Supporting information

for

Sequences controlled copolymerization of lactide and functional cyclic

carbonate using stereoselective aluminum catalysts

Xiufang Hua,^{a,b} Xinli Liu *a and Dongmei Cui *a

Contents

Figure S1. GPC profiles of representative samples, entries 1-4, Table 1.

Figure S2. Inverse gated decoupled ¹³C NMR spectrum for the hopolymerization of *rac*-LA by

complex 1 (500 MHz, CDCl₃).

Figure S3. Semilogarithmic kinetic plot in each monomer catalyzed by complex 1.

Figure S4. Plots of conversion vs time for the copolymerization with complex 1 of a) L-

LA/MAC and b) rac-LA/MAC.

Figure S5. Inverse gated decoupled ¹³C NMR spectrum for the hopolymerization of *rac*-LA by complex **2** (500 MHz, CDCl₃).

Figure S6. Semilogarithmic kinetic plot in each monomer catalyzed by complex 2.

Figure S7. Plots of composition vs time for the copolymerization with complex 2 of a) L-

LA/MAC and b) *rac*-LA/MAC.

Figure S8. (a) ¹H NMR and (b) ¹³C NMR spectroscopy in CDCl₃.

Figure S9. DSC thermograms of quasi-diblock Poly(L-LA-b-MAC).

Table S1. Homopolymerization of *rac*-LA or MAC with complex 1 and 2.

Table S2. Reactivity ratio calculation for copolymerization of L-LA and MAC catalyzed by

 complex 1.

Table S3. Reactivity ratio calculation for copolymerization of *rac*-LA and MAC catalyzed by complex 1.

Table S4. Reactivity ratio calculation for copolymerization of L-LA and MAC catalyzed by complex 2.

 Table S5. Reactivity ratio calculation for copolymerization of *rac*-LA and MAC catalyzed by complex 2.

Supplemental Figures:

Figure S1. GPC profiles of representative samples, entries 1-4, Table 1.

Figure S2. Inverse gated decoupled ¹³C NMR spectrum for the homopolymerization of *rac*-LA by complex **1** (500 MHz, CDCl₃).

Figure S3. Semilogarithmic kinetic plot in each monomer catalyzed by complex 1 (k_{app} (MAC) = 176.1×10^{-4} , k_{app} (*rac*-LA) = 37.6×10^{-4} , k_{app} (L-LA) = 9.2×10^{-4}), Polymerization conditions: Complex 1 = 10 µmol; T = 90 °C; Tol. = 2 mL; ratio = [monomer]:[1] = 100:1.

Figure S4. Plots of conversion vs time for the copolymerization with complex 1 of a) L-LA/MAC and b) *rac*-LA/MAC.

Figure S5. Inverse gated decoupled ¹³C NMR spectrum for the homopolymerization of *rac*-LA by complex **2** (500 MHz, CDCl₃).

Figure S6. Semilogarithmic kinetic plot in each monomer catalyzed by complex **2** (k_{app} (MAC) = 87.6×10^{-3} , k_{app} (L-LA) = 24.8×10^{-3}), k_{app} (*rac*-LA) = 9.7×10^{-3} , Polymerization conditions: complex **2** = 10 µmol; T = 90 °C; Tol. = 2 mL; ratio = [monomer]:[**2**] = 100:1.

Figure S7. Plots of composition vs time for the copolymerization with complex 2 of a) L-LA/MAC and b) *rac*-LA/MAC.

Figure S8. (a) ¹H NMR and (b) ¹³C NMR spectroscopy in CDCl₃:

- (1) poly(MAC-*r*-L-LA), $L_{L-LA} = 3.40/L_{MAC} = 3.08$, (table 1, entry 9);
- (2) poly(MAC-grad-rac-LA), $L_{rac-LA} = 4.45/L_{MAC} = 3.76$, (table 1, entry 13);
- (3) poly(*rac*-LA-*tapered*-MAC), $L_{rac-LA} = 6.83/L_{MAC} = 2.29$, (table 2, entry 9);
- (4) quasi-diblock poly(L-LA-*b*-MAC), $L_{L-LA} = 7.43/L_{MAC} = 3.68$, (table 2, entry 4).

Figure S9. DSC thermograms of *quasi*-diblock Poly(L-LA-*b*-MAC) (table 2, entry 4) (T_g value was calculated by STAR^e method with heating/cooling rate of 10 °C/min and using second cycle from -10 °C to 200 °C): (1) first heating cycle; (2) after eliminating thermal history; (3) after isothermal crystallization.

Table S1. Homopolymerizatior	of rac-LA or MAC	with complex 1	and 2 .
------------------------------	------------------	----------------	----------------

entry ^a	Cat.	М	[Cat.] ₀ :[CTA] ₀ :[M] ₀	conv. ^b (%)	$M_{\rm n,calcd}$ ^c (KDa)	$M_{n,SEC}^{d}(KDa)$	$M_{\rm w}/M_{\rm n}^{d}$	$T_{\rm g}/T_{\rm m}^{e}(^{\rm o}{\rm C})$
1	1	rac-LA	1:3:100	94	4.70	6.06	1.04	40.0/-
2	2	rac-LA	1:3:100	91	4.55	7.75	1.28	49.8/188.5
3	1	MAC	1:3:100	95	6.52	7.24	1.20	-10.5/-

^{*a*}Polymerization conditions: $[M]_0 = 0.5 \text{ M}$; CTA = Ph₂CHOH; T = 90 °C; time = 24 h; toluene = 2 mL ^{*b*}Measured by ¹H NMR. ^{*c*} $M_{n,calcd}$ = molar mass of M × $[M]_0/[CTA]_0$ × conversion % + the molar mass of CTA. ^{*d*}Molecular weight (M_n) and dispersity values (M_w/M_n) determined by SEC in THF at 40 °C using polystyrene standards. ^{*e*}Calculated by DSC measurement (Figure 4)

