A kinetic study on *para*-fluoro-thiol reaction in view of its use in materials design

Federica Cavalli,^a Lies De Keer,^b Birgit Huber,^a Paul H. M. Van Steenberge,^c Dagmar R. D'hooge,^{*b,c} Leonie Barner^{*a,d}

- a. Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
- b. Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Zwijnaarde (Ghent), Belgium; E-Mail: <u>dagmar.dhooge@ugent.be</u>
- c. Centre for Textile Sicence and Engineering (CTSE)), Ghent University, Technologiepark 70A, 9052 Zwijnaarde (Ghent), Belgium
- d. School of Chemistry, Physics and Mechanical Engineering and Institute of the Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia. E-Mail: <u>leonie.barner@qut.edu.au</u>

Contents:

1.	Full characterization for PS1 and PS2 obtained via RAFT polymerization	
	1.1. Table S1 - Overview of the reactions and rate coefficients for PS1 and PS2 during RAFT	
	polymerization	S4
	1.2. Section S1a – apparent termination rate coefficient	S5
	1.2.1.Table S2 - Parameters used for the composite k _t model4	S5
	1.3. Section S1b - Apparent conventional initiator efficiency	S6
	1.3.1.Table S3 – Description and value of the parameters used	S6
	1.4. Figure S1 – Experimental and simulated (kMC) RAFT polymerization kinetic for PS1 (left)	and
	(right) PS2	S7
	1.5. Figure S2 to S4, ¹ H-NMR and ¹³ C-NMR (S2), SEC traces (S3), and ESI-MS spectra (S4) for F	S1 and
	PS1-SH. In Figure S3 the GPC traces for PS1b and PS1b-SH are also reported	S8
	1.6. Figure S5 to S7, ¹ H-NMR and ¹³ C-NMR (S5), SEC traces (S6), and ESI-MS spectra (S7) for F	S2 and
	PS2-SH	S11
2.	Characterization for 1PFB	
	2.1. Figure S8 - ¹ H-NMR spectrum (400 MHz, CDCl ₃) of 1PFB	S14
	2.2. Figure S9 - ¹³ C-NMR spectrum (100 MHz, CDCl ₃) of 1PFB	S14
	2.3. Figure S10 - ¹⁹ F-NMR spectrum (CDCl ₃ , 376 MHz) of 1PFB	S15
3.	Determination of the PFB conversion via ¹⁹ F-NMR	
	3.1. Figure S11 - Representative ¹⁹ F-NMR spectrum (CDCl ₃ , 376MHz) of a selected sample fro	om the
	kinetic study. Calculation of the conversion via ¹⁹ F-NMR	S16
4.	Summary of all the reaction conditions explored in the study	
	4.1. Table S4 – Sum up of all the reaction conditions for disulfide bond formation	S17
	4.2. Table S5 – Sum up of all the reaction conditions for PFTR	S18
5.	Kinetic modelling (reactions performed without TCEP)	
	5.1. Section S5a – SEC broadening	S19
	5.1.1.For low molar mass thiol derivatives	S19
	5.1.2.For polymeric thiols	S19
	5.1.2.1. Figure S12 – SEC broadening for polystyrene (PS) standard	S20
	5.2. Investigation on PFTR and disulfide bond formation reaction for low molar mass thiol de	rivatives
	5.2.1.Figure S13 – Experimental and simulated main and side reaction for low molar m	ass thiol
	derivatives	S21
	5.2.2.Figure S14 – Simulated product spectrum for thiol 3	S23
	5.2.3.Figure S15 Comparison of PFTR kinetic for thiols 1 to 5	S24
	5.3. Investigation on PFTR and disulfide bond formation reaction for polymeric thiols	
	5.3.1.Figure S16 – Equilibrium reaction for disulfide bond formation in DMF	S25
	5.3.2.Figure S17 – Full PFTR kinetic for PS1-SH and PS2-SH	S26
	5.3.3.Figure S18 – SEC traces for the evolution of PFTR for PS1-SH in THF and DMF	S27
	5.3.4.Figure S19 – Influence of shielding due to the substitution degree	S28
	5.3.5.Figure S20 - Evolution of the mono-, di- and tri- substituted linker during PFTR	S28
	5.3.6.Figure S21 - Simulation for PFTR kinetic in case no equilibrium for the side rea	action is
	considered	S29

