Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

The development of bio-acrylic polymers from Cyrene[™]: transforming a green solvent to a green polymer

Parijat Ray, ^a Timothy Hughes ^d, Craig Smith ^b, Mena Hibbert ^c, Kei Saito^d and George P Simon ^a

^aDepartment of Materials Science & Engineering, Monash University, Clayton, VIC 3800, Australia. e-mail: george.simon@monash.edu; Fax: +61 399054934; Tel: +61 399054936

^bPPG Industries, Springdale, PA 15144, USA

^cPPG Industries Australia Pty Ltd, Clayton, Victoria 3168, Australia

^dSchool of Chemistry, Monash University, Clayton, VIC 3800, Australia. e-mail: kei.saito@monash.edu; Fax: +6139905851; Tel: +61399054600

Fig. S1 Stereo centers of Levoglucosanol (Cyrene-OH)

Fig S2 ¹³C NMR of Cyrene

Fig. S4 ¹³C NMR of m-Cyrene

Fig. S5 ATR-FTIR spectrum of m-Cyrene homopolymer

Fig. S6 DSC analysis of m-Cyrene homopolymer from bulk polymerization

Fig. S7 DSC analysis of m-Cyrene homopolymer by emulsion polymerization

Fig. S8 Polymerization kinetics of m-Cyrene in different solvents

F-R model
$$G = r_1 H - r_2$$
 (1)
K-T model $\eta = [r_1 + \frac{r_2}{\alpha}]\mu - \frac{r_2}{\alpha}$

where, G = F(f - 1)/f, $H = F^2/f$, $\eta = G/(\alpha + H)$, $\mu = H/(\alpha + H)$, $F = M_1/M_2$, $f = m_1/m_2$ $\alpha = (H_{max}H_{min})^{1/2}$, M_1 = mole fraction of m-Cyrene in feed, M_2 = mole fraction of IBMA in feed, m_1 = mole fraction of m-Cyrene in copolymer, m_2 = mole fraction of IBMA in copolymer,

Fig. S9 (a) F-R model and (b) K-T model

In F-R and K-T models, G is plotted against H (Fig S8.a) and η is plotted against μ (Fig S8.b) respectively. G vs H plot gives a straight line with r_1 as slope and $-r_2$ as the intercept. Similar plot of η vs μ provides $[r_1 + \frac{r_2}{\alpha}]$ as a slope and $(-r_2/\alpha)$ as its intercept.