and PN(Fc-r-TEG) (b) after self-assembly	S39
in water(Figure \$58)	.
9. Oxidation and reduction of micelles	539

The CMCs of the block (PN(Fc-b-TEG)) and random copolymers (PN(Fc-r-TEG)	S40
(Figure S59)	
9.2. DLS curves of PN(Fc- <i>r</i> - TEG) micelles	S40
Micelles of PN(Fc-<i>r</i>-TEG) in water (Figure S60)	S40
9.3. Determination of CMC of oxidized micelles	S40
The CMCs of the block PN(Fc-b-TEG) and random copolymers PN(Fc-r-TEG) after	S41
oxidation by FeCl ₃ (Figure S61)	
10. Drug loading and release	S41
10.1 The loading and release of Nile red	S41
The SEM imfage of micelles of PN(Fc-b-TEG) after loaded Nile red in aqueous	S41
(Figure S62)	
The DLS carve of micelles of PN(Fc-b-TEG) after loaded Nile red in aqueous (Figure	S42
S63)	
UV-vis spectrum of the NR-loaded micelles of PN(Fc-<i>b</i>-TEG) in water (Figure S64)	S42
Picture of copolymer PN(Fc-b-TEG) and NR in different solutions (Figure S65)	S42
The UV-vis absorbance variation of PN(Fc-<i>b</i>-TEG) loaded with Nile red (Figure S66)	S43
The UV-vis absorbance variation of NR-loaded micelles of PN(Fc-b-TEG) at 585 nm	S43
after oxidized by FeCl3 in water(Figure S67)	
10.2. Loading and release of NR by micelles of PN(Fc-r-TEG)	S43
The SEM image of micelles of PN(Fc-r-TEG) after loaded Nile red in aqueous (Figure	S43
S68)	
The DLS carve of micelles of PN(Fc-r-TEG) after loaded Nile red in aqueous (Figure	S44
S69)	
The UV-vis spectrum of the micelles PN(Fc-r-TEG) loaded Nile red in aqueous	S44
(Figure S70)	
The UV-vis absorption spectra of PN(Fc-<i>r</i>-TEG) loaded with Nile red after oxidized by	S44
FeCl ₂ at every stage in aqueous (Figure S71)	-
The UV-vis absorbance variation of PN(Fc-r-TEG) loaded with Nile red (Figure S72)	S45
10.3 The loading and release of DOX	S45
The UV-vis absorption spectra of DOX in water at different concentrations (Figure	S45
\$73)	
The time dependent DLS carves of PN(Fc-b-TEG) -DOX micelles using 1 mg ml ⁻¹ FeCl ₂	S45
as oxidants. (Figure S74)	
The UV-vis absorption spectra of DOX release in 2 mg ml ⁻¹ FeCl ₂ aqueous solution	S46
from PN(Fc-b-TEG) -DOX micelles at different time intervals (Figure \$75)	••••
The UV-vis absorption spectra of DOX release in 1 mg ml ⁻¹ FeCl ₂ aqueous solution	S46
from PN(Fc-b-TEG) -DOX micelles at different time intervals (Figure S76)	0.0
The LIV-vis absorption spectra of DOX release in 0.5 mg ml ⁻¹ FeCl ₂ aqueous solution	S46
from PN(Fc-b-TFG) -DOX micelles at different time intervals (Figure S77)	510
10.4 Loading and release of DOX by micelles of PN(Fc-r-TEG)	S47
The LIV-vis absorption spectra of the micelles of random conclumer PN(Ec-r-TEG)	S47
after loaded DOX PN(Fc-r-TFG)-DOX (Figure \$78)	547
The DIS carve of the micelles of random conclumer PN(Fc-r-TEG) loaded DOX	547
(Figure S79)	5 77
(

The SEM image (A) and size distribution (B) of the micelles of random copolymer	S47
PN(Fc-r-TEG) after loaded DOX (Figure S80)	
The time dependent DLS carves of PN(Fc-r-TEG)-DOX micelles using FeCl ₃ - as	S48
oxidants.(Figure S81)	
The UV-vis absorption spectra of DOX release in 1 mg ml $^{-1}$ FeCl $_3$ aqueous solution	S48
from PN(Fc-r-TEG)-DOX micelles at different time intervals (Figure S82)	
The cumulative release of DOX at different time intervals using 1 mg ml $^{-1}$ FeCl $_3$ as	S49
oxidants for PN(Fc-r-TEG) -DOX micelles (Figure S83)	
11. Biotoxicity evaluation	S49
11.1 Evaluation of the biotoxicity by murine fibroblast cells (L-929 cell)	S49
The relationship between cell relative proliferation rate and cytotoxicity grade	S49
(Table S10)	
11.2 Evaluation of the biotoxicity by zebrafish embryo	S49
The photos of the zebrafish at 24 hpf, (Figure S84)	S49
The photos of the zebrafish at 48 hpf (Figure S85)	S50
The photos of the zebrafish at 72 hpf (Figure S86)	S50
The photos of the zebrafish at 96 hpf (Figure S87)	S51
The photos of the zebrafish dyed by acridine orange at 96 hpf (Figure S88)	S51
12. References	S51

Materials

ethyl vinyl ether (99%, EVE), propargylamine, Grubb's 3rd generation catalyst, Nile red (NE), DOX, fetal bovine serum (FBS), penicillin, streptomycin, murine fibroblast cells (L-929 cell), Cell Counting Kit, acridine orange (AO), zebrafish. All the chemicals and solvents used in this paper were purchased from the reagent company Energy Chemical.

Instruments

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded at 25 °C using a Bruker AC (400 MHz) spectrometer. All the chemical shifts are reported in parts per million (δ , ppm) with reference to tetramethylsilane (TMS). Mass spectra were recorded using an Applied Biosystems Voyager-DE STR-MALDI-TOF spectrometer. The infrared spectra were recorded on an ATI Mattson Genesis series FT-IR spectrophotometer the range 400–4000 cm⁻¹. UV-visible absorption spectra were measured with a Perkin-Elmer Lambda 19 UV-visible spectrometer. Gel permeation Chromatography (GPC) measurements were conducted in N, N-dimethyl formamide (DMF) using Shimadzu high performance liquid chromatography (HPLC) system equipped with PLgel 5 µm MIXED-D columns, refractometric and UV detectors, column oven and integrated degasser. Polymer molecular weights were calculated based on the multiangle light scattering data using the Wyatt Astra software, with dn/dc values of the polymers determined from the RI detector using Astra. Column calibration was performed using polystyrene (PS) standards from Polymer Laboratories. Dynamic light scattering (DLS) measurements were made using Malvern Zetasizer Nano-ZS series equipment (Malvern Instruments, UK) at 25 °C at an angle of 90°. Scanning electron microscopy (SEM) observations were conducted with a SM-7500F field emission SEM instrument (JEOL). Samples for SEM were prepared by casting a drop of the solution on a silicon grid, followed by drying at room temperature (r.t.,25 °C).