	5.3.7.Figure S22 – SEC traces for the evolution of PFTR for PS2-SH in THF and DMF	S30
6.	Optimized condition for PFTR (reactions performed with TCEP)	
	6.1. Figure S23 – SEC traces for the investigation on the suppression of the side reaction	S31
	6.2. Figure S24 – SEC traces for PFTR performed with a designed amount of TCEP	S32

Full characterization for PS1 and PS2 obtained via RAFT polymerization

Table S1 - Overview of the reactions and rate coefficients for PS1 and PS2 (monomer: styrene) with I_2 , I^* , M, R_0^* , R_i^* , P_i , R_0X , R_iX : conventional radical initiator, initiator fragment, monomer, RAFT leaving group, macroradical (chain length i>1), dead polymer species, initial RAFT agent, dormant macrospecies; 70°C; for termination apparent rate coefficients with given value the one of $k_{t,app}^{1,1}$

Reaction	Equation	k ((L mol ⁻¹) s ⁻¹)	ref
Dissociation ^(a)	$I_2 \xrightarrow{f,k_{dis}} 2I^{\bullet}$	$4.4 \ 10^{-5}$	1
Chain Initiation	$I^{\bullet} + M \xrightarrow{k_{pI}} R_1^{\bullet}$	5.2 10 ³	2
	$R_0^{\bullet} + M \xrightarrow{k_{pR_0}} R_1^{\bullet}$	5.2 10 ³	2
Propagation	$R_i^{\bullet} + M \xrightarrow{k_p} R_{i+1}^{\bullet}$	4.8 10 ²	3
Termination by recombination	$R_0^{\bullet} + R_0^{\bullet} \xrightarrow{k_{tc,00}} P_0$	2 10 ^{8.7}	4,5
	$R_0^{\bullet} + R_i^{\bullet} \xrightarrow{k_{tc,0}} P_i$	2 10 ^{8.7}	4,5
	$R_i^{\bullet} + R_j^{\bullet} \xrightarrow{k_{tc,app}^{i,j}} P_{i+j}$	2 10 ^{8.7}	4,5
		3.3 10 ⁶	
DAFT exchange	$p^{\bullet} + p \times \xrightarrow{k_{add,1}} p \times p \xrightarrow{k_{frag,2}} p \times p \bullet$	$3.5 \ 10^4$	6(b)
RAFT exchange	$K_i + K_0 X \underset{k_{frag,1}}{\longleftarrow} K_i X K_0 \underset{k_{add,2}}{\longleftarrow} K_i X + K_0$	5.3 10 ⁵	0(0)
		5.7 10 ⁴	
	$k_{add} \longrightarrow k_{frag}$	$4.4 \ 10^{-5}$ $5.2 \ 10^3$ $5.2 \ 10^3$ $5.2 \ 10^3$ $4.8 \ 10^2$ $2 \ 10^{8.7}$ $2 \ 10^{8.7}$ $2 \ 10^{8.7}$ $3.3 \ 10^6$ $3.5 \ 10^4$ $5.7 \ 10^4$ $7.7 \ 10^4$ $9.6 \ 10^4$	6(b)
	$\kappa_i + \kappa_j \chi \underset{k_{frag}}{\longleftarrow} \kappa_i \chi \kappa_j \underset{k_{add}}{\longleftarrow} \kappa_i \chi + \kappa_j$	9.6 10 ⁴	0(6)

(a) (apparent) efficiency f, (b) values for CPDT instead of Dopat

1. Erben, M. T. & Bywater, S. The thermal decomposition of 2,2'-Azo-bis-isobutyronitrile. Part I. Products of the Reaction. J. Am. Chem. Soc. 77, 3712–3714 (1955).

2. Heberger, K. & Fischer, H. Rate Constants for the Addition of the 2-Cyano-2-Propyl Radical Alkenes in Solution. Int. J. Chem. Kinet. 25, 749–769 (1993).

3. Buback, M. *et al.* Critically evaluated rate coefficients for free-radical Propagation rate coefficient for styrene. *Macromol. Chem. Phys.* **3280**, 3267–3280 (2006).

4. Johnston-Hall, G. & Monteiro, M. J. Bimolecular Radical Termination: New Perspectives and Insights. J. Polym. Sci. Part a-Polymer Chem. 46, 3155–3176 (2008).