Reactivity Ratio Calculation:

entry	L-LA	MAC	f_1/f_2	conversion			
	$(f_1)^a$	$(f_2)^a$		LA (%)	MAC(%)	LA $(F_1)^b$	MAC $(F_2)^b$
1	0.8	0.2	4	5.67	13.76	0.622	0.378
2	0.7	0.3	2.333	4.67	9.32	0.539	0.461
3	0.6	0.4	1.5	8.67	13.70	0.487	0.513
4	0.5	0.5	1	6.00	7.69	0.438	0.562
5	0.4	0.6	0.667	10.67	11.63	0.380	0.620
6	0.3	0.7	0.429	10.67	9.34	0.329	0.671

Table S2. Reactivity ratio calculation for copolymerization of L-LA and MAC catalyzed by

complex 1.

 ${}^{a}f_{1}$ and f_{2} are defined as mole fractions of monomers LA and MAC in the feed and $f_{1} = 1 - f_{2}$. ${}^{b}F_{1}$ and F_{2} represents the mole fraction of each monomer in the copolymer and $F_{1} = 1 - F_{2}$.

Where $G = Hr_1 - r_2$, a plot of H versus G yields a straight line with slope r_1 and intercept $-r_2$.

 $r_{\text{L-LA}} = 0.217, r_{\text{MAC}} = 0.578.$

entry	rac-LA	MAC	f_1/f_2	conversion			
	$(f_1)^a$	$(f_2)^a$		LA (%)	MAC(%)	$LA (F_1)^b$	MAC $(F_2)^b$
1	0.7	0.3	2.333	4.81	9.80	0.534	0.466
2	0.6	0.4	1.5	4.75	10.07	0.414	0.586
3	0.5	0.5	1	3.52	7.70	0.314	0.686
4	0.45	0.55	0.818	5.67	12.71	0.267	0.733
5	0.4	0.6	0.667	3.53	7.98	0.228	0.772

Table S3. Reactivity ratio calculation for copolymerization of *rac*-LA and MAC catalyzed by

complex 1.

 ${}^{a}f_{1}$ and f_{2} are defined as mole fractions of monomers LA and MAC in the feed and $f_{1} = 1 - f_{2}$. ${}^{b}F_{1}$ and F_{2} represents the mole fraction of each monomer in the copolymer and $F_{1} = 1 - F_{2}$.

entry	L-LA	MAC	f_1 / f_2	conversion				
	$(f_1)^a$	$(f_2)^a$		LA (%)	MAC(%)	LA $(F_1)^b$	MAC $(F_2)^b$	
1	0.55	0.45	1.222	11.37	4.30	0.764	0.236	
2	0.5	0.5	1	11.67	4.33	0.729	0.271	
3	0.45	0.55	0.818	11.55	4.11	0.697	0.303	
4	0.4	0.6	0.667	14.09	4.54	0.674	0.326	
5	0.3	0.7	0.429	16.00	4.62	0.597	0.403	

$$H = \frac{f_1^2(1 - F_1)}{(1 - f_1)^2 F_1} \qquad G = \frac{f_1(2F_1 - 1)}{(1 - f_1)F_1}$$

Where $G = Hr_1 - r_2$, a plot of H versus G yields a straight line with slope r_1 and intercept $-r_2$. $r_{rac-LA} = 0.584$, $r_{MAC} = 2.478$.

Table S4. Reactivity ratio calculation for copolymerization of L-LA and MAC catalyzed by

complex 2.

 ${}^{a}f_{1}$ and f_{2} are defined as mole fractions of monomers LA and MAC in the feed and $f_{1} = 1 - f_{2}$.

 ${}^{\textit{b}}F_1$ and F_2 represents the mole fraction of each monomer in the copolymer and $F_1 = 1 - F_2.$

$$H = \frac{f_1^2 (1 - F_1)}{(1 - f_1)^2 F_1} \qquad G = \frac{f_1 (2F_1 - 1)}{(1 - f_1) F_1}$$

Where $G = Hr_1 - r_2$, a plot of H versus G yields a straight line with slope r_1 and intercept $-r_2$. $r_{L-LA} = 2.035$, $r_{MAC} = 0.112$.

Table S5. Reactivity ratio calculation for copolymerization of *rac*-LA and MAC catalyzed by complex 2.

entry	rac-LA	MAC	f_1/f_2	conversion			
	$(f_1)^a$	$(f_2)^a$		LA (%)	MAC(%)	LA $(F_1)^b$	MAC $(F_2)^b$
1	0.8	0.2	4	13.58	7.89	0.873	0.127
2	0.7	0.3	2.333	11.82	6.22	0.816	0.184
3	0.6	0.4	1.5	11.67	5.59	0.758	0.242
4	0.5	0.5	1	10.11	5.53	0.646	0.354
5	0.4	0.6	0.667	11.52	5.08	0.602	0.398
6	0.3	0.7	0.429	11.95	5.48	0.483	0.517

 ${}^{a}f_{1}$ and f_{2} are defined as mole fractions of monomers LA and MAC in the feed and $f_{1} = 1 - f_{2}$. ${}^{b}F_{1}$ and F_{2} represents the mole fraction of each monomer in the copolymer and $F_{1} = 1 - F_{2}$.

Where $G = Hr_1 - r_2$, a plot of H versus G yields a straight line with slope r_1 and intercept $-r_2$. $r_{rac-LA} = 1.619$, $r_{MAC} = 0.283$.