1. Synthesis of carboxylferrocene 2

Scheme S1. Synthesis route of carboxylferrocene 2

1.1. Synthesis of *o*-chlorobenzoylferrocene **1**^[S1]: Anhydrous AlCl₃ (21.5 g, 0.16 mol, 1.2 equiv) was suspended in CH₂Cl₂ (30 ml), and the *o*-chlorobenzoyl chloride (23.5 g, 0.13 mol, 1 equiv) was added dropwise into the suspension. After 30 min of stirring at 0 °C under N₂ atmosphere, the suspension was added into the ferrocene (30.0 g, 0.16 mol, 1.2 equiv) solution in CH₂Cl₂ (50 ml), and the obtained mixture was further stirred at r. t. for 1.5 h. The organic layer was washed by diluted hydrochloric acid (HCl) solution (1 mol l⁻¹, 100 ml × 4), then by saturated NaHCO₃, and dried over anhydrous Na₂SO₄ and evaporated under vacuum. Purification was conducted by column chromatography with petroleum ether/ethyl acetate as eluent to get *o*-chlorobenzoylferrocene **1** as brown-red solid. Yield: 35.7 g, 82%. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS), δ_{ppm} : 7.51-7.31 (m, 4H, ph), 4.73 (t, *J* = 3.8 Hz, 2H, sub. Cp, Cp = η^{5} -C₅H₅), 4.59 (t, *J* = 3.8 Hz, 2H, sub. Cp), 4.27 (s, 5H, free Cp).

Figure S1. ¹H NMR (400 MHz) spectrum of 1 in CDCl₃

1.2. Synthesis of carboxylferrocene 2^[S1]: *o*-Chlorobenzoylferrocene **1** (35.7 g, 0.11 mol, 1 equiv) and potassium *tert*-butoxide (*t*-BuK, 30.8 g, 0.27 mol, 2.5 equiv) were dissolved in the mixture of ethylene glycol dimethyl ether (DME, 100 ml) and H₂O (3.0 g, 0.17 mol, 1.5 equiv), and the reaction mixture was refluxed at 120 °C for 2 h under N₂ atmosphere. 10% NaOH (44 g, 1.1 mol, 10 equiv) solution (400 ml) was then added to get ferrocene carboxylate. The water solution was washed by diethyl ether (Et₂O, 100 ml × 4), adjusted to pH 2.0 by adding HCl solution. The obtained precipitate was collected by suction filtration, and purified by column chromatography with CH₂Cl₂/methanol as eluent to get carboxylferrocene **2** as yellow solid. Yield: 23.18 g, 86%. ¹H NMR (400 MHz, (CD₃)₂SO, 25 °C, TMS), δ_{ppm} : 4.75 (t, *J* = 3.9 Hz, 2H, sub. Cp), 4.44 (t, *J* = 3.9 Hz,

2. Synthesis of monomer NFc

Scheme S2. Synthesis route of monomer NFc

2.1. Synthesis of 3^[S2]: To a solution of freshly distilled ethanediamine (3.59 g, 4.0 ml, 0.06 mol, 9.8 equiv) in toluene (10 ml) was added a solution of *cis*-5-norbornene-*exo*-2,3-dicarboxylic anhydride (1.0 g, 6.09 mmol, 1 equiv) in toluene (40 ml) dropwise at room temperature (r. t.) over 15 min with vigorous stirring. The obtained mixture was refluxed at 145 °C under N₂ atmosphere for 14 h with a Dean-Stark apparatus before the solvent were removed *via* distillation *in vacuo*. Purification was achieved by column chromatography with CH₂Cl₂/methanol (1%->20%) as eluent, and the product **3** was obtained as pale white solid. Yield: 0.69 g, 55%. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS), δ_{ppm} : 6.30 (s, 2H, CH=CH), 3.56 (t, *J* = 12.5 Hz, 2H, CONCH₂), 3.28 (s, 2H, =C-CH), 2.91 (t, *J* = 12.4 Hz, 2H, CH₂NH₂), 2.70 (s, 2H, CO-CH), 1.52 (d, *J* = 10.0 Hz, 1H, CH₂-bridge), 1.43 (br, 2H, NH₂), 1.35 (d, *J* = 10.0 Hz, 1H, CH₂-bridge). Selected IR (KBr, cm⁻¹): 3375 (υ_{NH2}), 1767, 1696 ($\upsilon_{C=0}$), 1396, 1149.

2.2 Synthesis of NFc: Triethylamine (Et₃N, 0.1 ml, 0.72 mmol) was injected dropwise into the CH₂Cl₂ (40 ml) suspension of carboxylferrocene **2** (0.5 g, 2.17 mmol) at 0 °C under N₂ atmosphere. Oxalyl chloride (0.7 ml, 8.2 mmol) was then added dropwise into the solution. The reaction mixture was stirred at r. t. overnight. Next day, the solvent was removed *in vacuo*, and the residue red solid, crude chlorocarbonyl ferrocene **4**, was then dissolved in dry CH₂Cl₂ (20 ml), added dropwise into the CH₂Cl₂ solution (10 ml) of **3** (0.38 g, 1.85 mmol) and Et₃N (1.5 ml, 10.7 mmol). The obtained mixture was further stirred overnight at r. t. under N₂ atmosphere, and then washed successively with saturated NaHCO₃ solution (1 × 100 ml) and distilled water (3 × 100 ml). The organic layer was dried with anhydrous Na₂SO₄, and vacuumed to afford crude product **NFc** that was then purified by column chromatography with CH₂Cl₂/methanol (0%→10%)

as the eluent and obtained as yellow-brown solid. Yield: 0.66 g, 85%. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS), δ_{ppm} : 6.39 (s, 1H, NHCO), 6.29 (t, *J* = 3.3 Hz, 2H, CH=CH), 4.66 (t, *J* = 3.4 Hz, 2H, sub. Cp, Cp = η^{5} -C₅H₅), 4.33 (t, *J* = 3.1 Hz, 2H, sub. Cp), 4.19 (s, 5H, free Cp), 3.80-3.76 (m, 2H, CH₂NH), 3.60-3.54 (m, 2H, CONCH₂), 3.29 (t, *J* = 3.0 Hz, 2H, =CH-CH), 2.75 (d, *J* = 1.0 Hz, 2H, CO-CH), 1.52 (d, *J* = 9.8 Hz, 1H, CH₂-bridge), 1.22 (d, *J* = 10.0 Hz, 1H, CH₂-bridge). ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS), δ_{ppm} : 178.9 (CON), 170.9 (CONH), 70.6, 70.4, 69.9, 68.3 (Cp), 48.1 (CO-CH), 45.4 (=CH-CH), 42.9 (CH₂-bridge), 39.8 (CH₂), 38.2 (CH₂). MS (ESI, *m/z*), calcd. for C₂₂H₂₂ FeN₂O₃: 418.27; found: 419.1(M+H⁺), 441.1 (M + Na⁺), 859.2 (2M + Na⁺). Selected IR (KBr, cm⁻¹): 3348 (v_{NH}), 2985, 2879 (v_{CH2}), 1769 (v_{C=0} of NHCO), 1694 (v_{C=0} of NCO), 1640, 1533, 1433 (v_{C=C} of Cp), 1395, 1296 (v_{C-N}), 1183, 1106, 1002, 821 (v_{Fell}).

Figure S6. ¹³C NMR (100 MHz) spectrum of NFc in CDCl₃.

Figure S7. ESI mass spectrum of NFc.

Figure S8. IR spectrum of NFc.

Figure S9. Uv-vis spectrum of NFc in CH₂Cl₂.

Figure S10. CV curve of monomer **NFc** in CH₂Cl₂. Internal reference, FeCp*₂; reference electrode, Ag; working and counter electrodes, Pt; scan rate, 0.4 mV s⁻¹; supporting electrolyte, [*n*-Bu₄N][PF₆]. The wave at 0.0 V is that of the reference [FeCp*₂]. Fe^{III/II} oxidation potential is 0.672 V.