5. Derboven, P., D'hooge, D. R., Reyniers, M.-F., Marin, G. B. & Barner-Kowollik, C. The Long and the Short of Radical Polymerization. *Macromolecules* ASAP (2015). doi:10.1021/ma5017659

6. Desmet, G.B., De Rybel, N., Van Steenberge, P.H.M., D'hooge, D.R., Reyniers, M.F. & Marin, G.B. Ab-initio-based kinetic modeling to understand RAFT exchange: the case of 2-cyano-2-propyl dodecyl trithiocarbonate and styrene. *Macromolecular Rapid Communications*. (2017).

Section S1a - Apparent termination rate coefficient

In order to accurately describe the diffusion-controlled mechanism of bimolecular termination in radical polymerization, the composite k_t model⁴ (aka RAFT-CLD-T model) was used. This model allows to calculate an apparent homotermination rate coefficient ($k_{tc,app}^{i,i}$; *i*=chain length; only considering termination by recombination) dependent on the chain length *i* and the monomer conversion X_m :

For *i* < *i*_{gel}

$$k_{tc,app}^{i,i} = k_t^{1,1} i^{-\alpha_s} \quad \text{for } i < i_{SL}$$
$$k_{tc,app}^{i,i} = k_t^{1,1} i_{SL}^{(\alpha_L - \alpha_s)} i^{-\alpha_s} \quad \text{for } i \ge i_{SL}$$

For $i \ge i_{gel}$

$$k_{tc,app}^{i,i} = k_t^{1,1} i_{SL}^{(\alpha_{gel} - \alpha_s)} i^{-\alpha_{gel}} \quad \text{for } i < i_{SL}$$
$$k_{tc,app}^{i,i} = k_t^{1,1} i_{SL}^{(\alpha_L - \alpha_s)} i^{(\alpha_{gel} - \alpha_L)} i^{-\alpha_{gel}} \quad \text{for } i \ge i_{SL}$$

with $k_t^{1,1}$ the (apparent) termination rate coefficient for radicals with chain length 1, α_s the exponent for termination for termination of short chains in dilute solution, α_L the exponent for long chains in dilute solution, α_{gel} the exponent for chains in the gel regime, i_{SL} the crossover chain length between shortand long-chain behavior, i_{gel} the chain length at the onset of the gel-effect. An overview of these parameters can be found in Table S2.⁴

From the apparent homotermination rate coefficients, the apparent cross-termination rate coefficient $k_{tc,app}^{i,j}$ is calculated for simplicity using the geometric mean:

$$k_{tc,app}^{i,j} = \sqrt{k_{tc,app}^{i,i} k_{tc,app}^{j,j}}$$

An averaged (zero order) apparent termination rate coefficient can be calculated at any moment:

$$\langle k_{tc,app} \rangle = \frac{\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} k_{tc,app}^{i,j} [R_i] [R_j]}{(\sum_{i=1}^{\infty} [R_i])^2}$$

Table S2 - Parameters used for the composite k_t model⁴

Monomer	T(K)	$k_t^{1,1}$	α_{s}	i _{SL}	α_L	α_{gel}	i _{gel}
Sty	363	$2 \times 10^{8.7}$	0.53	30	0.15	1.22X _m -0.11	$3.30 X_{m}^{-2.13}$

Section S1b - Apparent conventional initiator efficiency

An apparent conventional initiator efficiency f_{app} dependent on monomer conversion X_m can be calculated as described by Buback *et.al.*:⁷

$$f_{app} = \frac{D_I}{D_I + D_{term}}$$
(S1)

with D_I the diffusion coefficient of the cyanoisopropyl radical and $D_{term} = 5.3 \ 10^{-10} \text{m}^2 \text{s}^{-1}$ a correction factor related to the rate of termination between two cyanoisopropyl radicals. According to the free volume theory, D_I can be calculated via:

$$D_{I} = D_{0,I} \exp\left(-\frac{E_{I}}{RT}\right) \exp\left(\frac{-w_{1}V_{1}^{*}\xi_{i2}/\xi_{12} + w_{2}V_{2}^{*}\xi_{12}}{V_{FH}/\lambda}\right)$$
$$\frac{V_{FH}}{\lambda} = \frac{K_{11}}{\lambda}w_{1}\left(K_{21} - T - T_{g1}\right) + \frac{k_{12}}{\lambda}w_{2}(K_{22} + T - T_{g1})$$

Table S3 gives an overview of the description and value of the parameters used.

