Electronic Supplementary Information (ESI)

Preparation and in situ chain-end-functionalization of branched ethylene oligomers by monosubstituted α -diimine nickel catalysts

Xin Ma,^{a,b,#} Xiaoqiang Hu,^{a,b,#} Yixin Zhang,^a Hongliang Mu,^a Lei Cui^a and Zhongbao Jian*^{a,b}

^{*a*}State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China ^{*b*}University of Science and Technology of China, Hefei 230026, China

[#]These authors contributed to this work equally.

Contents

1. Time-dependence study	S 2
2. General information	S 3
3. Preparation of ligands and catalysts	S 4
4. General procedures for the polymerizations	S12
5. Spectra Data.	S13
5.1. ¹ H NMR of Amine	S13
5.2. ¹ H, ¹³ C NMR of Ligand	S14
5.3. ¹ H, ¹³ C, ¹ H- ¹ H COSY, ¹ H- ¹³ C HSQC, ¹ H- ¹³ C HMBC NMR of Complexes	S19
6. NMR figures of (co)polymers	S32
6.1. ¹ H NMR of polymer by Ni Catalysts	S32
6.2. ¹ H NMR of polymer by Ni Catalysts with different Solvent	S42
6.3. ¹ H NMR of polymer by Pd Catalysts	S51
6.4. ¹ H NMR of copolymer by Pd Catalysts	S54
7. GPC traces and DSC data of (co)polymers	S61
8. MALDI-TOF-MS of Ni complexes	S91
9. Figure of crystal structure of Pd-3	S94
10. References	S95

1 Time-dependence study

Figure S1. Polymer yield versus time for catalyst Ni-1 at 70 °C.

2 General Procedures and Materials: All syntheses involving air- and moisture sensitive compounds were carried out using standard Schlenk-type glassware (or in a glove box) under an atmosphere of nitrogen. All solvents were purified from the MBraun SPS system. NMR spectra for the ligands, complexes, and polymers were recorded on a Bruker AV400 (¹H: 400 MHz, ¹³C: 100 MHz, ³¹P: 162 MHz, ¹⁹F: 376 MHz) or a Bruker AV500 (¹H: 500 MHz, ¹³C: 125 MHz, ³¹P: 202 MHz, ¹⁹F: 470 MHz). NMR assignments were confirmed by ¹H⁻¹H COSY, ¹H-¹³C HSOC and ¹H-¹³C HMBC experiments when necessary. The molecular weights (M_n) and molecular weight distributions (M_w/M_n) of polyethylenes and copolymers were measured by means of gel permeation chromatography (GPC) on a PL-GPC 220-type high-temperature chromatograph equipped with three PL-gel 10 µm Mixed-B LS type columns at 150 °C or on a TOSOH HLC-8220 GPC at 40 °C using THF as eluent (the flow rate is 0.35 mL/min) against polystyrene standards. Melting points (T_m) of polyethylenes and copolymers were measured through DSC analyses, which were carried out on a Mettler TOPEM TM DSC Instruments under nitrogen atmosphere at heating and cooling rates of 10 °C/min (temperature range: 0-160 °C). Mass spectra of the complexes were recorded on an Acquity UPLC & Quattro Premier. Elemental analysis were performed at the National Analytical Research Centre of Changchun Institute of Applied Chemistry.

X-Ray diffraction: Data collections were performed at -88.5 °C on a Bruker SMART APEX diffractometer with a CCD area detector, using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The determination of crystal class and unit cell parameters was carried out by the SMART program package.¹ The raw frame data were processed using SAINT and SADABS to yield the reflection data file.² All structures were solved by direct methods and refined by full-matrix least-squares procedures on F^2 using SHELXTL 2014.³ Refinement was performed on F^2 anisotropically for all non-hydrogen atoms by the full-matrix least-squares method. The hydrogen atoms were placed at the calculated positions and were included in the structure calculation without further refinement of the parameters.

Exceptions and special features: For complexes Ni-2, Pd-2, and Pd-5, the program SQUEEZE⁴ was used to remove mathematically the effect of the solvent. The quoted formula and derived parameters are not included the squeezed solvent molecules. For complex Pd-5, the thermal parameters of carbon and oxygen atoms on one OMe group were restrained to be similar with the adjacent atoms, and the "simu" restraint was used with the deviation being 0.02 to avoid the Hirshfeld Test Diff on several C–O bonds. Two C–O bond distances in the OMe group were fixed at 1.45 Å. The "isor" restraint was used with the deviation being 0.001 to help the refinement.

Materials: (2-aminophenyl)diphenylmethanol⁵, 2-benzhydrylaniline⁵, 2-[Bis(3,4-dimethoxyphenyl)methyl]aniline⁶, 1-[bis(3,4-dimethoxyphenyl)methyl]-2-nitrobenzene⁶, 4,5-Dimethoxy-{2-[Bis(3,4-dimethoxyphenyl)methyl]}aniline⁶, 1-[Bis(3,4-dimethoxyphenyl)methyl]-3,4-dimethoxy-2-nitrobenzene⁶ were prepared according to the literature procedures. All other reagents were commercially available and used as received.

3 Preparation of Ligands and Catalysts

Preparation of Ligand L1: To the solution of 2-benzhydrylaniline (1.00 g, 3.86 mmol) in ^{*i*}PrOH (100 mL) at 80 °C were added diacetyl (153 μ L, 1.75 mmol) and three drops of formic acid. The reaction mixture was stirred for 4 days at 80 °C. The formed yellow suspension was cooled to room temperature and concentrated to a half of its original volume. The yellow precipitate was collected by filtration, washed with ^{*i*}PrOH and dried in vacuo (0.52g, 52.1% yield).

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): δ = 7.26-7.19 (m, 10H, aryl-*H*), 7.19-7.14 (m, 4H, aryl-*H*), 7.08-7.01 (m, 10H, aryl-*H*), 6.94 (d, *J* = 7.7 Hz, 2H, aryl-*H*), 6.54 (d, *J* = 7.6 Hz, 2H, aryl-*H*), 5.44 (s, 2H, CHPh₂), 1.58 (s, 6H, N=CMe) ppm.

