Supporting information

for

Sequences controlled copolymerization of lactide and functional cyclic carbonate using stereoselective aluminum catalysts
 Xiufang Hua, ${ }^{\text {a,b }}$ Xinli Liu *a and Dongmei Cui *a
 Contents

Figure S1. GPC profiles of representative samples, entries 1-4, Table 1.
Figure S2. Inverse gated decoupled ${ }^{13} \mathrm{C}$ NMR spectrum for the hopolymerization of rac-LA by complex 1 ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure S3. Semilogarithmic kinetic plot in each monomer catalyzed by complex 1.
Figure S4. Plots of conversion vs time for the copolymerization with complex $\mathbf{1}$ of a) LLA/MAC and b) rac-LA/MAC.

Figure S5. Inverse gated decoupled ${ }^{13} \mathrm{C}$ NMR spectrum for the hopolymerization of rac-LA by complex 2 ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure S6. Semilogarithmic kinetic plot in each monomer catalyzed by complex 2.
Figure S7. Plots of composition vs time for the copolymerization with complex 2 of a) LLA/MAC and b) $r a c-L A / M A C$.

Figure S8. (a) ${ }^{1} \mathrm{H}$ NMR and (b) ${ }^{13} \mathrm{C}$ NMR spectroscopy in CDCl_{3}.
Figure S9. DSC thermograms of quasi-diblock Poly(L-LA-b-MAC).
Table S1. Homopolymerization of rac-LA or MAC with complex 1 and 2.
Table S2. Reactivity ratio calculation for copolymerization of L-LA and MAC catalyzed by complex 1.

Table S3. Reactivity ratio calculation for copolymerization of rac-LA and MAC catalyzed by complex 1.

Table S4. Reactivity ratio calculation for copolymerization of L-LA and MAC catalyzed by complex 2.

Table S5. Reactivity ratio calculation for copolymerization of rac -LA and MAC catalyzed by complex 2.

Supplemental Figures:

Figure S1. GPC profiles of representative samples, entries 1-4, Table 1.

Complex 1, $90^{\circ} \mathrm{C}$

Complex 1, $70{ }^{\circ} \mathrm{C}$

Figure S2. Inverse gated decoupled ${ }^{13} \mathrm{C}$ NMR spectrum for the homopolymerization of rac-LA by complex $1\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S3. Semilogarithmic kinetic plot in each monomer catalyzed by complex $1\left(k_{\text {app }}\right.$ (MAC) $=$ $176.1 \times 10^{-4}, k_{\text {app }}(r a c-L A)=37.6 \times 10^{-4}, k_{\text {app }}($ L-LA $\left.)=9.2 \times 10^{-4}\right)$, Polymerization conditions:

Complex $\mathbf{1}=10 \mu \mathrm{~mol} ; \mathrm{T}=90^{\circ} \mathrm{C} ;$ Tol. $=2 \mathrm{~mL} ;$ ratio $=[$ monomer $]:[1]=100: 1$.
a)

b)

Figure S4. Plots of conversion vs time for the copolymerization with complex $\mathbf{1}$ of a) LLA/MAC and b) $r a c-L A / M A C$.

Figure S5. Inverse gated decoupled ${ }^{13} \mathrm{C}$ NMR spectrum for the homopolymerization of rac-LA by complex $2\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S6. Semilogarithmic kinetic plot in each monomer catalyzed by complex $2\left(k_{\text {app }}(\mathrm{MAC})=\right.$ $\left.87.6 \times 10^{-3}, k_{\text {app }}(\mathrm{L}-\mathrm{LA})=24.8 \times 10^{-3}\right), k_{\text {app }}(\mathrm{rac}$-LA $)=9.7 \times 10^{-3}$, Polymerization conditions: complex $\mathbf{2}=10 \mu \mathrm{~mol} ; \mathrm{T}=90^{\circ} \mathrm{C} ;$ Tol. $=2 \mathrm{~mL} ;$ ratio $=[$ monomer $]:[2]=100: 1$.

Figure S7. Plots of composition vs time for the copolymerization with complex $\mathbf{2}$ of a) LLA/MAC and b) $r a c-L A / M A C$.

Figure S8. (a) ${ }^{1} \mathrm{H}$ NMR and (b) ${ }^{13} \mathrm{C}$ NMR spectroscopy in CDCl_{3} :
(1) poly(MAC- r-L-LA), $L_{\mathrm{L}-\mathrm{LA}}=3.40 / L_{\mathrm{MAC}}=3.08$, (table 1 , entry 9);
(2) poly(MAC-grad-rac-LA), $L_{\text {rac-LA }}=4.45 / L_{\mathrm{MAC}}=3.76$, (table 1, entry 13);
(3) poly(rac-LA-tapered-MAC), $L_{\text {rac-LA }}=6.83 / L_{\mathrm{MAC}}=2.29$, (table 2, entry 9);
(4) quasi-diblock poly(L-LA-b-MAC), $L_{\mathrm{L}-\mathrm{LA}}=7.43 / L_{\mathrm{MAC}}=3.68$, (table 2, entry 4).