3. ROMP synthesis of homopolymer PNFc

Scheme S3. Synthesis of homopolymer PNFc

3.1. General synthetic procedure: The desired amount of Grubbs' 3^{rd} was dissolved by a minimum amount of dry CH_2CI_2 in a small Schlenk flask under N_2 atmosphere. A known amount of monomer **NFc** in dry CH_2CI_2 (1 ml per 100 mg of monomer **NFc**) was added to the catalyst

solution under N₂ atmosphere with vigorous stirring. The obtained reaction mixture was stirred vigorously until the signal of olefinic protons of monomer **NFc** at 6.29 ppm disappeared by checking *in situ* ¹H NMR of reactiom mixture, which indicated the monomer conversion reached 100%. Then, 0.3 ml of ethyl vinyl ether (EVE) was added to quench the catalyst. All the samples were collected, purified by precipitating from CH₂Cl₂ with Et₂O three times, and dried *in vacuo* until constant weight to get the polymer **PNFc** as a yellow-brown powder. Yield: 95% (**PNFc-a**), 96% (**PNFc-b**) and 96% (**PNFc-c**). ¹H NMR (400 MHz, (CD₃)₂SO, 25 °C, TMS) δ_{ppm} : 7.83 (s, 1H, NHCO), 5.59 (m, 2H, =CH), 4.69 (s, 2H, sub. Cp), 4.30 (s, 2H, sub. Cp), 4.15 (d, *J* = 4.2 Hz, 6H, free Cp), 3.47 (s, 2H, CONH₂), 3.39 (m, 2H, =C-CH), 2.94 (m, 4H, CH₂NH₂ and CHCO), 1.92 (s, 1H, CH₂-bridge), 1.41 (s, 1H, CH₂-bridge). ¹³C NMR (100 MHz, (CD₃)₂SO, 25 °C, TMS) δ_{ppm} : 178.1 (CON), 169.3 (NHCO), 131.6 (CH-*C*H), 76.6 (Cp), 69.8 (Cp), 68.1 (Cp), 68.9 (Cp), 51.7 (CH*C*O), 50.6 (CH₂-bridge), 44.2 (=C-*C*H), 38.4 (CON*C*H₂), 36.3 (CH₂NH). Selected IR (KBr, cm⁻¹): 3446 (υ_{NH}), 2923 (υ_{CH_2}), 1769 ($\upsilon_{C=0}$ of NHCO), 1694 ($\upsilon_{C=0}$ of NCO), 1633, 1536, 1433 ($\upsilon_{C=C}$ of Cp), 1397, 1330 (υ_{C-N}), 1178, 1105, 1002, 820 (υ_{Fell}).

Figure S11. ¹H NMR spectrum of PNFc in (CD₃)₂SO.

Figure S12. 13 C NMR spectrum of PNFc in (CD₃)₂SO.

Figure S13. IR spectrum of PNFc.

Figure S14. UV-vis spectrum of PNFc in CH₂Cl₂.

Figure S15. CV curve of polymer **PNFc** in CH₂Cl₂. Internal reference, FeCp*₂; reference electrode, Ag; working and counter electrodes, Pt; scan rate, 0.4 mV s⁻¹; supporting electrolyte, [n-Bu₄N][PF₆]. The wave at 0.0 V is that of the reference [FeCp*₂]. Fe^{III/II} oxidation potential is 0.675 V.

Figure S16. MALDI-TOF MS spectrum of polymer **PNFc-c** at the region of 1500-6000 Da. The polymerization degree is 50. The black dotted lines correspond to the difference between molecular peaks of a value of 418.26 ± 1 Da (MW of monomer **NFc**).

Figure S17. GPC curve of PNFc-a in DMF.

Polymers	M _p	M _n	M _w	M _z	<i>M</i> _{z+1}	M _w /M _n
PNFc-a	8534	8196	8814	9469	10152	1.07

Table S1. Molecular weight data of polymers PNFc-a by GPC in DMF (PS standard)

3.2 Kinetic study for the synthesis of Polymer PNFc-c:

In order to determine when the ROMP of monomer **NFc** was completed at a feed mole ratio of 50:1, a kinetic study was conducted as follows: monomer **NFc** (26.52 mg, 0.0634 mmol, 50 equiv) in 0.3 ml dry CH_2Cl_2 was added into the solution of Grubbs 3rd (1.12 mg, 0.00127 mmol, 1 equiv) in 0.2 ml dry CH_2Cl_2 . The reaction mixture was vigorously stirred at r. t. under N₂ atmosphere. After 5 min, 0.02 ml of samples were removed and quenched with 0.01 ml of EVE. The *in situ* ¹H NMR analysis in CDCl₃ of the dried reaction mixture was conducted. The monomer conversion was deemed to be 100% when the signal of the olefin protons for monomer **NFc** at 6.29 ppm disappeared.

Figure S18. ¹H NMR spectrum of the reaction mixture in CDCl₃ for the synthesis of **PNFc-c** after the addition of **NFc** with further 5 min of stirring.

3.3. Calculation of polymer degree of PNFc-a by ¹H NMR end-group analysis

Figure S19. ¹H NMR spectrum of PNFc-a in (CD₃)₂SO.

Proton peak	End-ph	NHCO	Olefinic	Sub. Cp	Sub. Cp	Free Cp
δ _{ppm}	7.22- 7.37	7.86	5.59 and 5.45	4.69	4.30	4.15
Integra	0.5	1	2	2	2	5
n _{p1a} b	1	9.67- 10.0	10.0-10.28	9.98- 10.09	10.03- 10.12	9.88-10.42
n _{p1b} ^c	10 ± 0.4					

Table S2. Polymer degree of PNFc-a calculated by using its ¹H NMR spectrum in (CD₃)₂SO^a

^a **Figure S19** is used for the calculation of polymer degree of **PNFc-a**. ^b Calculated polymer degrees based on integral of each peak. ^c Average polymer degree according to n_{p1a} values.

As shown in **Table S2**, the ¹H NMR end-group analysis provides the value of 10 ± 0.4 for the polymer degree of **PNFc-a**. These calculations were conducted by comparing the intensities of the signals of the five protons of the end-phenyl group with those of characteristic protons in the homopolymer **PNFc-a**. Namely, the proton integration for end-phenyl group (7.22-7.37 ppm) was compared with those of the proton of acylamino (7.86 ppm), olefin protons (5.59 and 5.45 ppm), and Fc group (4.69, 4.30 and 4.15 ppm), respectively. The obtained values are 9.67-10.00, 10.0-10.28, 9.98-10.09, 10.03-10.12 and 9.88-10.42, respectively. Thus, the average value of the polymer degree is 10 ± 0.4 . The error is due to the integration error on each signal.

3.4. Calculation of polymer degree of PNFc-b by ¹H NMR end-group analysis

Figure S20. ¹H NMR spectrum of PNFc-b in (CD₃)₂SO.

Proton peak	End-ph	NHCO	Olefinic	Sub. Cp	Sub. Cp	Free Cp	
$\delta_{_{ppm}}$	7.22-7.37	7.86	5.59 and 5.45	4.69	4.30	4.15	
Integra.	0.2	1	2	2	2	5	
n _{p1a} b	1	24-26	23-25	24-25	24-25	25-27	
n _{p1b} ^c	25 ± 2						

Table S3. Polymer degree of PNFc-b calculated by using its ¹H NMR spectrum in (CD₃)₂SO^a

^a **Figure S20** is used for the calculation of polymer degree of **PNFc-b**. ^b Calculated polymer degrees based on integral of each peak. ^c Average polymer degree according to n_{p1a} values.

As shown in **Table S3**, the ¹H NMR end-group analysis provides the value of 25 ± 2 for the polymer degree of **PNFc-b**. These calculations were conducted by comparing the intensities of the signals of the five protons of the end-phenyl group with those of characteristic protons in the homopolymer **PNFc-b**. Namely, the proton integration for end-phenyl group (7.22-7.37 ppm) was compared with those of the proton of acylamino (7.86 ppm), olefin protons (5.59 and 5.45 ppm), and Fc group (4.69, 4.30 and 4.15 ppm), respectively. The obtained values are 24-26, 23-25, 24-25 and 24-25, respectively. Thus, the average value of the polymer degree is 25 ± 2 . The error is due to the integration error on each signal.