¹³C{¹H} NMR (125 MHz, 298 K, CDCl₃, 77.16 ppm): δ = 168.17 (N=*C*Me), 149.25, 143.21, 134.21, 129.67, 128.36, 127.08, 126.39, 123.91, 118.06, 52.29 (*C*HPh₂), 15.29 (N=*C*-Me) ppm.

Elemental analysis: Anal. Calcd for C₄₂H₃₆N₂: C, 88.69; H, 6.38; N, 4.93. Found: C, 88.46; H, 6.24; N, 5.03.

Preparation of Ligand L2: Step 1: ZnCl₂ (0.13 g, 0.96 mmol) and acenaphthenequinone (0.16 g, 0.88 mmol) were suspended in glacial acetic acid (10 mL).2-benzhydrylaniline (0.50 g, 1.93 mmol) was added, and the reaction mixture was refluxed under stirring for 4 h. The solution was allowed to cool to room temperature, and a bright yellow solid precipitated. The solid was separated by filtration and washed with 10 mL acetic acid (3 times) and 20 mL diethyl ether (5 times), to remove remaining acetic acid. Drying under vacuum gave bright orange solid (0.58 g, 82.3% yield). Step 2: The zinc was removed from the zinc diamine complex. The product of the previous step was suspended in methylene chloride (20 mL), and a solution of potassium oxalate (0.36 g, 1.93 mmol) in water (3 mL) was added. The reaction mixture was stirred vigorously for 1 h. The two phases were separated, and the organic layer was washed with 20 mL water (3 times) and dried with MgSO₄. After filtration the solvent was removed under vacuum to afford the product as an orange powder (0.32 g, 66.5%),

followed by recrystallization from dichloromethane and n-hexane. The total yield of two steps is 54.7%.

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): δ = 7.64 (d, *J* = 8.2 Hz, 2H, aryl-*H*), 7.30 (t, 2H, aryl-*H*), 7.19 (t, 3H, aryl-*H*), 7.14-6.58 (m, 25H, aryl-*H*), 6.44 (s, 2H, aryl-*H*), 5.83 (s, 2H, C*H*Ph₂) ppm.

¹³C{¹H} NMR (125 MHz, 298 K, CDCl₃, 77.16 ppm): δ = 161.91 (N=*C*Me), 150.44, 142.96, 141.01, 134.29, 130.28, 130.06, 129.82, 128.44, 128.36, 127.96, 127.26, 126.95, 125.84, 124.43, 123.55, 118.08, 52.22 (*C*HPh₂) ppm.

Elemental analysis: Anal. Calcd for C₅₀H₃₆N₂: C, 90.33; H, 5.46; N, 4.21. Found: C, 90.45; H, 5.37; N, 4.12.

Preparation of Ligand L3: Using the same procedure as for the synthesis of L1, L3 was obtained as a yellow powder (0.63g, 64.5% yield).

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): $\delta = 7.22$ (t, 2H, aryl-*H*), 7.04 (t, 2H, aryl-*H*), 6.96 (d, *J*=7.7Hz, 2H, aryl-*H*), 6.74 (d, *J*=8.3Hz, 4H, aryl-*H*), 6.61 (d, *J*=2.1Hz, 4H, aryl-*H*), 6.57-6.50 (m, 6H, aryl-*H*), 5.34 (s, 2H, CHPh₂), 3.81 (s, 12H, -OMe), 3.73 (s, 12H, -OMe), 1.66 (s, 6H, N=CMe) ppm.

¹³C{¹H} NMR (125 MHz, 298 K, CDCl₃, 77.16 ppm): δ = 168.02 (N=*C*Me), 149.12, 148.87, 147.53, 135.97, 134.53, 129.51, 127.04, 123.94, 121.59, 117.90, 112.88, 110.87, 55.93(OMe), 51.35(*C*HPh₂), 15.46(N=*C*-Me) ppm.

Elemental analysis: Anal. Calcd for C₅₀H₅₂N₂O₈: C, 74.24; H, 6.48; N, 3.46. Found: C, 74.40; H, 6.54; N, 3.38.

Preparation of Ligand L4: Using the same procedure as for the synthesis of L2, L4 was obtained as a orange powder (0.32 g, 59.2% yield).

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): $\delta = 7.67$ (d, J=8.2Hz, 2H, aryl-H), 7.36-7.27 (t, 2H, aryl-H), 7.23-7.16 (t, 2H, aryl-H), 7.15-7.04 (m, 4H, aryl-H), 7.01 (d, J=7.6Hz, 2H, aryl-H), 6.87-6.14 (m, 14H, aryl-H), 5.71 (s, 2H, CHPh₂), 3.89-3.08 (m, 24H, -OMe) ppm.

¹³C{¹H} NMR (125 MHz, 298 K, CDCl₃, 77.16 ppm): $\delta = 162.17$ (N=CMe), 150.43, 148.45, 146.97, 140.72, 135.81, 134.45, 130.16, 129.74, 128.40, 128.13, 127.24, 126.66, 124.44, 123.30, 121.80, 117.93, 112.98, 110.33, 55.69. 51.42(*C*HPh₂) ppm.

Elemental analysis: Anal. Calcd for C₅₈H₅₂N₂O₈: C, 76.97; H, 5.79; N, 3.10. Found: C, 77.07; H, 5.65; N, 3.14.

Preparation of Ligand L5: Using the same procedure as for the synthesis of L1, L5 was obtained as a yellow powder (0.55g, 57.5% yield).

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): $\delta = 6.73$ (d, *J*=8.3Hz, 4H, aryl-*H*), 6.62 (d, *J*=2.1Hz, 4H, aryl-*H*), 6.56-6.49 (m, 6H, aryl-*H*), 6.13 (s, 2H, aryl-*H*), 5.30 (s, 2H, CHPh₂), 3.87-3.79 (m, 18H, -OMe), 3.75-3.66 (m, 18H, -OMe), 1.74 (s, 6H, N=CMe) ppm.

¹³C{¹H} NMR (125 MHz, 298 K, CDCl₃, 77.16 ppm): δ = 168.67 (N=*C*Me), 148.84, 147.90, 147.50, 145.60, 142.24, 136.29, 126.39, 121.47, 113.37, 112.78, 110.87, 102.64, 56.41, 56.17, 55.94, 55.92, 50.77(*C*HPh₂), 15.76(N=*C*-Me) ppm.