Table S3 - Parameters used to calculate the apparent initiator efficiency as described by Buback et al. for AIBN as conventional radical initiator and styrene as monomer

Parameter	Description	Value
$D_{0,I} (m^2 s^{-1})$	Pre-exponential factor for diffusion	$1.95 \ 10^{-4}$
$E_I (kJ mol^{-1})$	Activation energy for diffusion	31
$R (J mol^{-1}K^{-1})$	Universal gas constant	8.314
T (K)	Temperature	333 - 363
<i>w</i> ₁ (-)	Mass fraction of monomer	0-1
w ₂ (-)	Mass fraction of polymer	0-1
$V_1^* \ (m^3 mol^{-1})$	Specific critical hole free volume of monomer ^(a)	9.46 10 ⁻⁷
$V_2^* (m^3 mol^{-1})$	Specific critical hole free volume of polystyrene	8,50 10 ⁻⁷
$\frac{K_{11}}{\lambda} \ (m^3 \ kg^{-1} \ K^{-1})$	Parameter for specific hole free volume monomer ^(a)	1.49 10 ⁻⁹
$\frac{K_{12}}{\lambda} \ (m^3 \ kg^{-1} \ K^{-1})$	Parameter for specific hole free volume polymer	5.82 10 ⁻¹⁰
$K_{21} - T_{g1}(K)$	Parameter for specific hole free volume monomer ^(a)	-84
$K_{22} - T_{g1} (K)$	Parameter for specific hole free volume polymer	-327
	Critical jumping unit volume ratio for cyanoispropyl radical to	
$\xi_{i2}(-)$	polymer	0.36
$\xi_{12}(-)$	Critical jumping unit volume ratio for monomer to polymer	0.59

7. Buback, M., Huckestein, B., Kuchta, F. & Russell, G. T. Initiator efficiencies in 2,2'-azoisobutyronitrile-initiated freeradical polymerizations of styrene. *Macromol. Chem. Phys.* **2140**, 2117–2140 (1994).

Figure S1 – Top: Schematic representation of the polymerization simulated PS1 (left) or PS2 (right).Middle and Bottom: *k*MC simulations for RAFT polymerization kinetic for PS1 (left) and PS2 (right).

Figure S2 – Full characterization *via* NMR of PS1 before (black) and after (blue) aminolysis. **a.** ¹H-NMR (CDCl₃, 400 MHz) Highlighted in the box the disappearance of the –CH2- marked in the structure. δ = 7.50 – 6.20 (m, ArH), 3.0 – 0.50 (m, aliphatic H), 2.50 – 0.84 ppm (m, aliphatic H). **b.** ¹³C-NMR (CDCl₃, 100 MHz) spectrum of PS1 before and after aminolysis (PS1 and PS1-SH). Highlighted in the box the disappearance of the resonances corresponding to the aliphatic carbon chain of the RAFT agent. δ = 145.43(C, quaternary carbon in the styrene aromatic ring), 128.33 and 125.52 (-HC=CH-, unsaturated carbons, styrene ring), and 40.30 (aliphatic C, aliphatic polymer backbone).

Figure S3 - SEC traces for a. PS1 (black) and PS1-SH (blue) and b. PS1b (gray) and PS1b-SH(9300) (red).

а.

b.

Figure S4 - ESI-MS spectra recorded in negative mode for PS1 (black) and PS1-SH (blue). **a.** full spectra recorded in the range m/z = 1500-4000, **b.** representative zoom in order to identify the species. The assignments are listed in the associated table and in agreement with the proposed structure before (square) and after (circle) aminolysis, within the same spectra $\Delta m = 104$ corresponding to the styrene unit, between the two spectra $\Delta m = 244$ corresponding to the loss of the aliphatic chain and the trithiocarbonate removed from the parent PS1.

Figure S5 - Full characterization via NMR of PS1 before (black) and after (blue) aminolysis. **a.** ¹H-NMR (CDCl₃, 400 MHz) Highlighted in the box the disappearance of the –CH2- marked in the structure. δ = 7.50 – 6.20 (m, ArH), 2.5 – 0.50 (m, aliphatic H), 2.50 – 0.84 ppm (m, aliphatic H). **b.** ¹³C-NMR (CDCl₃, 100 MHz) spectrum of PS1 before and after aminolysis (PS1 and PS1-SH). Highlighted in the box the disappearance of the resonances corresponding to the aliphatic carbon chain of the RAFT agent. δ = 145.43(C, quaternary carbon in the styrene aromatic ring), δ = 128.33 and δ = 125,52 (-HC=CH-, unsaturated carbons, styrene ring), and δ = 40.30 (aliphatic C, aliphatic polymer backbone).