3.5. Calculation of polymer degree of PNFc-c by ¹H NMR end-group analysis

Figure S21. ¹H NMR spectrum of PNFc-c in (CD₃)₂SO.

Proton peak	End-ph	NHCO	Olefinic	Sub. Cp	Sub. Cp	Free Cp	
$\delta_{_{ppm}}$	7.22- 7.37	7.86	5.59 and 5.45	4.69	4.30	4.15	
Integra.	0.1	0.98-1.02	1.88-2.01	1.93-2.06	1.91-2.1	4.88-5.15	
n _{p1a} b	1	49-51	47-51	47-52	48-53	47-52	
n _{p1b} ^c	50 ± 3						

Table S4. Polymer degree of PNFc-c calculated by using its ¹H NMR spectrum in (CD₃)₂SO^a

^a **Figure S21** is used for the calculation of polymer degree of **PNFc-c**. ^b Calculated polymer degrees based on integral of each peak. ^c Average polymer degree according to the obtained n_{p1a} values.

As shown in **Table S4**, the ¹H NMR end-group analysis provides the value of 50 ± 3 for the polymer degree of **PNFc-c**. These calculations were conducted by comparing the intensities of the signals of the five protons of the end-phenyl group with those of characteristic protons in the homopolymer **PNFc-c**. Namely, the proton integration for end-phenyl group (7.22-7.37 ppm) was compared with those of the proton of acylamino (7.86 ppm), olefin protons (5.59 and 5.45 ppm), and Fc group (4.69, 4.30 and 4.15 ppm), respectively. The obtained values are 49-51, 47-51, 47-52, 48-53 and 47-52, respectively. Thus, the average value of the polymer degree is 50 ± 3 . The error is due to the integration error on each signal.

4. Synthesis of monomer NTEG

Scheme S4. Synthesis route of monomer NTEG

4.1. Synthesis of 5^[S3]: Tosyl chloride (40.2 g, 210 mmol, 1 equiv) in dry CH₂Cl₂ (100 ml) was added dropwise into the CH₂Cl₂ solution (100 ml) of triethylene glycol mono methyl ether (33 ml, 210 mmol, 1 equiv) and Et₃N (43.5 ml, 315 mmol, 1.5 equiv) at 0 °C. The obtained reaction mixture was stirred for 2 h at 0 °C under N₂ atmosphere, and further at r. t. for 30 min. Then Et₂O (100 ml) was added into the mixture, and the resulting precipitate was removed by suction filtration. The filtrate was collected, vacuumed to dryness. The residue was purified by column chromatography with Et₂O as eluent to afford **5** as colorless oil. Yield: 48.9 g, 73%. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS), δ_{ppm} : 2.40 (s, 3H, CH₃), 3.32 (s, 3H, OCH₃), 3.46-3.65 (m, 10H, 5 × CH₂), 4.10 (t, 2H, CH₂OSO₂), 7.30 (d, 2H, ph), 7.74 (d, 2H, ph).

Figure S22. ¹H NMR (400 MHz) spectrum of 5 in CDCl₃.

4.2. Synthesis of **6**^[S4]: Compound **5** (14.88 g, 0.048 mol), methyl gallate (2.55 g, 13.761 mmol), K₂CO₃ (19.02 g, 0.138 mol), a little KBr as catalyst and DMF (80 ml) were added together into a small Schlenk flask, and the obtained mixture was refluxed for 48 h at 80 °C under N₂ atmosphere. The final reaction mixture was diluted with a large amount of water (150 ml) and extracted with CH₂Cl₂ (100 ml × 3). The organic layer was washed with water (100 ml × 5) and evaporated under vacuum. Purification was achieved by column chromatography with CH₂Cl₂/methanol (0%→30%) as eluent, and methyl 3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy) ethoxy)benzoate **6** was obtained as light-brown oil. Yield: 6.57 g, 76.8%. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS), δ_{ppm} : 7.29 (s, 2H, ph), 4.23-4.17 (m, 6H, ph-OCH₂), 3.88 (s, 3H, CH₃OOC), 3.88-3.52 (m, 30H, 3 × CH₂OCH₂CH₂OCH₂CH₂), 3.37 (s, 9H, 3 × OCH₃). ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS), δ_{ppm} : 166.7 (COO), 152.4, 142.7, 125.1, 109.1 (ph), 72.5, 72.0, 70.9, 70.8, 70.7, 69.7, 68.9 (CH₂O), 59.1(OCH₃), 52.2 (OOCH₃).

Figure S24. ¹³C NMR spectrum (100 MHz) of 6 in CDCl₃.

4.3. Synthesis of **7**^[54]: **6** (6.53 g, 10.49 mmol, 1.0 equiv) and NaOH (3.15 g, 78.75 mmol, 7.5 equiv) were dissolved in 50 ml of distilled water, and refluxed at 110 °C for 4 h under N₂ atmosphere. The reaction mixture was cooled to r. t., adjusted to pH 2.0-3.0 by adding concentrated HCl, and then extracted by CH₂Cl₂ (100 ml × 3). The organic layers were combined, dried with anhydrous Na₂SO₄, vacuumed to dryness to get **7** as light-brown oil without further purification. Yield: 5.85 g, 91.5%. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS), δ_{ppm} : 7.35 (s, 2H, ph), 4.26-4.18 (m, 6H, ph-OCH₂), 3.88-3.52 (m, 30H, (CH₂OCH₂CH₂OCH₂CH₂)₃), 3.37 and 3.37 (ds, 9H, 3 × OCH₃). ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS), δ_{ppm} : 170.1 (COOH), 152.2, 142.8, 124.8, 109.4 (ph), 72.4, 71.9, 70.8, 70.7, 70.5, 69.6, 68.8 (CH₂O), 59.0 (OCH₃). MS (ESI, *m/z*), calcd. for C₂₈H₄₈O₁₄: 608.7; found: 653.3 (M + 2Na⁺).

5.297

7.351

Figure S26. ¹³C NMR (100 MHz) spectrum of 7 in CDCl₃.

Figure S27. ESI Mass spectrum of 7.