Elemental analysis: Anal. Calcd for $C_{54}H_{60}N_2O_{12}$: C, 69.81; H, 6.51; N, 3.02. Found: C, 69.98; H, 6.63; N, 2.93.

Preparation of complex Pd-1: To a solution of ligand L1 (130 mg, 0.23 mmol) in dry dichloromethane (10 mL) was added 60.6 mg (0.23 mmol) of Pd(COD)MeCl. After stirring the mixture for 3 days at room temperature, the solvent was evaporated under reduced pressure, the desired compound can be isolated from repeated recrystallized from n-hexane

and dichloromethane. The pure compound was obtained as an orange solid. (120 mg, 72.2% yield)

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): **major:** $\delta = 7.47-7.43$ (m, 2H, aryl-*H*), 7.43-7.38 (m, 1H, aryl-*H*), 7.36-7.08 (m, 22H, aryl-*H*), 7.00-6.96 (m, 1H, aryl-*H*), 6.85-6.81 (m, 1H, aryl-*H*), 6.79-6.76 (m, 1H, aryl-*H*), 6.51 (s, 1H, CHPh₂), 6.11 (s, 1H, CHPh₂), 0.75 (s, 3H, N=CMe), 0.64 (s, 3H, N=CMe), 0.88 (s, 3H, Pd-Me). **minor:** the signals of **aryl-H** are overlapped by the major product, $\delta = 6.67$ (s, 1H, CHPh₂), 6.01 (s, 1H, CHPh₂), 0.80 (s, 3H, N=CMe), 0.72 (s, 3H, N=CMe), 0.76 (s, 3H, Pd-Me) ppm.

¹³C{¹H} NMR (125 MHz, 298 K, CDCl₃, 77.16 ppm): major: $\delta = 176.53$ (N=CMe), 170.86 (N=CMe), 145.29, 145.16, 142.89, 142.01, 141.80, 141.23, 136.82, 136.33, 130.70, 130.56, 130.12, 129.71, 129.57, 128.87, 128.54, 128.50, 128.28, 127.67, 127.11, 127.09, 126.89, 126.77, 126.64, 126.48, 126.31, 121.34, 120.12, 52.60 (CHPh₂), 52.20 (CHPh₂), 19.66 (N=C-Me), 18.30 (N=C-Me), 3.75 (Pd-*Me*). minor: the signals of aryl-C are overlapped by the major product, $\delta = 177.85$ (N=CMe), 174.30 (N=CMe), 53.06 (CHPh₂), 52.73 (CHPh₂), 20.20 (N=C-Me), 19.05 (N=C-Me), 4.21 (Pd-*Me*) ppm.

Elemental analysis: Anal. Calcd for C₄₃H₃₉ClN₂Pd: C, 71.17; H, 5.42; N, 3.86. Found: C, 71.35; H, 5.49; N, 3.80.

Preparation of complex Pd-2: Using the same procedure as for the synthesis of **Pd-1**, **Pd-2** was obtained as an orange powder (133 mg, 83.1% yield).

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): **major:** $\delta = 7.77-7.72$ (dd, ³*J*_{HH}= 12.2 Hz, ⁴*J*_{HH}=8.3 Hz, 2H, aryl-*H*), 7.53-7.50 (m, 1H, aryl-*H*), 7.46-7.40 (m, 4H, aryl-*H*), 7.33-7.07 (m, 19H, aryl-*H*), 6.79 (s, 1H, C*H*Ph₂), 6.42-6.37 (m, 4H, aryl-*H*), 6.34-6.33 (br, 2H, C*H*Ph₂ & aryl-*H*), 6.04-6.00 (m, 3H, aryl-*H*), 1.14 (s, 3H, Pd-*Me*). **minor:** the signals of **aryl-H** are overlapped by the major product, $\delta = 6.70$ (s, 1H, C*H*Ph₂), 5.91 (s, 1H, C*H*Ph₂), 0.99 (s, 3H, Pd-*Me*) ppm.

¹³C{¹H} NMR (125 MHz, 298 K, CDCl₃, 77.16 ppm): major: $\delta = 173.33$ (N=C), 168.10 (N=C), 145.23, 144.88, 143.87, 142.21, 141.50, 140.80, 137.46, 137.33, 130.65, 130.37, 130.24, 130.17, 130.10, 129.93, 129.86, 129.58, 128.45, 128.26, 127.99, 127.79, 127.76, 127.56, 127.53, 127.46, 127.28, 127.12, 126.78, 126.38, 125.99, 125.41, 125.34, 125.07, 125.00, 124.88, 121.57, 120.15, 52.81 (CHPh₂), 52.46 (CHPh₂), 4.03 (Pd-*Me*). minor: the signals of aryl-C are overlapped by the major product, $\delta = 172.89$ (N=*C*Me), 167.53 (N=*C*Me), 52.02 (CHPh₂), 51.61 (CHPh₂), 4.64 (Pd-*Me*) ppm.

Elemental analysis: Anal. Calcd for C₅₁H₃₉ClN₂Pd: C, 74.54; H, 4.78; N, 3.41. Found: C, 74.67; H, 4.90; N, 3.34.

Preparation of complex Pd-3: Using the same procedure as for the synthesis of **Pd-1**, **Pd-3** was obtained as an orange powder (126 mg, 81.2% yield).

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): **major:** $\delta = 7.47$ (s, 1H, aryl-*H*), 7.42-7.16 (m, 5H, aryl-*H*), 7.10 (d, J = 7.8 Hz, 1H, aryl-*H*), 7.04-6.99 (m, 1H, aryl-*H*), 6.84-6.62 (m, 10H, aryl-*H*), 6.57-6.51 (m, 2H, aryl-*H*), 6.26 (s, 1H, CHAr₂), 5.89 (s, 1H, CHAr₂), 3.85, 3.84, 3.83, 3.80, 3.79, 3.78, 3.73 (s, 24H, OMe), 0.89 (s, 3H, N=CMe), 0.80 (s, 3H, N=CMe), 0.86 (s, 3H, Pd-Me). **minor:** the signals of **aryl-H** are overlapped by the major product, $\delta = 6.44$ (s, 1H, CHAr₂), 6.23 (s, 1H, CHAr₂), 3.74, 3.63, 3.55 (s, 24H, OMe), 0.92 (s, 3H, N=CMe), 0.78 (s, 3H, Pd-Me) ppm.