Figure S9. DSC thermograms of quasi-diblock Poly(L-LA-b-MAC) (table 2, entry 4) (T_{g} value was calculated by STAR ${ }^{\mathrm{e}}$ method with heating/cooling rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ and using second cycle from $-10^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$): (1) first heating cycle; (2) after eliminating thermal history; (3) after isothermal crystallization.

Table S1. Homopolymerization of rac-LA or MAC with complex 1 and 2.

entry a	Cat.	M	$[\mathrm{Cat} .]_{0}:[\mathrm{CTA}]_{0}:[\mathrm{M}]_{0}$	$\operatorname{conv} .^{b}(\%)$	$M_{\mathrm{n}, \mathrm{calcd}}{ }^{c}(\mathrm{KDa})$	$M_{\mathrm{n}, \mathrm{SEC}}{ }^{d}(\mathrm{KDa})$	$M_{\mathrm{w}} / M_{\mathrm{n}}{ }^{d}$	$T_{\mathrm{g}} / T_{\mathrm{m}}{ }^{e}\left({ }^{\circ} \mathrm{C}\right)$
$\mathbf{1}$	$\mathbf{1}$	rac -LA	$1: 3: 100$	94	4.70	6.06	1.04	$40.0 /-$
$\mathbf{2}$	$\mathbf{2}$	rac-LA	$1: 3: 100$	91	4.55	7.75	1.28	$49.8 / 188.5$
$\mathbf{3}$	$\mathbf{1}$	MAC	$1: 3: 100$	95	6.52	7.24	1.20	$-10.5 /-$

${ }^{a}$ Polymerization conditions: $[\mathrm{M}]_{0}=0.5 \mathrm{M} ; \mathrm{CTA}=\mathrm{Ph}_{2} \mathrm{CHOH} ; T=90^{\circ} \mathrm{C}$; time $=24 \mathrm{~h}$; toluene $=2 \mathrm{~mL}$ ${ }^{b}$ Measured by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c} M_{\mathrm{n}, \text { calcd }}=$ molar mass of $\mathrm{M} \times[\mathrm{M}]_{0} /[\mathrm{CTA}]_{0} \times$ conversion $\%+$ the molar mass of CTA. ${ }^{d}$ Molecular weight $\left(M_{\mathrm{n}}\right)$ and dispersity values $\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)$ determined by SEC in THF at $40{ }^{\circ} \mathrm{C}$ using polystyrene standards. ${ }^{e}$ Calculated by DSC measurement (Figure 4)

Reactivity Ratio Calculation:

Table S2. Reactivity ratio calculation for copolymerization of L-LA and MAC catalyzed by

entry	$\begin{aligned} & \text { L-LA } \\ & \left(f_{1}\right)^{a} \end{aligned}$	$\begin{gathered} \text { MAC } \\ \left(f_{2}\right)^{a} \end{gathered}$	f_{1} / f_{2}	conversion		LA $\left(\mathrm{F}_{1}\right)^{b}$	$\operatorname{MAC}\left(\mathrm{F}_{2}\right)^{b}$
				LA (\%)	MAC(\%)		
1	0.8	0.2	4	5.67	13.76	0.622	0.378
2	0.7	0.3	2.333	4.67	9.32	0.539	0.461
3	0.6	0.4	1.5	8.67	13.70	0.487	0.513
4	0.5	0.5	1	6.00	7.69	0.438	0.562
5	0.4	0.6	0.667	10.67	11.63	0.380	0.620
6	0.3	0.7	0.429	10.67	9.34	0.329	0.671

complex 1.

${ }^{a} f_{1}$ and f_{2} are defined as mole fractions of monomers LA and MAC in the feed and $f_{1}=1-f_{2}$.
${ }^{b} \mathrm{~F}_{1}$ and F_{2} represents the mole fraction of each monomer in the copolymer and $\mathrm{F}_{1}=1-\mathrm{F}_{2}$

$H=\frac{f_{1}^{2}\left(1-F_{1}\right)}{\left(1-f_{1}\right)^{2} F_{1}} \quad, \quad G=\frac{f_{1}\left(2 F_{1}-1\right)}{\left(1-f_{1}\right) F_{1}}$
Where $G=H r_{1}-r_{2}$, a plot of H versus G yields a straight line with slope r_{1} and intercept $-r_{2}$.
$r_{\mathrm{L}-\mathrm{LA}}=0.217, r_{\mathrm{MAC}}=0.578$.