4.4 Synthesis of NTEG^[S4]: To a solution of 7 (1.9 g, 3.12 mmol, 1 equiv) in dry CH₂Cl₂ (25 ml) was added oxalyl dichloride (3.96 g, 31.2 mmol, 10 equiv) dropwise at 0 °C under N₂ atmosphere. The mixture was stirred overnight at r. t. under N₂ atmosphere. Then the mixture was concentrated to give crude 8 that was used in the next step without further purification. To a mixture of **3** (0.644 g, 3.12 mmol, 1 equiv) and Et₃N (1.58 g, 2.2 ml, 15.6 mmol, 5 equiv) in dry CH₂Cl₂ (15 ml) was added the crude 8 in dry CH₂Cl₂ (20 ml) dropwise at 0 °C. The mixture was stirred at r. t. overnight, vacuumed to remove all the solvent and excess Et₃N. The obtained dried residue was purified by column chromatography using CH₂Cl₂/methanol (50:1) as eluent to give monomer NTEG as colorless sticky oil. Yield: 1.9 g, 76.3%. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ_{ppm}: 7.03 (s, 2H, phenyl), 6.93 (s, 1H, phenyl), 6.27 (t, J = 2.0 Hz, 2H, CH=CH), 4.23-4.18 (m, 6H, 3 × phenyl-OCH₂), 3.88-3.52 (m, 34H, NCH₂CH₂N and 3 × CH₂OCH₂CH₂OCH₂CH₂O), 3.37 and 3.36 (ds, 9H, 3 × OCH₃), 3.23 (t, J = 1.5 Hz, 2H, =CH-CH), 2.71 (d, J = 0.8 Hz, 2H, CHCON), 1.46 (d, J = 9.6 Hz, 1H, CH₂-bridge), 1.18 (d, J = 9.6 Hz, 1H, CH₂-bridge). ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ_{ppm}: 177.6 (CON), 166.0 (CONH), 151.5 (ph), 140.2 (ph), 136.8 (CH=CH), 128.1 (ph), 105.6 (ph), 71.4, 70.9, 69.8, 69.7, 69.5, 68.7, 67.9 (OCH₂), 58.0 (OCH₃), 46.9 (**C**HCON), 44.2 (=CH**C**H), 41.8 (CH₂-bridge), 38.6, 36.9 (NCH₂CH₂NH). MS (ESI *m*/*z*), calcd. for C₃₉H₆₀N₂O₁₅: 796.91; found: 797.41 [M + H⁺] and 819.39 [M + Na⁺]. Selected IR (KBr, cm⁻¹): 3452 cm⁻¹ (ν_{NH}), 2877 cm⁻¹ (ν_{CH2}), 1769 cm⁻¹ ($\delta_{C=C}$), 1697 cm⁻¹ ($\delta_{NC=O}$), 1650 cm⁻¹ ($\delta_{NHC=O}$).

Figure S29. ¹³C NMR (100 MHz) spectrum of NTEG in CDCl₃.

Figure S31. IR spectrum of NTEG.

5.1. General Synthesis procedure of homopolymer PNTEG: The desired amount of Grubbs' 3rd was dissolved by a minimum amount of dry CH₂Cl₂ in a small Schlenk flask under N₂ atmosphere. A known amount of monomer **NTEG** in dry CH₂Cl₂ (1.0 ml per 100 mg of monomer **NTEG**) was added to the catalyst solution under N₂ atmosphere with vigorous stirring. The obtained reaction mixture was stirred vigorously until the signal of olefinic protons of monomer **NTEG** at 6.27 ppm disappeared by checking *in situ* ¹H NMR of reaction mixture in CDCl₃, which indicates the monomer conversion reached 100%. Then, 0.3 ml of ethyl vinyl ether (EVE) was added to quench the catalyst. All the samples were evaporated under reduced pressure, washed with Et₂O three times, and dried *in vacuo* until constant weight to get the polymer **PNTEG** as colorless sticky oil. Yield: 98% (**PNTEG-a**) and 97% (**PNTEG-b**). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS), δ_{ppm} : 7.76 and 7.63 (br, 1H, NHCO), 7.07 (br, 2H, ph), 5.60 (br, 1H, CH=), 5.49 (br, 1H, CH=),

4.18-4.11 (m, 6H, 3 × ph-OCH₂), 3.82-3.52 (m, 34H, NCH₂CH₂N and OCH₂), 3.35-3.33 (m, 9H, 3 × OCH₃), 3.22, 3.00 and 2.66 (br, 4H, =CH-C*H* and CH-CO), 2.05 and 1.51 (br, 2H, CH=CHCHC*H*₂). ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS), δ_{ppm} : 178.6 (CON), 167.2 (NHCO), 152.3 (ph), 140.8 (ph), 133.3, 132.2 (CH=CH), 129.4 and 129.3 (ph), 106.8 and 106.6 (ph), 72.3, 71.9, 70.7, 70.6, 70.4, 69.6, 68.8, 68.7 (OCH₂), 58.9 (OCH₃), 53.5 (ph-OCH₂), 50.9 (*C*HCON), 45.8 (=CH*C*H), 43.2 (CH₂-bridge), 41.2, 38.3 (NCH₂CH₂N). Selected IR (KBr, cm⁻¹): 3455 cm⁻¹ (ν_{NH}), 2923 cm⁻¹ (ν_{CH2}), 1770 cm⁻¹ ($\delta_{C=C}$), 1700 cm⁻¹ ($\delta_{NC=O}$), 1649 cm⁻¹ ($\delta_{NHC=O}$).

Figure S34. ¹H NMR (400 MHz) spectrum of PNTEG-a in (CD₃)₂SO.

180

Figure S37. MAIDI-TOF mass spectrum of PNTEG. The feed molar ratio of monomer NTEG to Grubbs' 3rd generation catalyst is 5:1. The red dotted lines are corresponding to the difference between molecular peaks of a value of 797 ± 1 Da which is consistent with the molecular weight of the monomer NTEG (MW = 796.91 Da).

Figure S38. IR spectrum of PNTEG.

Figure S39. GPC curve of PNTEG-b in DMF

Table S5. Molecular weight data of polymer PNTEG-b by GPC in DMF (Ps standard)

Polymer	M _p	<i>M</i> _n	M _w	Mz	<i>M</i> _{z+1}	PDI
PNTEG-b	63680	64490	68130	72500	77750	1.06

5.2. Kinetic study for polymer PNTEG-a: In order to determine when the ROMP of monomer **NTEG** was completed at a feed mole ratio of 50:1, a kinetic study was conducted as follows: monomer **NTEG** (300 mg, 0.3765 mmol, 50 equiv) in 1.5 ml dry CH_2Cl_2 was added into the solution of Grubbs 3rd (6.66 mg, 0.00753 mmol, 1 equiv) in 0.5 ml dry CH_2Cl_2 . The reaction mixture was vigorously stirred at r. t. under N₂ atmosphere. After 10, 20, 30 and 60 min, respectively, 0.02 ml of sample were removed and quenched with 0.01 ml of EVE. The *in situ* ¹H NMR analysis of the dried reaction mixture in CDCl₃ was conducted. The monomer conversion was deemed to be 100% when the signal of the olefin protons for monomer **NTEG** at 6.27 ppm disappeared.

Figure S40. ¹H NMR spectrum of the reaction mixture in CDCl₃ for the synthesis of **PNTEG-a** after 10 min of stirring.

5.3. Kinetic study for polymer PNTEG-b: In order to determine when the ROMP of monomer **NTEG** was completed at a feed mole ratio of 100:1, a kinetic study was conducted as follows: monomer **NTEG** (394 mg, 0.4944 mmol, 100 equiv) in 1.5 ml dry CH_2Cl_2 was added into the solution of Grubbs 3rd (4.38 mg, 0.004944 mmol, 1 equiv) in 0.5 ml dry CH_2Cl_2 . The reaction mixture was vigorously stirred at r. t. under N₂ atmosphere. After 10, 20, 30 and 60 min, respectively, 0.02 ml of sample were removed and quenched with 0.01 ml of EVE. The *in situ* ¹H NMR analysis of the dried reaction mixture in $CDCl_3$ was conducted. The monomer **NTEG** at 6.27 ppm disappeared.

xm 8 7.8 7.6 7.4 7.2 7 6.8 6.6 6.4 6.2 6 5.8 5.6 5.4 5.2 5 4.8 4.6 4.4 4.2 4

Figure S41. ¹H NMR spectrum of the reaction mixture in $CDCI_3$ for the synthesis of **PNTEG-b** after 10 min of stirring.

6. Synthesis of diblock copolymer PN(Fc-b-TEG)

Figure S42. The ¹³C NMR spectrum of PN(Fc-b-TEG) in CDCl₃.

Figure S43. UV-vis spectrum of PN(Fc-b-TEG) in CH₂Cl₂.

Figure S44. IR spectrum of PN(Fc-b-TEG).