¹³C{¹H} NMR (125 MHz, 298 K, CDCl₃, 77.16 ppm): major: δ = 176.36 (N=CMe), 170.70 (N=CMe), 149.38, 149.19, 149.13, 149.08, 148.03, 147.94, 147.72, 147.68, 145.18, 145.03, 137.00, 136.70, 135.47, 135.35, 134.39, 134.30, 130.11, 129.76, 127.63, 127.20, 127.10, 126.73, 122.55, 122.45, 121.13, 121.09, 120.65, 119.77, 114.15, 114.00, 113.63, 112.81, 111.34, 111.19, 110.63, 110.08, 56.44, 56.42, 56.41, 56.15, 56.14, 55.98, 55.97, 55.90 (OMe), 51.61 (CHAr₂), 51.21 (CHAr₂), 19.89 (N=C-Me), 18.42 (N=C-Me), 3.59 (Pd-*Me*). minor: the signals of aryl-C are overlapped by the major product, *δ* = 177.67 (N=CMe), 174.11 (N=CMe), 56.61, 56.59, 56.54, 56.31, 56.07, 56.02, 55.81, 55.80 (OMe), 52.13 (CHAr₂), 50.96 (CHAr₂), 20.54 (N=C-Me), 19.13 (N=C-Me), 4.20 (Pd-*Me*) ppm.

Elemental analysis: Anal. Calcd for C₅₁H₅₅ClN₂O₈Pd: C, 63.42; H, 5.74; N, 2.90. Found: C, 63.28; H, 5.81; N, 2.85.

Preparation of complex Pd-4: Using the same procedure as for the synthesis of **Pd-1**, **Pd-4** was obtained as an orange powder (117 mg, 76.5% yield).

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): **major**: $\delta = 7.84-7.79$ (m, 2H, aryl-*H*), 7.55-7.51 (m, 1H, aryl-*H*), 7.45-7.33 (m, 5H, aryl-*H*), 7.19-7.11 (m, 5H, aryl-*H*), 6.76-6.73 (m, 3H, aryl-*H*), 6.66-6.59 (m, 5H, aryl-*H*), 6.56 (s, 1H, CHAr₂), 6.48 (d, J = 2.0 Hz, 1H, aryl-*H*), 6.36 (d, J = 7.3 Hz, 1H, aryl-*H*), 6.15 (s, 1H, CHAr₂), 6.05 (d, J = 7.2 Hz, 1H, aryl-*H*), 5.70-5.67 (m, 2H, aryl-*H*), 3.86, 3.73, 3.57, 3.55, 2.99, 2.96 (s, 24H, OMe), 1.12 (s, 3H, Pd-

Me). **minor:** the signals of **aryl-H** are overlapped by the major product, $\delta = 6.65$ (s, 1H, CHAr₂), 5.90 (s, 1H, CHAr₂), 3.89, 3.85, 3.84, 3.73, 3.55, 3.43, 2.98 (s, 24H, OMe), 1.08 (s, 3H, Pd-Me) ppm.

¹³C{¹H} NMR (125 MHz, 298 K, CDCl₃, 77.16 ppm): major: δ = 173.20 (N=C), 168.00 (N=C), 149.14, 149.01, 148.24, 148.15, 147.89, 147.64, 146.47, 146.30, 145.18, 144.89, 143.52, 137.63, 137.62, 135.35, 134.94, 134.38, 133.60, 130.41, 130.38, 129.97, 129.96, 129.92, 128.02, 127.84, 127.42, 127.34, 127.28, 127.24, 125.75, 125.23, 124.65, 124.51, 122.29, 122.25, 121.46, 121.24, 120.84, 119.91, 114.01, 113.68, 113.30, 112.80, 110.72, 110.24, 110.15, 110.06, 56.34, 56.00, 55.98, 55.87, 55.73, 55.72, 55.11, 55.09 (OMe), 51.94 (CHAr₂), 51.52 (CHPh₂), 3.78 (Pd-Me). minor: δ = 173.32 (N=C), 167.87 (N=C), 149.10, 148.95, 148.69, 148.56, 147.92, 147.54, 147.06, 146.54, 145.39, 145.22, 143.77, 137.68, 137.66, 137.10, 135.95, 134.86, 132.82, 131.63, 130.27, 130.23, 128.15, 127.72, 127.65, 127.55, 125.67, 125.49, 124.98, 124.71, 122.45, 122.16, 121.69, 121.37, 121.24, 114.73, 113.23, 112.93, 112.64, 110.79, 109.98, 109.39, 56.63, 56.04, 55.94, 55.70, 55.53, 55.41, 54.63 (OMe), 51.05 (CHAr₂), 51.00 (CHAr₂), 4.46 (Pd-Me) ppm.

Elemental analysis: Anal. Calcd for C₅₉H₅₅ClN₂O₈Pd: C, 66.73; H, 5.22; N, 2.64. Found: C, 66.98; H, 5.13; N, 2.58.

Preparation of complex Pd-5: Using the same procedure as for the synthesis of **Pd-1**, **Pd-5** was obtained as an orange powder (120 mg, 81.2% yield).

¹**H** NMR (500 MHz, 298 K, CDCl₃, 7.26 ppm): **major:** $\delta = 7.48$ (s, 1H, aryl-*H*), 6.79-6.69 (m, 8H, aryl-*H*), 6.55 (s, 1H, aryl-*H*), 6.53-6.46 (m, 4H, aryl-*H*), 6.34-6.28 (m, 2H, aryl-*H*), 6.15 (s, 1H, CHAr₂), 5.73 (s, 1H, CHAr₂), 3.90, 3.87, 3.86, 3.85, 3.84, 3.81, 3.79, 3.78, 3.77, 3.73, 3.70, 3.68 (s, 36H, OMe), 0.92 (s, 3H, N=CMe), 0.82 (s, 3H, N=CMe), 0.90 (s, 3H, Pd-Me). **minor:** the signals of **aryl-H** are overlapped by the major product, $\delta = 6.19$ (s, 1H, CHAr₂), 5.56 (s, 1H, CHAr₂), 3.91, 3.87, 3.83, 3.80, 3.78, 3.77, 3.75, 3.73, 3.65, 3.64, 3.55 (s, 36H, OMe), 1.41 (s, 3H, N=CMe), 1.15 (s, 3H, N=CMe), 0.85 (s, 3H, Pd-Me) ppm.