entry	rac-LA	MAC $\left(f_{1}\right)^{a}$	f_{1} / f_{2}	conversion			
				LA (\%)	MAC $(\%)$	LA $\left(\mathrm{F}_{1}\right)^{b}$	MAC $\left(\mathrm{F}_{2}\right)^{b}$
1	0.7	0.3	2.333	4.81	9.80	0.534	0.466
2	0.6	0.4	1.5	4.75	10.07	0.414	0.586
3	0.5	0.5	1	3.52	7.70	0.314	0.686
4	0.45	0.55	0.818	5.67	12.71	0.267	0.733
5	0.4	0.6	0.667	3.53	7.98	0.228	0.772

Table S3. Reactivity ratio calculation for copolymerization of rac -LA and MAC catalyzed by complex 1.
${ }^{a} f_{1}$ and f_{2} are defined as mole fractions of monomers LA and MAC in the feed and $f_{1}=1-f_{2}$.
${ }^{b} \mathrm{~F}_{1}$ and F_{2} represents the mole fraction of each monomer in the copolymer and $\mathrm{F}_{1}=1-\mathrm{F}_{2}$.

entry	L-LA	MAC $\left(f_{1}\right)^{a}$	f_{1} / f_{2}	conversion			
	$\left(f_{2}\right)^{a}$		LA (\%)	MAC $(\%)$	LA $\left(\mathrm{F}_{1}\right)^{b}$	MAC ($\left.\mathrm{F}_{2}\right)^{b}$	
1	0.55	0.45	1.222	11.37	4.30	0.764	0.236
2	0.5	0.5	1	11.67	4.33	0.729	0.271
3	0.45	0.55	0.818	11.55	4.11	0.697	0.303
4	0.4	0.6	0.667	14.09	4.54	0.674	0.326
5	0.3	0.7	0.429	16.00	4.62	0.597	0.403

$H=\frac{f_{1}^{2}\left(1-F_{1}\right)}{\left(1-f_{1}\right)^{2} F_{1}} \quad G=\frac{f_{1}\left(2 F_{1}-1\right)}{\left(1-f_{1}\right) F_{1}}$

Where $G=H r_{1}-r_{2}$, a plot of H versus G yields a straight line with slope r_{1} and intercept $-r_{2}$. $r_{r a c-\mathrm{LA}}=0.584, r_{\mathrm{MAC}}=2.478$.

Table S4. Reactivity ratio calculation for copolymerization of L-LA and MAC catalyzed by complex 2.
${ }^{a} f_{1}$ and f_{2} are defined as mole fractions of monomers LA and MAC in the feed and $f_{1}=1-f_{2}$.
${ }^{b} \mathrm{~F}_{1}$ and F_{2} represents the mole fraction of each monomer in the copolymer and $\mathrm{F}_{1}=1-\mathrm{F}_{2}$.

$H=\frac{f_{1}^{2}\left(1-F_{1}\right)}{\left(1-f_{1}\right)^{2} F_{1}} \quad, \quad G=\frac{f_{1}\left(2 F_{1}-1\right)}{\left(1-f_{1}\right) F_{1}}$

Where $G=H r_{1}-r_{2}$, a plot of H versus G yields a straight line with slope r_{1} and intercept $-r_{2}$. $r_{\mathrm{L}-\mathrm{LA}}=2.035, r_{\mathrm{MAC}}=0.112$.

Table S5. Reactivity ratio calculation for copolymerization of rac -LA and MAC catalyzed by complex 2.
${ }^{a} f_{1}$ and f_{2} are defined as mole fractions of monomers LA and MAC in the feed and $f_{1}=1-f_{2}$.
${ }^{b} \mathrm{~F}_{1}$ and F_{2} represents the mole fraction of each monomer in the copolymer and $\mathrm{F}_{1}=1-\mathrm{F}_{2}$.

entry	rac-LA	MAC	f_{1} / f_{2}	conversion			
	$\left(f_{1}\right)^{a}$	$\left(f_{2}\right)^{a}$		LA (\%)	MAC $(\%)$	LA $\left(\mathrm{F}_{1}\right)^{b}$	MAC $\left(\mathrm{F}_{2}\right)^{b}$
1	0.8	0.2	4	13.58	7.89	0.873	0.127
2	0.7	0.3	2.333	11.82	6.22	0.816	0.184
3	0.6	0.4	1.5	11.67	5.59	0.758	0.242
4	0.5	0.5	1	10.11	5.53	0.646	0.354
5	0.4	0.6	0.667	11.52	5.08	0.602	0.398
6	0.3	0.7	0.429	11.95	5.48	0.483	0.517

$H=\frac{f_{1}^{2}\left(1-F_{1}\right)}{\left(1-f_{1}\right)^{2} F_{1}} \quad, \quad G=\frac{f_{1}\left(2 F_{1}-1\right)}{\left(1-f_{1}\right) F_{1}}$

Where $G=H r_{1}-r_{2}$, a plot of H versus G yields a straight line with slope r_{1} and intercept $-r_{2}$.
$r_{r a c-\mathrm{LA}}=1.619, r_{\mathrm{MAC}}=0.283$.