Figure S6 - SEC traces for PS2 (black) and PS2-SH (green).

Figure S7 - ESI-MS spectra recorded in negative mode for PS2 (black) and PS2-SH (green). a. full spectra recorded in the range m/z = 1500-4000, b. representative zoom in order to identify the species. The assignments are listed in the associated table and in agreement with the proposed structure before (square) and after (circle) aminolysis. Within the same spectra $\Delta m = 104$ corresponding to the styrene unit, between the two spectra $\Delta m = 244$ corresponding to the loss of the aliphatic chain and the trithiocarbonate removed from PS1.

 \bigcirc

 \bigcirc

Characterization of 2,3,4,5,6-pentafluorobenzyl benzoate (1PFB)

Figure S8 - ¹H-NMR spectrum (400 MHz, CDCl₃) of 1PFB. δ = 5.45 (s, 2H, CH₂), 7.44 (dt, 2H, CH), 7.58 (tt, 1H, CH), 8.00 (td, 1H, CH).

Figure S9 – ¹³C-NMR spectrum (100 MHz, CDCl₃) of 1PFB. δ = 55.83 (1C, aliphatic CH₂), δ = 109.59 (1C, C aromatic ring), δ = 128-134 (6C, C aromatic ring), 137-147 (6C, aromatic fluorinated ring), 165.86 (1C, ester).

Figure S10 - ¹⁹F-NMR spectrum (CDCl₃, 376 MHz) of 1PFB. δ = -142.2 (ortho), δ = -153.4 (para), δ = -162.4 (meta).

NMR spectroscopy and determination of the PFB conversion via ¹⁹F-NMR measurements

Figure S11 - Representative ¹⁹F-NMR spectrum (376MHz, CDCl₃) of a selected sample from the kinetic study. Calculation of the conversion via ¹⁹F-NMR.

conversion =
$$1 - \frac{1}{1 + \left(\frac{15.69}{2}\right)} = 0.89 * 100 = 89\%$$

Table S4 - Summary of all the reaction conditions discussed for the investigation of disulfide bond formation (side reaction)

		Disulphide (no PFB linker)									
		1	2	3	4	5		PS1-SH (3800)	F	PS2-SH (2800)	
	SH:DBU	150mM THF		150mM THF				Fig. 3		Table 2	
without	1:1	Fig. S13	3	Fig. 2a				75mM THF/DMF	т	75mM HF/DMF	
TCEP						1		37mM DMF, O ₂	1		
								37mM DMF, Argon	1	Fig. S23	
								37mM DMF, O ₂ SH:TCEP = 1:6			
	SH:DBU 1:15						ſ	37mM DMF, Argon SH:TCEP = 1:6			
With								37mM DMF, Argon SH:TCEP = 1:4		Fig. 7b	
TCEP								37mM DMF, Argon SH:TCEP = 1:2			
								37mM DMF, Argon SH:TCEP = 1:1			
								37mM DMF, Argon SH:TCEP = 1:0.5			

PFTR (with PFB linker)* SH:PFB group = 1:1, always							nker)* always		
		1	2	3	4	5	PS1-SH (3800)	PS1b-SH (9300)	PS2-SH (2800)
	SH:DBU	75mM THF	75mM THF	75mM THF	75mM THF	75mM THF/DMF	75mM THF/DMF	-	75mM THF/DMF
without	TCEP SH:DBU			Fig. S1	3		75mM THF/DMF (1PFB)	Fig. 3c,d	Fig. 5
TCEP							75mM DMF	75mM DMF	Fig. 6
							37mM DMF		
with TCEP	1:15						37mM DMF SH:TCEP = 1:1 37mM DMF SH:TCEP = 1:6		
					:	Ľ	Fig. 7		

Table S5 - Summary of all the reaction conditions discussed for the investigation of PFTR reaction (main reaction)

*PFB linker is meant as 3PFB, unless differently specified in the table

Kinetic modelling

Section S5a - SEC broadening

1) SEC broadening small molecule system

SEC broadening is accounted for by introducing a normal distribution on log scale with standard deviation $\sigma_{thiol} = \sigma_{disulphide} = 0.03$ in both THF and DMF.