¹³C{¹H} NMR (125 MHz, 298 K, CDCl₃, 77.16 ppm): major: δ = 177.17 (N=CMe), 171.46 (N=CMe), 149.29, 149.17, 149.03, 148.40, 148.07, 147.90, 147.82, 147.80, 147.75, 147.66, 147.40, 137.99, 137.83, 135.68, 135.60, 134.62, 129.03, 128.54, 124.01, 122.57, 122.47, 121.07, 120.57, 114.34, 114.11, 113.88, 112.74, 112.72, 112.68, 111.37, 111.21, 110.58, 110.05, 104.97, 104.17, 100.96, 56.57, 56.52, 56.48, 56.42, 56.33, 56.28, 56.24, 56.13, 56.12, 55.95, 55.94, 55.80 (OMe), 51.06 (CHAr₂), 50.66 (CHAr₂), 20.02 (N=C-Me), 18.50 (N=C-Me), 3.91 (Pd-*Me*). minor: the signals of aryl-C are overlapped by the major product, *δ* = 177.00 (N=CMe), 171.03 (N=CMe), 56.66, 56.45, 56.38, 56.19, 56.09, 56.07, 56.06, 56.00, 55.86 (OMe), 50.53 (CHAr₂), 50.15 (CHAr₂), 20.51 (N=C-Me), 19.63 (N=C-Me), 4.56 (Pd-*Me*) ppm.

Elemental analysis: Anal. Calcd for C₅₅H₆₃ClN₂O₁₂Pd: C, 60.83; H, 5.85; N, 2.58. Found: C, 60.99; H, 5.83; N, 2.45.

Preparation of complex Ni-1: A mixture of L1 (120 mg, 0.21 mmol) and (DME)NiBr₂ (65.1 mg, 0.21 mmol) (DME = 1,2-dimethoxyethane) were stirred in 20 mL of dichloromethane overnight at room temperature. the solvent was evaporated under reduced pressure, the desired compound can be isolated from repeated recrystallized from n-hexane and dichloromethane. The pure compound was obtained as a yellow solid (133 mg, 80.2% yield). As a result of their paramagnetic nature, this complex could not be characterized by ¹H and ¹³C NMR. MALDI-TOF-MS (m/z) : 705.1 [M-Br]⁺.

Elemental analysis: Anal. Calcd for $C_{42}H_{36}Br_2N_2Ni$: C, 64.08; H, 4.61; N, 3.56. Found: C, 64.34; H, 4.53; N, 3.44.

Preparation of complex Ni-2: Using the same procedure as for the synthesis of Ni-1, Ni-2 was obtained as a yellow powder (137 mg, 86.2% yield). As a result of their paramagnetic nature, this complex could not be characterized by ¹H and ¹³C NMR. MALDI-TOF-MS (m/z) : 801.1 [M-Br]⁺.

Elemental analysis: Anal. Calcd for C₅₀H₃₆Br₂N₂Ni: C, 67.98; H, 4.11; N, 3.17. Found: C, 68.11; H, 4.18; N, 3.11.

Preparation of complex Ni-3: Using the same procedure as for the synthesis of Ni-1, Ni-3 was obtained as a yellow powder (130 mg, 86.1% yield). As a result of their paramagnetic nature, this complex could not be characterized by ¹H and ¹³C NMR. MALDI-TOF-MS (m/z) : 945.2 [M-Br]⁺.

Elemental analysis: Anal. Calcd for C₅₀H₅₂Br₂N₂NiO₈: C, 58.45; H, 5.10; N, 2.73. Found: C, 58.67; H, 5.03; N, 2.67.

Preparation of complex Ni-4: Using the same procedure as for the synthesis of Ni-1, Ni-4 was obtained as a yellow powder (123 mg, 82.7% yield). As a result of their paramagnetic nature, this complex could not be characterized by ¹H and ¹³C NMR. MALDI-TOF-MS (m/z) : 1041.2 [M-Br]⁺.

Elemental analysis: Anal. Calcd for C₅₈H₅₂Br₂N₂NiO₈: C, 62.00; H, 4.66; N, 2.49. Found: C, 62.32; H, 4.54; N, 2.41.

Preparation of complex Ni-5: Using the same procedure as for the synthesis of Ni-1, Ni-5 was obtained as a yellow powder (128 mg, 84.2% yield). As a result of their paramagnetic nature, this complex could not be characterized by ¹H and ¹³C NMR. MALDI-TOF-MS (m/z) : 1065.3 [M-Br]⁺.

Elemental analysis: Anal. Calcd for C₅₄H₆₀Br₂N₂NiO₁₂: C, 56.52; H, 5.27; N, 2.44. Found: C, 56.65; H, 5.32; N, 2.32.

4 General procedures for the polymerizations

A general procedure for the homopolymerization of ethylene using Ni catalyst

In a typical experiment, a 350 mL glass pressure reactor connected with a high pressure gas line was firstly dried at 90 °C under vacuum for at least 1 h. The reactor was then adjusted to the desired polymerization temperature. 98 mL of toluene and MAO was added to the reactor under N₂ atmosphere, then the desired amount of Ni catalyst in 2 mL of CH₂Cl₂ was injected into the polymerization system via syringe. With a rapid stirring, the reactor was pressurized and maintained at 8 atm of ethylene. After 0.5 h, the pressure reactor was vented and the polymerization was quenched via the addition of 10 mL acidic MeOH (5% HCl in MeOH) and dried in a vacuum oven to constant weight.

A general procedure for the homopolymerization of ethylene using Pd catalyst

In a typical experiment, a 350 mL glass pressure reactor connected with a high pressure gas line was firstly dried at 90 °C under vacuum for at least 1 h. The reactor was then adjusted to the desired polymerization temperature. 98 mL of CH_2Cl_2 and NaBArF was added to the reactor under N₂ atmosphere, then the desired amount of Pd catalyst in 2 mL of CH_2Cl_2 was injected into the polymerization system via syringe. With a rapid stirring, the reactor was pressurized and maintained at 6 atm of ethylene. After 5 h, the pressure reactor was vented and the solvent was removed under vacuum, than the residue was dissolved in Et₂O, after filtration the solvent was removed under vacuum and dried in a vacuum oven to constant weight.