Figure S45. DLS curve of PN(Fc-b-TEG) in water (PDI=0.246, Z-average: 156 nm).

Figure S46. The GPC curve of PN(Fc-b-TEG).

Table S6. Molecular weight data of block copolymer **PN(Fc-b-TEG)** by GPC in THF (Ps standard)

Polymer	M _p	M _n	M _w	M _z	<i>M</i> _{z+1}	M _v	M _w /M _n
PN(Fc- <i>b</i> -TEG)	27925	24922	28553	31727	34678	28553	1.146

6.2. Calculation of polymer degree of PN(Fc-b-TEG) by ¹H NMR end-group analysis

Figure S47. ¹H NMR spectrum of PN(Fc-*b*-TEG) in (CD₃)₂SO.

Proton peak	Sub. Cp of Fc block	NHCO of TEG block	Side-chain phenyl of TEG block	OCH₃ of TEG block			
$\delta_{ m ppm}$	4.67	8.46	7.09	3.20			
Integra.	1.98-2.00	4.89-5.00	9.89-10.00	45.11-45.20			
n _{p2a} b	9.9-10	48.9-50	49.45-50	54.1-54.2			
n _{p2b} ^c	10: (50 ± 5)						

Table S7. Polymer degrees calculated by using the ¹H NMR spectrum in (CD₃)₂SO of PN(Fc-b-TEG)

Figure S47 is used for the calculation of ratio of n/m. ^b Calculated value of n/m based on integral of each peak. ^c Average polymer ratio according to n_{p2a} values.

As shown in **Table S7**, the ¹H NMR ratio analysis in $(CD_3)_2SO$ of diblock copolymer **PN(Fc-b-TEG)** provided the value of 10: (50 ± 5) for the ratio of the Fc-containing and TEG-containing blocks. The used polymerization degree (n) for the Fc-containing segment is 10 calculated by the endgroup analysis in Table S2. These calculations were conducted by comparing the signals of the proton of the substituted Fc group (Cp) with those of characteristic protons in the TEG-containing blocks. Namely, the proton integration for Cp (4.67 ppm) was compared with those of the acylamino in the TEG block (8.46 ppm), side-chain phenyl in the second TEG block (7.09 ppm), and OCH₃ (3.20 ppm) of TEG, respectively. The obtained ratios are 9.9-10, 48.9-50, 49.45-50 and 54.1-54.2, respectively. Thus, the average value of polymerization degree for the diblock copolymer (n: m) is 10: (50 ± 5). The error was due to the integration error on each signal.

6.3. Kinetic study for the synthesis of diblock copolymer PN(Fc-*b*-TEG): In order to know when the polymerization of the second TEG block can finish, the kinetic study was conducted as following: Monomer NFc (50 mg, 0.200 mmol, 10 equiv) in 1.5 ml of dry CH_2Cl_2 was added into the solution of Grubbs catalyst 3rd (10.6 mg, 0.020 mmol, 1 equiv) in 0.2 ml of dry CH_2Cl_2 . The reaction mixture was stirred vigorously for 10 min at r. t. under N₂ atmosphere. Then, monomer NTEG (476.6 mg, 0.432 mmol, 50 equiv) in 2 ml of dry CH_2Cl_2 was added, and after 5, 10, 20 and 30 min, respectively, 0.1 ml of sample was taken out and quenched with 0.1 ml of EVE. The *in situ* ¹H NMR analysis in CDCl₃ was conducted, and the conversion of monomer NTEG was deemed to be 100% when the peak at 6.27 ppm, the signal of olefinic protons for monomer NTEG disappeared. Actually, the polymerization of the second TEG block can finish in 10 min with 100% monomer conversion from the *In situ* ¹H NMR analysis.

Figure S48. ¹H NMR spectra of the reaction mixture in CDCl₃ for the synthesis of **PN(Fc-b-TEG)** (a: 5 min, b: 10 min).

7. ROMP synthesis of random copolymer PN(Fc-r-TEG)

7.1. General synthetic procedure: Monomers NFc (34 mg, 0.081 mmol, 10 equiv) and NTEG (324.1 mg, 0.407 mmol, 50 equiv) were added into a small glass tube, and dissolved in 2 ml of dry CH₂Cl₂. The desired amount of Grubbs' 3rd (7.19 mg, 0.00813 mmol, 1 equiv) was added into another small Schlenk flask, flushed with N₂, and dissolved in 0.03 ml of dry CH₂Cl₂. The mixture solution of monomers NFc and NTEG was transferred to the flask containing the catalyst via a small syringe. The reaction mixture was stirred vigorously for 10 min at r. t. under N_2 atmosphere, and then, 0.5 ml of EVE was added to quench the catalyst. All the samples were collected, purified by precipitating from CH₂Cl₂ with Et₂O three times, and dried in vacuo until constant weight to get the random copolymer **14** as yellow solid. Yield: 94%. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ_{ppm} : 7.74 and 7.60 (br, NHCO of Fc and TEG segments), 7.09-7.06 (br, ph), 5.61 and 5.49 (br, CH=), 4.65 (br, sub. Cp), 4.17-4.10 (s, sub. Cp and ph-OCH₂CH₂O), 3.81-3.51 (m, NCH_2CH_2N of TEG segment, ph-OCH₂CH₂O and OCH₂CH₂O), 3.35 (s, 3 × OCH₃), 3.22 (br, NCH₂CH₂N of Fc segment), 2.99, 2.98 (s, =CH-CH of norbornene), 2.66 and 2.18 (br, CH-CO of norbornene), 2.03 (br, =CHCHCH2), 1.51 (br, CH=CHCHCH2). ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS), δ_{ppm}: 178.4 (CON), 167.1 (NHCO), 152.3 (ph), 140.9 (ph), 132.5, 131.7 (=**C**HCH), 129.3 (ph), 106.7 (ph), 72.3-68.7 (Cp and OCH₂), 59.0 (OCH₃), 52.5 (ph-O-CH₂), 51.0 (=CHCHCH), 45.5 (CH₂bridge), 42.7 (=CH-CH), 41.4 (NCH2CH2N), 38.2 (NCH2CH2N). Selected IR (KBr, cm⁻¹): 3443 cm⁻¹ (υ_{NH}) , 2922 cm⁻¹ (υ_{CH2}) , 1768 cm⁻¹ $(\delta_{C=C})$, 1697 cm⁻¹ $(\delta_{NC=O})$, 1640 cm⁻¹ $(\delta_{NHC=O})$, 1111 cm⁻¹ (υ_{C-O-C}) , 852 cm⁻¹(υ_{Fell}).

Figure S50. ¹³C NMR (100 MHz) spectrum of PN(Fc-r-TEG) in CDCl₃.

Figure S51. UV-vis spectrum of PN(Fc-r-TEG) in CH₂Cl₂.

Figure S52. IR spectrum of PN(Fc-r-TEG).

Figure S53. DLS curve of PN(Fc-r-TEG) in water (PDI=0.288, Z-average = 159 nm).

Figure S54. The SEM images of self-assembly random copolymer **PN(Fc-r-TEG)** in aqueous solutions (mean diameter 81 ± 25 nm)

Figure S55. GPC trace of PN(Fc-r-TEG).

Table S8. Molecular weight data of random polymer PN(Fc-r-TEG) by GPC in THF (Ps standard)

Polymer	M _p	M _n	M _w	M _z	<i>M</i> _{z+1}	M _v	M _w /M _n
PN(Fc- <i>r</i> -TEG)	31879	26877	32106	36514	40650	32106	1.195

7.2. Calculation of polymer degree of PN(Fc-*r*-TEG) by ¹H NMR end-group analysis

Figure S56. ¹H NMR of PN(Fc-*r*-TEG) in (CD₃)₂SO.