2) SEC broadening polymer system

For a polymer system, there are two contribution to take into account for SEC broadening:

$$\sigma_{tot}^2 = \sigma_{reac}^2 + \sigma_{SEC}^2$$

- $\sigma_{reaction}$: already incorporated in the simulation

- σ_{SEC} : incorporated via the following equation:

$$w_{SEC}(\log M) = \frac{1}{(2\pi)^{0.5}\sigma_2} \int_0^{+\infty} \exp\left(-\frac{\left(\log(M) - \log(\widetilde{M})\right)^2}{2\sigma_2^2}\right) w(\log \widetilde{M}) d\log(\widetilde{M})$$

In which $\sigma_2 = 0.06$ is determined for the polystyrene standards used in the GPC (see Figure below).

Figure S12 - SEC broadening PS standards.

PFTR and disulfide reaction for small thiol derivatives

Figure S13 - Main results for kinetic studies of small molar mass thiol derivatives other than thiol **3** in THF. The adopted working conditions are specified in the figure.

Figure S14 – a. experimental (left) and simulated (right) SEC traces at any reaction time for thiol **3** during PFTR (including the missing traces in Fig.2 of the main text). b. Simulated product spectrum (absolute concentrations) related to thiol **3** during PFTR.

Time (min)

a.

Figure S15 - Comparison of the PFTR kinetic for small molar mass thiol derivatives; thiol **1** (black), **2** (orange), **3** (blue), **4** (green) and **5** (red). All the kinetic were performed in THF, $[thiol]_0 = 0.075 \text{ molL}^{-1}$ and a ratio of [SH]:[PFB]:[DBU] = 1:1:1

Investigation on PFTR and disulfide bond formation for polymer system

Figure S16 - Equilibrium reaction for disulfide formation in DMF.

Figure S17 -Full kinetic, express as amount of PFB group reacted over time for PS1-SH (square, red) and PS2-SH (triangle, black). The kinetics are performed at ambient temperature $[thiol]_0 = 75$ mM using both THF (filled symbols) and DMF (empty symbols) as a solvent. The full line represent the relative fitting obtained via *k*MC simulation.

Figure S18 - SEC traces showing the evolution of PFTR employing 3PFB and PS1 in THF (red) and DMF (blue), [thiol]₀ = 0.075 molL^{-1} and SH:base = 1:1; (left) experimental data and (right) simulated data.

Figure S19 - PFB conversion (-) *vs.* time (h) for PS1-SH in case $f_{shielding}=1/S.D.$ (full line) and in case $f_{shielding}=1$ (dashed line) (thiol:DBU = 1:1, [thiol]₀ = 0.075 mol L⁻¹).

Figure S20 - Concentrations of the different reaction components (mol L^{-1}) vs. time (h) ([thiol]₀ = 0.075 mol L^{-1}) (left) in absence of 3PFB linker and (right) in presence of 3 PFB linker.

Figure S21 – PFB conversion (-) *vs.* time (h) for PS1-SH in case of eq. reaction for disulfide formation (full line) and in case of no eq. reaction for disulfide formation (dashed line) (thiol:DBU = 1:1, [thiol]₀ = 0.075 mol L⁻¹).

Figure S22 - SEC traces showing the evolution of PFTR employing 3PFB and PS2 in THF (red, top) and DMF (blue, bottom); $[thiol]_0 = 0.075 \text{ molL}^{-1}$, SH:base = 1:1; (left) experimental data and (right) simulated data.

Optimized condition for PFTR with a designed amount of TCEP

Figure S23 - SEC traces for the kinetic investigation on the disulfide bond formation reaction a. DMF (blue)/THF(yellow) in presence oxygen, b. DMF (blue)/THF(yellow) in absence of oxygen c. DMF (blue)/THF(yellow) in presence of TCEP and oxygen; [thiol]₀ = 0.037 molL^{-1} , SH:base = 1:15.

а.

b.

C.

Figure S24 - SEC traces showing the evolution of PFTR employing 3PFB and PS1-SH, where PFB:SH groups have an initial ratio of 1:1 with **a**. the addition of 6 eq. of reducing agent, **b**. 1 equivalent of reducing agent or **c**. without reducing agent; [thiol]₀ = 0.037 molL^{-1} , SH:base:PFB group = 1:15:1.

S33