A general procedure for the copolymerization of polar monomer with ethylene

In a typical experiment, a 150 mL glass pressure reactor connected with a high pressure gas line was firstly dried at 90 °C under vacuum for at least 1 h. The reactor was then adjusted to the desired polymerization temperature. 23 mL of CH₂Cl₂ with NaBArF and galvinoxyl were added to the reactor under N₂ atmosphere, then the desired polar monomer and the desired amount of Pd catalyst in 2 mL of CH₂Cl₂ was injected into the polymerization system via syringe subsequently. With a rapid stirring, the reactor was pressurized and maintained at 6 atm of ethylene. After 10 h, the pressure reactor was vented and the solvent was removed under vacuum, than the residue was dissolved in Et₂O, after filtration the solvent was removed under vacuum and dried in a vacuum oven to constant weight.

5 Spectra Data 5.1 ¹H NMR of Amine

Figure S2. ¹H NMR spectrum of Aniline-H in CDCl₃.

Figure S3. ¹H NMR spectrum of Aniline-MeO₄ in CDCl₃.

Figure S4. ¹H NMR spectrum of Aniline-MeO₆ in CDCl₃.

Figure S5. ¹H NMR spectrum of Ligand 1 in CDCl₃.

Figure S6. ¹³C NMR spectrum of Ligand 1 in CDCl₃.

Figure S7. ¹H NMR spectrum of Ligand 2 in CDCl₃.

Figure S8. ¹³C NMR spectrum of Ligand 2 in CDCl₃.

Figure S9. ¹H NMR spectrum of Ligand 3 in CDCl₃.

Figure S11. ¹H NMR spectrum of Ligand 4 in CDCl₃. (*: Hexane)

Figure S13. ¹H NMR spectrum of Ligand 5 in CDCl₃.

5.3 ¹H, ¹³C, ¹H-¹H COSY, ¹H-¹³C HSQC, ¹H-¹³C HMBC NMR of Complexes

Figure S15. ¹H NMR spectrum of Pd-1 in CDCl₃.

Figure S17. ¹H-¹H COSY NMR spectrum of Pd-1 in CDCl₃.

Figure S19. ¹H-¹³C HMBC NMR spectrum of Pd-1 in CDCl₃.

Figure S21. ¹³C NMR spectrum of Pd-2 in CDCl₃. (*: Hexane)

Figure S22. ¹H-¹H COSY NMR spectrum of Pd-2 in CDCl₃.

Figure S23. ¹H-¹³C HSQC NMR spectrum of Pd-2 in CDCl₃.

Figure S24. ¹H-¹³C HMBC NMR spectrum of Pd-2 in CDCl₃.

Figure S25. ¹H NMR spectrum of Pd-3 in CDCl₃.

Figure S27. ¹H-¹H COSY NMR spectrum of Pd-3 in CDCl₃.

Figure S28. ¹H-¹³C HSQC NMR spectrum of Pd-3 in CDCl₃.

Figure S29. ¹H-¹³C HMBC NMR spectrum of Pd-3 in CDCl₃.

Figure S31. ¹³C NMR spectrum of Pd-4 in CDCl₃.

Figure S33. ¹H-¹³C HSQC NMR spectrum of Pd-4 in CDCl₃.

Figure S34. ¹H-¹³C HMBC NMR spectrum of Pd-4 in CDCl₃.

Figure S35. ¹H NMR spectrum of Pd-5 in CDCl₃.

Figure S37. ¹H-¹H COSY NMR spectrum of Pd-5 in CDCl₃.

Figure S39. ¹H-¹³C HMBC NMR spectrum of Pd-5 in CDCl₃.

Figure S40. ¹H NMR spectrum of the polyethylene generated by complex Ni-1 from table 1, entry 1.

Figure S41. ¹H NMR spectrum of the polyethylene generated by complex Ni-1 from table 1, entry 2.

Figure S42. ¹H NMR spectrum of the polyethylene generated by complex **Ni-1** from table 1, entry 3.

hxq-20190124-10-110h.1.fid

Figure S43. ¹H NMR spectrum of the polyethylene generated by complex **Ni-1** from table 1, entry 4.

Figure S44. ¹H NMR spectrum of the polyethylene generated by complex Ni-2 from table 1, entry 5.

Figure S45. ¹H NMR spectrum of the polyethylene generated by complex Ni-2 from table 1, entry 6.

Figure S46. ¹H NMR spectrum of the polyethylene generated by complex **Ni-2** from table 1, entry 7.

Figure S47. ¹H NMR spectrum of the polyethylene generated by complex Ni-2 from table 1, entry 8.

Figure S48. ¹H NMR spectrum of the polyethylene generated by complex Ni-3 from table 1, entry 9.

Figure S49. ¹H NMR spectrum of the polyethylene generated by complex Ni-3 from table 1, entry 10.

Figure S50. ¹H NMR spectrum of the polyethylene generated by complex **Ni-3** from table 1, entry 11.

hxq-20190124-14-110h.1.fid

Figure S51. ¹H NMR spectrum of the polyethylene generated by complex Ni-3 from table 1, entry 12.

Figure S52. ¹H NMR spectrum of the polyethylene generated by complex **Ni-4** from table 1, entry 13.

Figure S53. ¹H NMR spectrum of the polyethylene generated by complex Ni-4 from table 1, entry 14.

Figure S54. ¹H NMR spectrum of the polyethylene generated by complex **Ni-4** from table 1, entry 15.

hxq-20190124-26-110h.1.fid

Figure S55. ¹H NMR spectrum of the polyethylene generated by complex Ni-4 from table 1, entry 16.

Figure S56. ¹H NMR spectrum of the polyethylene generated by complex **Ni-5** from table 1, entry 17.

hxq-20190124-16-110h.1.fid

Figure S57. ¹H NMR spectrum of the polyethylene generated by complex Ni-5 from table 1, entry 18.