Table S9. Polymer degrees calculated by using the ¹H NMR spectrum in (CD₃)₂SO of PN(Fc-r-TEG)

Proton peak	NHCO of Fc part	NHCO of TEG part	Side-chain phenyl of TEG part	OCH₃ of TEG part
δ _{ppm}	7.84	8.47	7.09	3.20
Integra.	0.92-0.98	4.79-4.98	10.02-10.30	44.23-46.40
n _{p2a} b	9.2-9.8	47.9-49.8	50.1-51.5	53.1-55.7

n _{p2b} c	10: (50 ± 6)

Figure S56 is used for the calculation of ratio of n/m. ^b Calculated value of n/m based on integral of each peak. ^c Average polymer ratio according to n_{p2a} values.

As shown in **Table S9**, the ¹H NMR ratio analysis in $(CD_3)_2SO$ of random copolymer **PN(Fc-r-TEG)** provided the value of 10: (50 ± 6) for the ratio of the Fc-containing and TEG-containing segments. The used polymerization degree (n) for the Fc-containing segment is 10 calculated by the end-group analysis in Table S2. These calculations were conducted by comparing the signals of the proton of the acylamino in the Fc (7.84 ppm) segment with those of characteristic protons in the TEG-containing parts. Namely, the proton integration for the acylamino in the Fc (7.84 ppm) was compared with those of the acylamino in the TEG segment (8.47 ppm), side-chain phenyl in the TEG segment (7.09 ppm), and OCH₃ (3.20 ppm) of TEG, respectively. The obtained ratios are 9.2-9.8, 47.9-49.8, 50.1-51.5 and 53.1-55.7, respectively. Thus, the overage value of polymerization degree for the random copolymer (m: n) is 10: (50 ± 6). The error was due to the integration error on each signal.

7.3. Kinetic study for the synthesis of random copolymer PN(Fc-r-TEG): In order to know when the polymerization can finish, the kinetic study was conducted as following: Monomers **NFc** (34 mg, 0.081 mmol, 10 equiv) and **NTEG** (324.1 mg, 0.407 mmol, 50 equiv) were added into a small glass tube, and dissolved in 2 ml of dry CH₂Cl₂. The desired amount of Grubbs' 3rd (7.19 mg, 0.00813 mmol, 1 equiv) was added into another small Schlenk flask, flushed with N₂, and dissolved in 0.03 ml of dry CH₂Cl₂. The mixture solution of monomers **NFc** and **NTEG** was transferred to the flask containing the catalyst *via* a small syringe. 0.1 ml of sample was taken out in a certain interval time and quenched with 0.1 ml of EVE. The *in situ* ¹H NMR analysis in CDCl₃ was conducted, and the conversion of monomers **NFc** and **NTEG** were deemed to be 100% when the peak at 6.27 ppm, the signal of olefinic protons for monomers disappeared. Actually, the polymerization of the monomers can finish in 10 min with 100% monomer conversion from the *in situ* ¹H NMR analysis.

Figure S57. ¹H NMR spectrum of the reaction mixture in CDCl₃ for the synthesis of PN(Fc-r-TEG)

after 10 min of stirring.

8. Self-assembly of the copolymer in water.

9. Oxidation and reduction of micelles

9.1. Determination of CMC^[S5] of original micelles

The pyrene fluorescence probe technique was adopted to determine the CMCs of **PN(Fc-b-TEG)** and **PN(Fc-r-TEG)**. Concretely, a known amount of pyrene in acetone was added to a battery of 10 ml volumetric flask to give a pyrene concentration of 2.0×10^{-6} M, followed the volatilization of acetone in vacuum condition. A measured amount of the micelle aggregate solutions with concentration ranging from 2.0 to 2.5×10^{-4} mg ml⁻¹ was then added to the above each flask, and stirred at r. t. overnight to equilibrate the micelle aggregates and pyrene. The fluorescence spectra were detected by using a fluorescence spectrophotometer (RF-5310PC, SHIMADZU, Japan). The excitation wavelength was 339 nm. The plot of I_3/I_1 intensity ratios versus concentration of aggregate solutions was drawn to estimate the CMC by the tangent method.

Figure S59. The CMCs of the block (**PN(Fc-b-TEG)**) and random copolymers (**PN(Fc-r-TEG)**). (a) Fluorescence emission spectra of micelles of diblock copolymer **PN(Fc-b-TEG)** in water using pyrene as probe. (b) Plots of I_3/I_1 intensity ratio vs logarithmic concentrations of the block copolymer in water from 2 to 2.5×10^{-4} mg ml⁻¹. (c) Fluorescence emission spectra of micelles of random copolymer **PN(Fc-r-TEG)** in water using pyrene as probe. (d) Plots of I_3/I_1 intensity ratio vs logarithmic concentrations of the random copolymer **PN(Fc-r-TEG)** in water using pyrene as probe. (d) Plots of I_3/I_1 intensity ratio vs logarithmic concentrations of the random copolymer in water from 2 to 2×10^{-4} mg ml⁻¹.

9.2. DLS curves of PN(Fc-r-TEG) micelles

Figure S60. DLS curves of **PN(Fc-***r***-TEG)** micelles in water during an oxidation-reduction circle. (Original: PDI = 0.246, Z-average = 159 nm; Oxidized: PDI = 0.408, Z-average = 250.0 nm; Reduced: PDI = 0.304, Z-average = 164.3 nm).

9.3. Determination of CMC of oxidized micelles

Figure S61. CMCs of **PN(Fc-b-TEG)** and **PN(Fc-r-TEG)** after oxidation by FeCl₃. (a) Fluorescence emission spectra of micelles of diblock copolymer **PN(Fc-b-TEG)** in water using pyrene as probe. (b) Plots of I_3/I_1 intensity ratio vs logarithmic concentrations of the block copolymer in water from 4 to 2.5 × 10⁻⁴ mg ml⁻¹. (c) Fluorescence emission spectra of micelles of random copolymer **PN(Fc-r-TEG)** in water using pyrene as probe. (d) Plots of I_3/I_1 intensity ratio vs logarithmic concentrations of the spectra of micelles of random copolymer **PN(Fc-r-TEG)** in water using pyrene as probe. (d) Plots of I_3/I_1 intensity ratio vs logarithmic concentrations of the random copolymer in water from 4 to 2 × 10⁻⁴ mg ml⁻¹.

10. Drug loading and release

10.1. Loading and release of NR by micelles of PN(Fc-b-TEG)

Figure S62. SEM image of micelles of **PN(Fc-b-TEG)** after loading NR in water (A) and the statistical diameter distribution of these micelles (B). (Average diameter of 130 ± 15 nm).

Figure S63. DLS curve of micelles of **PN(Fc-b-TEG)** after loading NR in water. (PDI = 0.654 nm, average size = 226 nm).

Figure S64. UV-vis spectrum of the NR-loaded micelles of PN(Fc-b-TEG) in water.

Figure S65. Picture of the THF solution of copolymer PN(Fc-b-TEG) and NR (A). Pictures of NRloaded micelles of PN(Fc-b-TEG) in water (B), and the corresponding polymer solution and NR precipitate resulted from the addition of FeCl₃.

Figure S66. UV-vis absorption spectra of NR-loaded micelles of **PN(Fc-***b***-TEG)** after oxidized by FeCl₃ at different intervals.

Figure S67. The UV-vis absorbance variation of NR-loaded micelles of **PN(Fc-b-TEG)** at 585 nm after oxidized by $FeCl_3$ in water.

