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Fig. S1. Proposed structure of the active site of Zn–Co(III) DMC catalyst.1
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Section S1: Derivation differential and integral equations for the non-terminal model

Transformation of the non-terminal model by Wall2 into the molar fraction form:
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Integration of the instantaneous equation by the relation of Skeist3, gives the ideal integrated 

equation which is the central equation used in this work (in blue below):
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These equations correspond to the special case of the Mayo-Lewis4 and Meyer-Lowry5 equations 

for ideal behavior (r1·r2=1):
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All fits were performed using weights proportional to the total monomer concentration.
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When considering copolymerization there is even a simpler possible model, which can accurately 

describe perfectly ideal random copolymerization, where both monomers have the same reactivity:
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For this model the integration by Skeist is trivial and shows the independence of the molar 

composition f from the conversion. This model might be applied in cases where values r1=r2=1 are 

expected.
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It should be noted that the Skeist relation can also be solved numerically which has been done for 

the Mayo-Lewis model and more elaborate models.6
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Section S2: Effect of a constant factor c on the non-terminal and terminal model

A constant factor c does not change the ideal copolymerization equation:
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As a result, the mole fraction can be exchanged for any other fraction with proportional ratios, e.g. 

weight fraction or volume fraction may also be used.

This independence of a factor c is not the case for the terminal model, which is altered by a constant 

factor c, as shown in the following:
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Integration of this equation with the relation of Skeist3 yields the following equation. Note that the 

factor c only appears in the last term, which accounts for non-ideal behavior. c is eliminated in the 

ideal case r1=1/r2.
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Fig. S2. Simulated data with addition of a systematic error fitted by the non-terminal Ideal 

Integrated (II) fit and terminal Meyer-Lowry (ML) fit. 

Fig. S3. Simulated data with subtraction of a systematic error fitted by the non-terminal Ideal 

Integrated (II) fit and terminal Meyer-Lowry (ML) fit. 
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Fig. S4. Simulated data with an added (left) or subtracted (right) systematic error with Jaacks-fit. 

Table S1. Summarized results of fits of the data with systematic errors.

Systematic error 

added
Ideal Integrated Meyer Lowry Jaacks

rB rA rB rA rB rA

No error 0.33 3.0 0.33 3.0 0.33 3.0

absolute 

values
0.35 2.9 0.53 3.3 0.36 2.7

[MA]+0.014[MA]0
relative 

error
5% 4% 59% 9% 9% 9%

absolute 

values
0.32 3.1 0.22 2.9 0.31 3.2

[MA]-0.014[MA]0
relative 

error
4% 4% 34% 4% 7% 7%
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Fig. S5. Jaacks-fit of fit with corresponding reactivity ratios, left: monomer-activated AROP, right: 

DMC.

Table S2. Reactivity ratios obtained for the copolymerization of PO and EO system under different 

polymerization conditions.

Polymerization conditions
Ideal 

integrated
Jaacks7 k1/k2

rPO rEO rPO rEO rPO rEO

DMC catalysis 2.4 0.42 2.2 0.46 2.0 0.49

Monomer activated AROP 0.16 6.4 0.15 6.6 0.15 6.5

8



Fig. S6. Monomer concentration as a function of time, left: monomer-activated AROP, right: DMC 

catalysis.

Fig. S7. SEC traces (DMF, PEG-calibration) of P(PO-co-EO) copolymers from the in situ 
1H NMR kinetic experiments.
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Fig. S8. 1H NMR (C6D6) spectra of copolymerization mixture (at 70 °C) before (top) and after 

(bottom) copolymerization experiment. The integrals show that the initial recorded monomer 

composition equals the final copolymer composition fEO = FEO = 34%.
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Section S3: Pseudo code for Monte Carlo simulation

First the reactivity ratios rA and rB are set to the chosen values.  is set to the initial fraction of ,0Af

monomer A. Each simulation is performed with 106 chains (nchains). The total number of monomer 

molecules is set to the number of chains multiplied with the degree of polymerization (DP). 
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A chain k is randomly selected. 

If the chain k has DP = 0, then:

A random number w in the interval [0,1] is created and the probability of incorporation 

of A is calculated with the Mayo-Lewis equation: 
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If  then add monomer A to the chain, otherwise monomer B.F w

If chain k has a DP > 0, then:

A random number w in the interval [0,1] is created. The monomer at the chain end k is 

called e. The reactivity ratio corresponding to this chain end k is used to calculate the 

probability of addition of same monomer as e:  
1
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If , then add monomer equal to e, otherwise use the monomer unequal to the chain eF w

end.

Then the number of consumed monomers nx is reduced by 1. Then go to the step, where the next 

chain k is randomly selected. These steps are repeated until all monomer is consumed. Then the 

number of chain ends with monomer A and B are summed up to determine the fraction of chain 

ends with monomer A attached.
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Table S3. Content of terminal primary hydroxyl groups obtained from simulation for 

copolymerization of PO and EO for ratios of 10:90 and 20:80, respectively, for different molecular 

weights by kinetic Monte Carlo simulation. 

MN 10% EO 

(DMC)

20% EO 

(DMC)

20% EO 

(AROP)

1000 37% 60% 0%

2000 49% 73% 0%

3000 57% 80% 0%

4000 63% 84% 0%

5000 67% 87% 0%

6000 70% 89% 0%

7000 73% 91% 0%

8000 75% 92% 0%

9000 77% 93% 0%

10000 79% 94% 0%
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Fig. S9. Copolymer microstructure of P(PO-co-EO) statistical copolymers with an EO-content of 

10% and 20%, synthesized by DMC catalysis (left) or AROP (right). PO is depicted in red and EO 

is given in blue. Due to the living nature of the copolymerization, the conversion mirrors the 

monomer gradient in the chains.
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