Figure S58. ¹H NMR spectrum of the polyethylene generated by complex Ni-5 from table 1, entry 19.

hxq-20190124-18-110h.1.fid

Figure S59. ¹H NMR spectrum of the polyethylene generated by complex Ni-5 from table 1, entry 20.

Figure S60. ¹H NMR spectrum of the polyethylene generated by complex **Ni-1** with **hexane** from table 2, entry 1.

Figure S61. ¹H NMR spectrum of the polyethylene generated by complex Ni-2 with hexane from table 2, entry 2.

Figure S62. ¹H NMR spectrum of the polyethylene generated by complex **Ni-3** with **hexane** from table 2, entry 3.

hxq-20190228-48-110h.10.fid

Figure S63. ¹H NMR spectrum of the polyethylene generated by complex **Ni-4** with **hexane** from table 2, entry 4.

Figure S64. ¹H NMR spectrum of the polyethylene generated by complex **Ni-5** with **hexane** from table 2, entry 5.

hxq-20190228-42-110h.10.fid

Figure S65. ¹H NMR spectrum of the polyethylene generated by complex Ni-1 with chlorobenzene from table 2, entry 6.

Figure S66. ¹H NMR spectrum of the polyethylene generated by complex Ni-2 with chlorobenzene from table 2, entry 7.

Figure S67. ¹H NMR spectrum of the polyethylene generated by complex Ni-3 with chlorobenzene from table 2, entry 8.

Figure S68. ¹H NMR spectrum of the polyethylene generated by complex Ni-4 with chlorobenzene from table 2, entry 9.

Figure S69. ¹H NMR spectrum of the polyethylene generated by complex Ni-5 with chlorobenzene from table 2, entry 10.

Figure S70. ¹H NMR spectrum of the polyethylene generated by complex **Ni-1** with **anisole** from table 2, entry 11.

Figure S71. ¹H NMR spectrum of the polyethylene generated by complex Ni-2 with anisole from table 2, entry 12.

Figure S72. ¹H NMR spectrum of the polyethylene generated by complex Ni-3 with anisole from table 2, entry 13.

Figure S73. ¹H NMR spectrum of the polyethylene generated by complex **Ni-4** with **anisole** from table 2, entry 14.

Figure S74. ¹H NMR spectrum of the polyethylene generated by complex Ni-5 with **anisole** from table 2, entry 15.

mx-20190319-nil-110h.10.fid

Figure S75. ¹H NMR spectrum of the polyethylene generated by complex **Ni-1** with **anisole** from table 2, entry 16.

Figure S76. ¹H NMR spectrum of the polyethylene generated by complex Ni-2 with anisole from table 2, entry 17.

Figure S77. ¹H NMR spectrum of the polyethylene generated by complex Ni-3 with anisole from table 2, entry 18.

Figure S78. ¹H NMR spectrum of the polyethylene generated by complex Ni-4 with anisole from table 2, entry 19.

6.3 ¹H NMR of polymer by Pd Catalyst

Figure S79. ¹H NMR spectrum of the polyethylene generated by complex **Pd-1** from table 3, entry 1.

Figure S80. ¹H NMR spectrum of the polyethylene generated by complex **Pd-2** from table 3, entry 2.

mx-20190225-2-h.1.fid

Figure S81. ¹H NMR spectrum of the polyethylene generated by complex **Pd-3** from table 3, entry 3.

Figure S82. ¹H NMR spectrum of the polyethylene generated by complex **Pd-4** from table 3, entry 4.

mx-20190225-1-h.2.fid

Figure S83. ¹H NMR spectrum of the polyethylene generated by complex **Pd-5** from table 3, entry 5.

Figure S84. ¹H NMR spectrum of the E-MA copolymer generated by complex **Pd-1** from table 4, entry 1.

Figure S85. ¹H NMR spectrum of the E-MA copolymer generated by complex **Pd-2** from table 4, entry 2.

Figure S86. ¹H NMR spectrum of the E-MA copolymer generated by complex **Pd-3** from table 4, entry 3.

Figure S87. ¹H NMR spectrum of the E-MA copolymer generated by complex **Pd-4** from table 4, entry 4.

Figure S88. ¹H NMR spectrum of the E-MA copolymer generated by complex **Pd-5** from table 4, entry 5.

Figure S89. ¹H NMR spectrum of the E-MA copolymer generated by complex **Pd-1** from table 4, entry 6.

Figure S90. ¹H NMR spectrum of the E-MA copolymer generated by complex **Pd-3** from table 4, entry 7.

hxq-20190301-4-h.10.fid

Figure S91. ¹H NMR spectrum of the E-MA copolymer generated by complex **Pd-5** from table 4, entry 8.

Figure S92. ¹H NMR spectrum of the polyethylene generated by complex **Ni-1** from table 1, entry 2.

Figure S93. ¹³C NMR spectrum of the polyethylene generated by complex **Ni-1** from table 1, entry 2.

Figure S94. ¹H-¹H COSY NMR spectrum of the polyethylene generated by complex Ni-1 from table 1, entry 2.

Figure S95. ¹H-¹³C HSQC NMR spectrum of the polyethylene generated by complex Ni-1 from table 1, entry 2.

Figure S96. ¹H-¹³C HMBC NMR spectrum of the polyethylene generated by complex Ni-1 from table 1, entry 2.

7 GPC traces and DSC data of (co)polymers

Figure S97. GPC trace of the polymer from table 1, entry 1.

MW Averages

Mp: 11702	Mn: 2257	Mv: 9981	Mw: 12107
Mz: 36340	Mz+1: 65407	PD: 5.3642	

Figure S98. GPC trace of the polymer from table 1, entry 2.

Figure S99. GPC trace of the polymer from table 1, entry 3.

Mp: 9378	Mn: 1434	Mv: 5077	Mw: 5904
Mz: 13119	Mz+1: 19280	PD: 4.1172	

Figure S100. GPC trace of the polymer from table 1, entry 4.

MW Averages

Figure S101. GPC trace of the polymer from table 1, entry 5.

Figure S102. GPC trace of the polymer from table 1, entry 6.

Figure S103. GPC trace of the polymer from table 1, entry 9.

Mw: 9084

Figure S104. GPC trace of the polymer from table 1, entry 12.

