Supporting Information for

Synthesis and solution behaviour of dual light- and temperatureresponsive poly(triethylene glycol-*co*-spiropyran) copolymers and block copolymers

Oliver Grimm¹, Sarina Maßmann¹, Felix H.Schacher^{1,2*}

1. Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany; oliver.grimm@uni-jena.de

2. Jena Centre for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany

P(TEGA-co-SPA) copolymers: synthesis and solution properties

Figure S1: Characterisation of P(TEGA-co-SPA) copolymers: ¹H-NMR in CDCl₃ on a 300 MHz Bruker NMR spectrometer, chemical shift normalised to the solvent, and the intensity normalised to the TEGA signal at 3.3 ppm(A); SEC RI traces recorded on a triple detection SEC in THF (B).

Table C1. Cumpers and of the survey and	a - human and a have a taxin a d h	CEC NINAD and notice	
Table S1: Summary of the prepared (polymers, characterizea b	y SEC, INIVIR ana rejra	ictive index increment.

Composition	x _{SPA} (Monomer)	<i>M</i> _n ^b /g mol ⁻¹	Ð	Polymer ^a	dn/dc / mL g ⁻¹		
PTEGA ₂₆₆	0 %	58,000	1.42	0 % SPA	0.0588±0.0019		
P(TEGA ₂₀₂ -co-SPA ₅)	5 %	46,000	1.34	4 % SPA	0.0704±0.0010		
P(TEGA ₁₇₅ -co-SPA ₉)	10 %	42,000	1.26	9 % SPA	0.0832±0.0028		
P(TEGA ₁₉₄ -co-SPA ₁₆)	15 %	49,000	1.22	13.5 % SPA	0.0951±0.0015		
P(TEGA ₁₄₂ -co-SPA ₁₅)	20 %	37,000	1.34	16 % SPA	0.1158±0.0037		
a) 300 MHz ¹ H-NMR in CDCl ₃ , b) THF-SEC, MALLS-Triple detection.							

Figure S2: Three consecutive irradiation cycles consisting of 30 min of irradiation at 340 nm, followed by 30 min of irradiation at 540 nm. The respective amount of copolymer was dissolved in a pH 8 TRIS-buffer solution at 0.125 mg mL⁻¹. Coloured lines indicate the irradiation pattern (A). Schematic depiction of the behaviour of the P(TEGA-co-SPA) copolymers upon heating and irradiation. The copolymer is dissolved in the SP form (1), and upon heating becomes insoluble (2). In addition, the SPA-moiety can be switched by UV-light into the MC form (3); the MC form can also be switched from soluble to insoluble (4) upon heating (B).

The following formula was used to calculate the reaction kinetics:

$$[y] = [y_0] + Ae^{-kt}$$

All irradiation traces were fitted using this formula, and the required parameters are listed in Table S2, and shown graphically in Figure S3.

Table S2: Kinetics of the photo-response fitted by first order kinetics. Separated for irradiation with 340 nm (UV) and 540 nm (green) light.

Figure S3: Plot of the first order kinetic parameters (A) y_0 , (B) A, and (C) k, related to the plot equation.

Temperature-response of the copolymer

Figure S4: UV-Vis spectra of $P(TEGA_{194}$ -co-SPA₁₅) upon heating above the transition temperature from a soluble to insoluble state. The SP form is obtained by irradiation with a 540 nm light (A), and the MC form is obtained upon irradiation at 340 nm (B).

Figure S5: Transmittance of the dissolved copolymers in a pH 8 TRIS buffer at 700 nm at different temperatures while irradiating with a 200 W Hg(Xe)-lamp using different wavelength filters.

Figure S6: ¹H-NMR spectra of the diblock terpolymers in CDCl₃; the signal at 8 ppm indicates the presence of SPA, the signal from 7.3 to 6 ppm indicates the presence of polystyrene, and the signal at 3.3 ppm indicates the presence of TEGA moieties.

Figure S7: Transmittance at 700 nm of PS_{456} -b-PTEGA₃₃₀ micelles in a pH 8 TRIS buffer measured three times to determine the cloud point.

Table S3: The transition temperature plotted over the amount of SPA in the copolymer, as well as for the terpolymer using the equation y = m * x + b.

	Irradiation Wavelength / nm	b	m	R ²
Copolymer	540	64.16 ± 0.96	-1.22 ± 0.09	0.9771
	340	63.32 ± 1.30	-1.78 ± 0.13	0.9802
Diblock	540	60.33	-1.36	-
Terpolymer	340	60.33	-2.02	-