10.2. Loading and release of NR by micelles of PN(Fc-r-TEG)

Figure S68. SEM image of NR-loaded micelles of **PN(Fc-r-TEG)** in water (A) and the statistical diameter distribution of these micelles (B) (Average diameter of 93 ± 30 nm).

Figure S69. DLS curve of NR-loaded micelles of **PN(Fc-***r***-TEG)** in water (PDI = 0.472 nm, average size = 308 nm).

Figure S70. UV-vis spectrum of NR-loaded micelles of PN(Fc-r-TEG) in water.

Figure S71. UV-vis absorption spectra of NR-loaded micelles of **PN(Fc-***r***-TEG)** after oxidized by FeCl₃ at different intervals.

Figure S72. The UV-vis absorbance variation of NR-loaded micelles of **PN(Fc-r-TEG)** at 585 nm after oxidized by FeCl₃ in water.

10.3. Loading and release of DOX by micelles of PN(Fc-b-TEG)

Figure S73. (A)The UV-vis absorption spectra of DOX in water at different concentrations. (B) The standard profile of DOX at 480 nm according to the UV-vis absorption spectra.

Figure S74. The time dependent DLS curves of DOX-loaded micelles of diblock copolymer **PN(Fc-**b-**TEG)** by using 1 mg ml⁻¹ of FeCl₃ as oxidant.

Figure S75. UV-vis absorption spectra of DOX releasing from micelles of diblock copolymer **PN(Fc-b-TEG)** at different intervals after the treatment by using 2 mg ml⁻¹ of FeCl₃ as oxidant.

Figure S76. UV-vis absorption spectra of DOX releasing from micelles of diblock copolymer **PN(Fc-b-TEG)** at different intervals after the treatment by using 1 mg ml⁻¹ of FeCl₃ as oxidant.

Figure S77. UV-vis absorption spectra of DOX releasing from micelles of diblock copolymer **PN(Fc-***b***-TEG)** at different intervals after the treatment by using 0.5 mg ml⁻¹ of FeCl₃ as oxidant.

10.4. Loading and release of DOX by micelles of PN(Fc-r-TEG)

Figure S78. UV-vis absorption spectrum of DOX-loaded micelles of random copolymer PN(Fc-r-TEG).

Figure S79. DLS curve of the micelles of DOX-loaded micelles of random copolymer **PN(Fc-r-TEG)**. (PDI = 0.712, Average size = 226 nm).

Figure S80. SEM image (A) and size distribution (B) of DOX-loaded micelles of random copolymer **PN(Fc-***r***-TEG)**. (Average size of 89 ± 20 nm)

Figure S81. The time dependent DLS curves of DOX-loaded micelles of random copolymer PN(Fc-r-TEG) by using 1 mg ml⁻¹ of FeCl₃ as oxidant.

Figure S82. The UV-vis absorption spectra of DOX releasing from micelles of random copolymer **PN(Fc-***r***-TEG)** at different intervals after the treatment by using 1 mg ml⁻¹ of FeCl₃ as oxidant.

Figure S83. The cumulative release curve of DOX from micelles of random copolymer PN(Fc-r-TEG) at different time intervals using 1 mg ml^{-1} FeCl₃ as oxidant.

11. Biotoxicity evaluation

11.1. Evaluation of the biotoxicity by murine fibroblast cells (L-929 cell)

Cell relative proliferation rate (%)	Cytotoxicity classification
≥100	0
≥80	1
≥50	2
≥30	3
≥0	4

 Table S10. The relationship between cell relative proliferation rate and cytotoxicity grade

11.2. Evaluation of the biotoxicity by zebrafish embryo

Figure S84. The photos of the zebrafish at 24 hpf. (a)-(c) treated with diblock copolymer **PN(Fc-***b*-**TEG)** ((a) 8 mg ml⁻¹, (b) 4 mg ml⁻¹, (c) 0.5 mg ml⁻¹). (d)-(f) treated with random copolymer **PN(Fc-***r*-**TEG)** (d) 8 mg ml⁻¹, (e) 4 mg ml⁻¹, (f) 0.5 mg ml⁻¹). (g) control.

Figure S85. The photos of the zebrafish at 48 hpf. (a)-(c) treated with diblock copolymer **PN(Fc-***b*-**TEG)** (a) 8 mg ml⁻¹, (b) 4 mg ml⁻¹, (c) 0.5 mg ml⁻¹). (d)-(f) treated with random copolymer **PN(Fc-***r*-**TEG)** (d) 8 mg ml⁻¹, (e) 4 mg ml⁻¹, (f) 0.5 mg ml⁻¹). (g) control.

Figure S86. The photos of the zebrafish at 72 hpf. (a)-(c) treated with diblock copolymer **PN(Fc-***b*-**TEG)** (a) 8 mg ml⁻¹, (b) 4 mg ml⁻¹, (c) 0.5 mg ml⁻¹). (d)-(f) treated with random copolymer **PN(Fc**-*r*-**TEG)** (d) 8 mg ml⁻¹, (e) 4 mg ml⁻¹, (f) 0.5 mg ml⁻¹). (g) control.

Figure S87. The photos of the zebrafish at 96 hpf. (a)-(c) treated with diblock copolymer **PN(Fc***b***-TEG)** (a) 8 mg ml⁻¹, (b) 4 mg ml⁻¹, (c) 0.5 mg ml⁻¹). (d)-(f) treated with random copolymer **PN(Fc***r***-TEG)** (d) 8 mg ml⁻¹, (e) 4 mg ml⁻¹, (f) 0.5 mg ml⁻¹). (g) control.

Figure S88. The photos of the zebrafish dyed by acridine orange at 96 hpf. (a)-(c) treated with diblock copolymer **PN(Fc-b-TEG)** (a) 8 mg ml⁻¹, (b) 4 mg ml⁻¹, (c) 0.5 mg ml⁻¹). (d)-(f) treated with random copolymer **PN(Fc-r-TEG)** (d) 8 mg ml⁻¹, (e) 4 mg ml⁻¹, (f) 0.5 mg ml⁻¹). (g) control.

12. References

[S1] L. Zhao, QJ. Ling, X. Liu, CD. Hang, QX. Zhao, FF. Liu, Multifunctional triazolylferrocenyl Janus dendron: Nanoparticle stabilizer, smart drug carrier and supramolecular nanoreactor, Appl. Organomet. Chem.2017. 32, e4000.

[S2] H. Gu, A. Rapakousiou, P. Castel, N. Guidolin, N. Pinaud, J. Ruiz, D. Astruc, Living Ring-Opening Metathesis–Polymerization Synthesis and Redox-Sensing Properties of Norbornene Polymers and Copolymers Containing Ferrocenyl and Tetraethylene Glycol Groups. Organometallics 2014, 33(16), 4323-4335.

[S3] A. K. Diallo, E. Boisselier, L. Liang, J. Ruiz, D. Astruc, Dendrimer-Induced Molecular Catalysis

in Water: The Example of Olefin Metathesis. Chem. Eur. J. 2010, 16(39), 11832-11835.

[S4] Liu, X., et al., Controlled ROMP Synthesis of Ferrocene-Containing Amphiphilic Dendronized Diblock Copolymers as Redox-Controlled Polymer Carriers. Macromolecular Chemistry and Physics, 2018. 219(18): p. 1800273

[S5] G Qiu, L Zhao, X Liu, Q Zhao, F Liu, Y Liu, Y Liu, ROMP synthesis of benzaldehyde-containing amphiphilic block polynorbornenes used to conjugate drugs for pH-responsive release. React. Funct. Polym. 2018, 128, 1-15.

[S6] USPC .Biological Tests/ Biological Reactivity Tests, in vitro [S] .USP 27, 2004.