Mp: 4164

Figure S105. GPC trace of the polymer from table 1, entry 13.

Mw: 31726

Figure S106. GPC trace of the polymer from table 1, entry 14.

Mp: 18221

Figure S107. GPC trace of the polymer from table 1, entry 17.

Mp: 24631	Mn: 8309	Mv: 35861	Mw: 43962
Mz: 179244	Mz+1: 446495	PD: 5.2909	

Figure S108. GPC trace of the polymer from table 1, entry 18.

MW Averages

Figure S109. GPC trace of the polymer from table 1, entry 19.

Mw: 17746

Figure S110. GPC trace of the polymer from table 1, entry 20.

Figure S111. GPC trace of the polymer from table 2, entry 1.

Figure S112. GPC trace of the polymer from table 2, entry 2.

Figure S113. GPC trace of the polymer from table 2, entry 3.

Figure S114. GPC trace of the polymer from table 2, entry 4.

MW Averages

Mp: 19739

Mz: 146181

Figure S115. GPC trace of the polymer from table 2, entry 5.

Figure S116. GPC trace of the polymer from table 2, entry 6.

Figure S117. GPC trace of the polymer from table 2, entry 9.

Figure S118. GPC trace of the polymer from table 2, entry 10.

Figure S119. GPC trace of the polymer from table 2, entry 11.

Figure S120. GPC trace of the polymer from table 2, entry 12.

Figure S121. GPC trace of the polymer from table 2, entry 13.

Figure S122. GPC trace of the polymer from table 2, entry 14.

Figure S123. GPC trace of the polymer from table 2, entry 15.

MW Averages

Peak No	Мр	Mn	Mw	Mz	Mz+1	Μv	PD
1	6513	2820	6549	10913	14917	6002	2.32234

Figure S124. GPC trace of the polymer from table 2, entry 16.

Peak No	Мр	Mn	Mw	Mz	Mz+1	Μv	PD
1	4576	1843	4087	7027	9821	3732	2.21758

Figure S125. GPC trace of the polymer from table 2, entry 17.

MW Averages

Peak No	Мр	Mn	Mw	Mz	Mz+1	Μv	PD
1	9885	2456	7841	14049	18741	7023	3.19259

Figure S126. GPC trace of the polymer from table 2, entry 18.

MW Avera	ges						
Peak No	Мр	Mn	Mw	Mz	Mz+1	Μv	PD
1	8154	2109	6813	13234	18908	6035	3.23044

Figure S127. GPC trace of the polymer from table 2, entry 19.

MW Averages

Peak No	Мр	Mn	Mw	Mz	Mz+1	Μv	PD
1	8285	1998	6237	12032	16959	5528	3.12162

Figure S128. GPC trace of the polymer from table 2, entry 20.

Peak No	Мр	Mn	Mw	Mz	Mz+1	Μv	PD
1	11605	2007	7664	16654	24147	6617	3.81863

Figure S129. GPC trace of the polymer from table 2, entry 21.

MW Avera	ges						
Peak No	Мр	Mn	Mw	Mz	Mz+1	Μv	PD
1	9420	1997	6470	12803	18378	5710	3.23986

Figure S130. GPC trace of the polymer from table 2, entry 22.

Figure S131. GPC trace of the polymer from table 2, entry 23.

DSC of polymer and copolymer

Figure S132. DSC data of the polymer from table 1, entry 1.

Figure S133. DSC data of the polymer from table 1, entry 2.

Figure S134. DSC data of the polymer from table 1, entry 5.

Figure S135. DSC data of the polymer from table 1, entry 6.

Figure S136. DSC data of the polymer from table 1, entry 9.

Figure S137. DSC data of the polymer from table 1, entry 10.

Figure S138. DSC data of the polymer from table 1, entry 11.

Figure S139. DSC data of the polymer from table 1, entry 13.

Figure S140. DSC data of the polymer from table 1, entry 14.

Figure S141. DSC data of the polymer from table 1, entry 17.

Figure S142. DSC data of the polymer from table 1, entry 18.

Figure S143. DSC data of the polymer from table 1, entry 19.

Figure S144. DSC data of the polymer from table 1, entry 20.

Figure S145. DSC data of the polymer from table 2, entry 3.

Figure S146. DSC data of the polymer from table 2, entry 4.

Figure S147. DSC data of the polymer from table 2, entry 5.

Figure S148. DSC data of the polymer from table 2, entry 8.

Figure S149. DSC data of the polymer from table 2, entry 9.

Figure S150. DSC data of the polymer from table 2, entry 10.

Figure S151. DSC data of the polymer from table 2, entry 11.

Figure S152. DSC data of the polymer from table 2, entry 12.

Figure S153. DSC data of the polymer from table 2, entry 13.

Figure S154. DSC data of the polymer from table 2, entry 14.

Figure S155. DSC data of the polymer from table 2, entry 15.

8 MALDI-TOF-MS of Ni complexes

Figure S156. MALDI-TOF-MS of complex Ni-1

Figure S157. MALDI-TOF-MS of complex Ni-2

Figure S158. MALDI-TOF-MS of complex Ni-3

Figure S159. MALDI-TOF-MS of complex Ni-4

Figure S160. MALDI-TOF-MS of complex Ni-5

9 Figure of crystal structure of Pd-3

10 References

(1) SMART, version 5.054; Bruker AXS Inc.: Madison, WI, 2000.

(2) SAINT and SADABS, version 6.22; Bruker AXS Inc.: Madison, WI, 2000.

(3) (a) G. M. Sheldrick, SHELXL-2014, Program for refinement of crystal structures, University of Göttingen, Germany, 2014. (b) G. M. Sheldrick, SHELXS-2014, Program for solution of crystal structures, University of Göttingen, Germany, 2014.

(4) Spek, A. L. Acta Cryst. 2015, C71, 9-18.

(5) Y. Y. Chen, Z. Y. Chen, N. N. Zhang, J.H. Chen, X. J. Zhang and M. Yan, Eur. J. Org. Chem. **2016**, 599–606.

(6) A. V. Butin, F. A. Tsiunchik, V. T. Abaev, A. V. Gutnov, D. A. Cheshkov, Synthesis. **2009**, 2616–2626.